Receptor‐interacting protein kinase 2 contributes to host innate immune responses against Fusobacterium nucleatum in macrophages and decidual stromal cells
Problem Chorioamnionitis is caused by a bacterial infection that ascends from the vagina and can cause adverse pregnancy outcomes (APOs). Fusobacterium nucleatum (F. nucleatum) is a periodontal pathogen associated with the occurrence of APOs. In this study, we evaluated whether receptor‐interacting...
Gespeichert in:
Veröffentlicht in: | American journal of reproductive immunology (1989) 2021-07, Vol.86 (1), p.e13403-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | e13403 |
container_title | American journal of reproductive immunology (1989) |
container_volume | 86 |
creator | Park, Ji‐Yeon Lee, Tae‐Sung Noh, Eui Jeong Jang, Ah‐Ra Ahn, Jae‐Hun Kim, Dong‐Yeon Jung, Do‐Hyeon Song, Eun‐Jung Lee, Yeon‐Ji Lee, Yun‐Ji Lee, Sung Ki Park, Jong‐Hwan |
description | Problem
Chorioamnionitis is caused by a bacterial infection that ascends from the vagina and can cause adverse pregnancy outcomes (APOs). Fusobacterium nucleatum (F. nucleatum) is a periodontal pathogen associated with the occurrence of APOs. In this study, we evaluated whether receptor‐interacting protein kinase 2 (Ripk2), an adaptor protein of the cytosolic receptors nucleotide‐binding oligomerization domain (NOD)1 and NOD2, in macrophages and human decidual stromal cells (hDSCs) contributes to immune responses against F. nucleatum.
Method of Study
Bone marrow‐derived macrophages (BMDMs) isolated from wild‐type (WT) and Ripk2‐deficient mice and hDSCs were cultured with F. nucleatum (MOI 1, 10, 100). BMDMs and hDSCs were assessed using enzyme‐linked immunosorbent assay, Western blot analysis, real‐time PCR, and nitrite assay.
Results
Fusobacterium nucleatum‐induced production of IL‐6, but not of TNF‐α and IL‐10, was lower in Ripk2‐deficient BMDMs than in WT cells. Western blotting revealed a decrease in F. nucleatum‐induced p65 phosphorylation in Ripk2‐deficient macrophages, whereas mitogen‐activated protein kinases activation was comparable between WT and Ripk2‐deficient cells. The production of nitric oxide (NO) in response to F. nucleatum and the gene and protein expression of inducible NO synthase was impaired in Ripk2‐deficient BMDMs. In hDSCs, F. nucleatum upregulated the gene and protein expression of NOD1, NOD2, and Ripk2 in a time‐dependent manner. F. nucleatum also increased the production of IL‐6, CXCL8, and CCL2, whereas this production was decreased by the Ripk2 inhibitors SB203580 and PP2.
Conclusions
In conclusion, Ripk2 signaling appears to contribute to the F. nucleatum‐induced immune response and can be a preventive and therapeutic target against APOs. |
doi_str_mv | 10.1111/aji.13403 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2489251392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2546088252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3533-5700e2bca8b91eb956b27e1805ec9c10ad1b158d127e14b0b4eded3910386bde3</originalsourceid><addsrcrecordid>eNp1kctu1TAQhi0EoqWw4AWQJTawSGvHceIsq4peUKVKFawtX6anPiR28EVVdzwCL9CX40nqcAoLJGYzo5lPv-bXj9BbSg5prSO1dYeUdYQ9Q_u0J6QhYhye15l0fTN0ROyhVyltCal7NrxEe4xxQTgf9tHDNRhYcoi_fvx0PkNUJju_wUsMGZzH35xXCXCLTfA5Ol0yJJwDvg0pY-e9yoDdPBcPOEJagk_1rjbK-Xo_LSnoKgjRlRn7YiZQuU5Vd1YmhuVWbVbcW2zBOFvUhFOOYa7dwDSl1-jFjZoSvHnqB-jr6acvJ-fN5dXZxcnxZWMYZ6zhAyHQaqOEHinokfe6HYBWi2BGQ4myVFMuLF23nSa6AwuWjZQw0WsL7AB92OlW298LpCxnl9YPlIdQkmw7MbacsrGt6Pt_0G0o0dfvZMu7ngjR8pX6uKOqy5Qi3MglulnFe0mJXDOTNTP5O7PKvntSLHoG-5f8E1IFjnbAnZvg_v9K8vjzxU7yEQLUpNU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546088252</pqid></control><display><type>article</type><title>Receptor‐interacting protein kinase 2 contributes to host innate immune responses against Fusobacterium nucleatum in macrophages and decidual stromal cells</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Park, Ji‐Yeon ; Lee, Tae‐Sung ; Noh, Eui Jeong ; Jang, Ah‐Ra ; Ahn, Jae‐Hun ; Kim, Dong‐Yeon ; Jung, Do‐Hyeon ; Song, Eun‐Jung ; Lee, Yeon‐Ji ; Lee, Yun‐Ji ; Lee, Sung Ki ; Park, Jong‐Hwan</creator><creatorcontrib>Park, Ji‐Yeon ; Lee, Tae‐Sung ; Noh, Eui Jeong ; Jang, Ah‐Ra ; Ahn, Jae‐Hun ; Kim, Dong‐Yeon ; Jung, Do‐Hyeon ; Song, Eun‐Jung ; Lee, Yeon‐Ji ; Lee, Yun‐Ji ; Lee, Sung Ki ; Park, Jong‐Hwan</creatorcontrib><description>Problem
