A genome‐scale metabolic network model and machine learning predict amino acid concentrations in Chinese Hamster Ovary cell cultures

The control of nutrient availability is critical to large‐scale manufacturing of biotherapeutics. However, the quantification of proteinogenic amino acids is time‐consuming and thus is difficult to implement for real‐time in situ bioprocess control. Genome‐scale metabolic models describe the metabol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2021-05, Vol.118 (5), p.2118-2123
Hauptverfasser: Schinn, Song‐Min, Morrison, Carly, Wei, Wei, Zhang, Lin, Lewis, Nathan E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2123
container_issue 5
container_start_page 2118
container_title Biotechnology and bioengineering
container_volume 118
creator Schinn, Song‐Min
Morrison, Carly
Wei, Wei
Zhang, Lin
Lewis, Nathan E.
description The control of nutrient availability is critical to large‐scale manufacturing of biotherapeutics. However, the quantification of proteinogenic amino acids is time‐consuming and thus is difficult to implement for real‐time in situ bioprocess control. Genome‐scale metabolic models describe the metabolic conversion from media nutrients to proliferation and recombinant protein production, and therefore are a promising platform for in silico monitoring and prediction of amino acid concentrations. This potential has not been realized due to unresolved challenges: (1) the models assume an optimal and highly efficient metabolism, and therefore tend to underestimate amino acid consumption, and (2) the models assume a steady state, and therefore have a short forecast range. We address these challenges by integrating machine learning with the metabolic models. Through this we demonstrate accurate and time‐course dependent prediction of individual amino acid concentration in culture medium throughout the production process. Thus, these models can be deployed to control nutrient feeding to avoid premature nutrient depletion or provide early predictions of failed bioreactor runs.
doi_str_mv 10.1002/bit.27714
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2489251846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489251846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3884-b1efa7507d297e2261e079cc827f3d0ccb495ba24f475b086e86a1c8f16c424a3</originalsourceid><addsrcrecordid>eNp10b9O3TAUBnALUZVb6NAXQJZY2iFgO07sjPSKFiQkFpgtxzkBU_-52A6IrVNnnrFP0qSXdqjUybL08-dz9CH0gZJjSgg76W05ZkJQvoNWlHSiIqwju2hFCGmruunYHnqX8_18FbJt36K9um4kEZSt0I9TfAshevj5_SUb7QB7KLqPzhocoDzF9A37OIDDOgzYa3NnA2AHOgUbbvEmwWBNwdrbELE2dsAmBgOhJF1sDBnbgNfLmwz4XPtcIOGrR52esQHnsJlcmRLkA_Rm1C7D-9dzH918Obten1eXV18v1qeXlaml5FVPYdSiIWJgnQDGWgpEdMZIJsZ6IMb0vGt6zfjIRdMT2YJsNTVypK3hjOt6H33c5m5SfJggF-VtXibRAeKUFeOyYw2VvJ3p0T_0Pk4pzNOpWSx_d3RRn7bKpJhzglFtkvXzfooStZSj5nLU73Jme_iaOPUehr_yTxszONmCJ-vg-f9J6vPF9TbyF_3bmtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512261916</pqid></control><display><type>article</type><title>A genome‐scale metabolic network model and machine learning predict amino acid concentrations in Chinese Hamster Ovary cell cultures</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Schinn, Song‐Min ; Morrison, Carly ; Wei, Wei ; Zhang, Lin ; Lewis, Nathan E.</creator><creatorcontrib>Schinn, Song‐Min ; Morrison, Carly ; Wei, Wei ; Zhang, Lin ; Lewis, Nathan E.</creatorcontrib><description>The control of nutrient availability is critical to large‐scale manufacturing of biotherapeutics. However, the quantification of proteinogenic amino acids is time‐consuming and thus is difficult to implement for real‐time in situ bioprocess control. Genome‐scale metabolic models describe the metabolic conversion from media nutrients to proliferation and recombinant protein production, and therefore are a promising platform for in silico monitoring and prediction of amino acid concentrations. This potential has not been realized due to unresolved challenges: (1) the models assume an optimal and highly efficient metabolism, and therefore tend to underestimate amino acid consumption, and (2) the models assume a steady state, and therefore have a short forecast range. We address these challenges by integrating machine learning with the metabolic models. Through this we demonstrate accurate and time‐course dependent prediction of individual amino acid concentration in culture medium throughout the production process. Thus, these models can be deployed to control nutrient feeding to avoid premature nutrient depletion or provide early predictions of failed bioreactor runs.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.27714</identifier><identifier>PMID: 33580712</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Amino acids ; Amino Acids - metabolism ; Animals ; bioprocess ; Bioreactors ; Cell culture ; Cell Culture Techniques - methods ; Chinese Hamster Ovary ; CHO Cells ; Cricetinae ; Cricetulus ; Depletion ; Genome - genetics ; Genomes ; Glucose - metabolism ; Lactose - metabolism ; Learning algorithms ; Machine Learning ; metabolic network modeling ; Metabolic networks ; Metabolic Networks and Pathways - genetics ; Metabolism ; Models, Biological ; Models, Statistical ; Nutrient availability ; Nutrient concentrations ; Nutrients ; Predictions ; systems biology ; Systems Biology - methods ; Time dependence</subject><ispartof>Biotechnology and bioengineering, 2021-05, Vol.118 (5), p.2118-2123</ispartof><rights>2021 Wiley Periodicals LLC</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3884-b1efa7507d297e2261e079cc827f3d0ccb495ba24f475b086e86a1c8f16c424a3</citedby><cites>FETCH-LOGICAL-c3884-b1efa7507d297e2261e079cc827f3d0ccb495ba24f475b086e86a1c8f16c424a3</cites><orcidid>0000-0002-5727-4016 ; 0000-0002-2315-3558 ; 0000-0001-7700-3654</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.27714$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.27714$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33580712$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schinn, Song‐Min</creatorcontrib><creatorcontrib>Morrison, Carly</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Lewis, Nathan E.</creatorcontrib><title>A genome‐scale metabolic network model and machine learning predict amino acid concentrations in Chinese Hamster Ovary cell cultures</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>The control of nutrient availability is critical to large‐scale manufacturing of biotherapeutics. However, the quantification of proteinogenic amino acids is time‐consuming and thus is difficult to implement for real‐time in situ bioprocess control. Genome‐scale metabolic models describe the metabolic conversion from media nutrients to proliferation and recombinant protein production, and therefore are a promising platform for in silico monitoring and prediction of amino acid concentrations. This potential has not been realized due to unresolved challenges: (1) the models assume an optimal and highly efficient metabolism, and therefore tend to underestimate amino acid consumption, and (2) the models assume a steady state, and therefore have a short forecast range. We address these challenges by integrating machine learning with the metabolic models. Through this we demonstrate accurate and time‐course dependent prediction of individual amino acid concentration in culture medium throughout the production process. Thus, these models can be deployed to control nutrient feeding to avoid premature nutrient depletion or provide early predictions of failed bioreactor runs.</description><subject>Amino acids</subject><subject>Amino Acids - metabolism</subject><subject>Animals</subject><subject>bioprocess</subject><subject>Bioreactors</subject><subject>Cell culture</subject><subject>Cell Culture Techniques - methods</subject><subject>Chinese Hamster Ovary</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Depletion</subject><subject>Genome - genetics</subject><subject>Genomes</subject><subject>Glucose - metabolism</subject><subject>Lactose - metabolism</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>metabolic network modeling</subject><subject>Metabolic networks</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Metabolism</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Nutrient availability</subject><subject>Nutrient concentrations</subject><subject>Nutrients</subject><subject>Predictions</subject><subject>systems biology</subject><subject>Systems Biology - methods</subject><subject>Time dependence</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10b9O3TAUBnALUZVb6NAXQJZY2iFgO07sjPSKFiQkFpgtxzkBU_-52A6IrVNnnrFP0qSXdqjUybL08-dz9CH0gZJjSgg76W05ZkJQvoNWlHSiIqwju2hFCGmruunYHnqX8_18FbJt36K9um4kEZSt0I9TfAshevj5_SUb7QB7KLqPzhocoDzF9A37OIDDOgzYa3NnA2AHOgUbbvEmwWBNwdrbELE2dsAmBgOhJF1sDBnbgNfLmwz4XPtcIOGrR52esQHnsJlcmRLkA_Rm1C7D-9dzH918Obten1eXV18v1qeXlaml5FVPYdSiIWJgnQDGWgpEdMZIJsZ6IMb0vGt6zfjIRdMT2YJsNTVypK3hjOt6H33c5m5SfJggF-VtXibRAeKUFeOyYw2VvJ3p0T_0Pk4pzNOpWSx_d3RRn7bKpJhzglFtkvXzfooStZSj5nLU73Jme_iaOPUehr_yTxszONmCJ-vg-f9J6vPF9TbyF_3bmtA</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Schinn, Song‐Min</creator><creator>Morrison, Carly</creator><creator>Wei, Wei</creator><creator>Zhang, Lin</creator><creator>Lewis, Nathan E.