Chorioamnionitis is caused by a bacterial infection that ascends from the vagina and can cause adverse pregnancy outcomes (APOs). Fusobacterium nucleatum (F. nucleatum) is a periodontal pathogen associated with the occurrence of APOs. In this study, we evaluated whether receptor‐interacting protein kinase 2 (Ripk2), an adaptor protein of the cytosolic receptors nucleotide‐binding oligomerization domain (NOD)1 and NOD2, in macrophages and human decidual stromal cells (hDSCs) contributes to immune responses against F. nucleatum.
Method of Study
Bone marrow‐derived macrophages (BMDMs) isolated from wild‐type (WT) and Ripk2‐deficient mice and hDSCs were cultured with F. nucleatum (MOI 1, 10, 100). BMDMs and hDSCs were assessed using enzyme‐linked immunosorbent assay, Western blot analysis, real‐time PCR, and nitrite assay.
Results
Fusobacterium nucleatum‐induced production of IL‐6, but not of TNF‐α and IL‐10, was lower in Ripk2‐deficient BMDMs than in WT cells. Western blotting revealed a decrease in F. nucleatum‐induced p65 phosphorylation in Ripk2‐deficient macrophages, whereas mitogen‐activated protein kinases activation was comparable between WT and Ripk2‐deficient cells. The production of nitric oxide (NO) in response to F. nucleatum and the gene and protein expression of inducible NO synthase was impaired in Ripk2‐deficient BMDMs. In hDSCs, F. nucleatum upregulated the gene and protein expression of NOD1, NOD2, and Ripk2 in a time‐dependent manner. F. nucleatum also increased the production of IL‐6, CXCL8, and CCL2, whereas this production was decreased by the Ripk2 inhibitors SB203580 and PP2.
Conclusions
In conclusion, Ripk2 signaling appears to contribute to the F. nucleatum‐induced immune response and can be a preventive and therapeutic target against APOs.</description><identifier>ISSN: 1046-7408</identifier><identifier>EISSN: 1600-0897</identifier><identifier>DOI: 10.1111/aji.13403</identifier><identifier>PMID: 33580557</identifier><language>eng</language><publisher>Denmark: Wiley Subscription Services, Inc</publisher><subject>Animals ; Bone marrow ; Cells, Cultured ; Chorioamnionitis ; Decidua ; Decidua - pathology ; decidual stromal cells ; Female ; Fusobacterium Infections - immunology ; Fusobacterium nucleatum ; Fusobacterium nucleatum - physiology ; Host-Pathogen Interactions ; Immune response ; Immunity, Innate ; Innate immunity ; Kinases ; Macrophages ; Macrophages - immunology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Monocyte chemoattractant protein 1 ; Nitric oxide ; Nitric-oxide synthase ; Nod1 protein ; NOD2 protein ; Oligomerization ; Phosphorylation ; Protein expression ; Protein kinase ; Proteins ; Receptor-Interacting Protein Serine-Threonine Kinase 2 - genetics ; Receptor-Interacting Protein Serine-Threonine Kinase 2 - metabolism ; Ripk2 ; Stromal cells ; Stromal Cells - immunology ; Toll-Like Receptor 4 - genetics ; Toll-Like Receptor 4 - metabolism ; Tumor necrosis factor ; Vagina ; Western blotting</subject><ispartof>American journal of reproductive immunology (1989), 2021-07, Vol.86 (1), p.e13403-n/a</ispartof><rights>2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd</rights><rights>2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.