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5727-4016</orcidid><orcidid>https://orcid.org/0000-0002-2315-3558</orcidid><orcidid>https://orcid.org/0000-0001-7700-3654</orcidid></search><sort><creationdate>202105</creationdate><title>A genome‐scale metabolic network model and machine learning predict amino acid concentrations in Chinese Hamster Ovary cell cultures</title><author>Schinn, Song‐Min ; Morrison, Carly ; Wei, Wei ; Zhang, Lin ; Lewis, Nathan E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3884-b1efa7507d297e2261e079cc827f3d0ccb495ba24f475b086e86a1c8f16c424a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino acids</topic><topic>Amino Acids - metabolism</topic><topic>Animals</topic><topic>bioprocess</topic><topic>Bioreactors</topic><topic>Cell culture</topic><topic>Cell Culture Techniques - methods</topic><topic>Chinese Hamster Ovary</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Depletion</topic><topic>Genome - genetics</topic><topic>Genomes</topic><topic>Glucose - metabolism</topic><topic>Lactose - metabolism</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>metabolic network modeling</topic><topic>Metabolic networks</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Metabolism</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Nutrient availability</topic><topic>Nutrient concentrations</topic><topic>Nutrients</topic><topic>Predictions</topic><topic>systems biology</topic><topic>Systems Biology - methods</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schinn, Song‐Min</creatorcontrib><creatorcontrib>Morrison, Carly</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Lewis, Nathan E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schinn, Song‐Min</au><au>Morrison, Carly</au><au>Wei, Wei</au><au>Zhang, Lin</au><au>Lewis, Nathan E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A genome‐scale metabolic network model and machine learning predict amino acid concentrations in Chinese Hamster Ovary cell cultures</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2021-05</date><risdate>2021</risdate><volume>118</volume><issue>5</issue><spage>2118</spage><epage>2123</epage><pages>2118-2123</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>The control of nutrient availability is critical to large‐scale manufacturing of biotherapeutics. However, the quantification of proteinogenic amino acids is time‐consuming and thus is difficult to implement for real‐time in situ bioprocess control. Genome‐scale metabolic models describe the metabolic conversion from media nutrients to proliferation and recombinant protein production, and therefore are a promising platform for in silico monitoring and prediction of amino acid concentrations. This potential has not been realized due to unresolved challenges: (1) the models assume an optimal and highly efficient metabolism, and therefore tend to underestimate amino acid consumption, and (2) the models assume a steady state, and therefore have a short forecast range. We address these challenges by integrating machine learning with the metabolic models. Through this we demonstrate accurate and time‐course dependent prediction of individual amino acid concentration in culture medium throughout the production process. Thus, these models can be deployed to control nutrient feeding to avoid premature nutrient depletion or provide early predictions of failed bioreactor runs.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33580712</pmid><doi>10.1002/bit.27714</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5727-4016</orcidid><orcidid>https://orcid.org/0000-0002-2315-3558</orcidid><orcidid>https://orcid.org/0000-0001-7700-3654</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2021-05, Vol.118 (5), p.2118-2123
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_2489251846
source MEDLINE; Access via Wiley Online Library
subjects Amino acids
Amino Acids - metabolism
Animals
bioprocess
Bioreactors
Cell culture
Cell Culture Techniques - methods
Chinese Hamster Ovary
CHO Cells
Cricetinae
Cricetulus
Depletion
Genome - genetics
Genomes
Glucose - metabolism
Lactose - metabolism
Learning algorithms
Machine Learning
metabolic network modeling
Metabolic networks
Metabolic Networks and Pathways - genetics
Metabolism
Models, Biological
Models, Statistical
Nutrient availability
Nutrient concentrations
Nutrients
Predictions
systems biology
Systems Biology - methods
Time dependence
title A genome‐scale metabolic network model and machine learning predict amino acid concentrations in Chinese Hamster Ovary cell cultures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A34%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20genome%E2%80%90scale%20metabolic%20network%20model%20and%20machine%20learning%20predict%20amino%20acid%20concentrations%20in%20Chinese%20Hamster%20Ovary%20cell%20cultures&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Schinn,%20Song%E2%80%90Min&rft.date=2021-05&rft.volume=118&rft.issue=5&rft.spage=2118&rft.epage=2123&rft.pages=2118-2123&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.27714&rft_dat=%3Cproquest_cross%3E2489251846%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512261916&rft_id=info:pmid/33580712&rfr_iscdi=true