</rights><rights>Copyright © 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3533-5700e2bca8b91eb956b27e1805ec9c10ad1b158d127e14b0b4eded3910386bde3</citedby><cites>FETCH-LOGICAL-c3533-5700e2bca8b91eb956b27e1805ec9c10ad1b158d127e14b0b4eded3910386bde3</cites><orcidid>0000-0002-1495-488X ; 0000-0002-6941-192X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Faji.13403$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Faji.13403$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33580557$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Ji‐Yeon</creatorcontrib><creatorcontrib>Lee, Tae‐Sung</creatorcontrib><creatorcontrib>Noh, Eui Jeong</creatorcontrib><creatorcontrib>Jang, Ah‐Ra</creatorcontrib><creatorcontrib>Ahn, Jae‐Hun</creatorcontrib><creatorcontrib>Kim, Dong‐Yeon</creatorcontrib><creatorcontrib>Jung, Do‐Hyeon</creatorcontrib><creatorcontrib>Song, Eun‐Jung</creatorcontrib><creatorcontrib>Lee, Yeon‐Ji</creatorcontrib><creatorcontrib>Lee, Yun‐Ji</creatorcontrib><creatorcontrib>Lee, Sung Ki</creatorcontrib><creatorcontrib>Park, Jong‐Hwan</creatorcontrib><title>Receptor‐interacting protein kinase 2 contributes to host innate immune responses against Fusobacterium nucleatum in macrophages and decidual stromal cells</title><title>American journal of reproductive immunology (1989)</title><addtitle>Am J Reprod Immunol</addtitle><description>Problem
Chorioamnionitis is caused by a bacterial infection that ascends from the vagina and can cause adverse pregnancy outcomes (APOs). Fusobacterium nucleatum (F. nucleatum) is a periodontal pathogen associated with the occurrence of APOs. In this study, we evaluated whether receptor‐interacting protein kinase 2 (Ripk2), an adaptor protein of the cytosolic receptors nucleotide‐binding oligomerization domain (NOD)1 and NOD2, in macrophages and human decidual stromal cells (hDSCs) contributes to immune responses against F. nucleatum.
Method of Study
Bone marrow‐derived macrophages (BMDMs) isolated from wild‐type (WT) and Ripk2‐deficient mice and hDSCs were cultured with F. nucleatum (MOI 1, 10, 100). BMDMs and hDSCs were assessed using enzyme‐linked immunosorbent assay, Western blot analysis, real‐time PCR, and nitrite assay.
Results
Fusobacterium nucleatum‐induced production of IL‐6, but not of TNF‐α and IL‐10, was lower in Ripk2‐deficient BMDMs than in WT cells. Western blotting revealed a decrease in F. nucleatum‐induced p65 phosphorylation in Ripk2‐deficient macrophages, whereas mitogen‐activated protein kinases activation was comparable between WT and Ripk2‐deficient cells. The production of nitric oxide (NO) in response to F. nucleatum and the gene and protein expression of inducible NO synthase was impaired in Ripk2‐deficient BMDMs. In hDSCs, F. nucleatum upregulated the gene and protein expression of NOD1, NOD2, and Ripk2 in a time‐dependent manner. F. nucleatum also increased the production of IL‐6, CXCL8, and CCL2, whereas this production was decreased by the Ripk2 inhibitors SB203580 and PP2.
Conclusions
In conclusion, Ripk2 signaling appears to contribute to the F. nucleatum‐induced immune response and can be a preventive and therapeutic target against APOs.</description><subject>Animals</subject><subject>Bone marrow</subject><subject>Cells, Cultured</subject><subject>Chorioamnionitis</subject><subject>Decidua</subject><subject>Decidua - pathology</subject><subject>decidual stromal cells</subject><subject>Female</subject><subject>Fusobacterium Infections - immunology</subject><subject>Fusobacterium nucleatum</subject><subject>Fusobacterium nucleatum - physiology</subject><subject>Host-Pathogen Interactions</subject><subject>Immune response</subject><subject>Immunity, Innate</subject><subject>Innate immunity</subject><subject>Kinases</subject><subject>Macrophages</subject><subject>Macrophages - immunology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Monocyte chemoattractant protein 1</subject><subject>Nitric oxide</subject><subject>Nitric-oxide synthase</subject><subject>Nod1 protein</subject><subject>NOD2 protein</subject><subject>Oligomerization</subject><subject>Phosphorylation</subject><subject>Protein expression</subject><subject>Protein kinase</subject><subject>Proteins</subject><subject>Receptor-Interacting Protein Serine-Threonine Kinase 2 - genetics</subject><subject>Receptor-Interacting Protein Serine-Threonine Kinase 2 - metabolism</subject><subject>Ripk2</subject><subject>Stromal cells</subject><subject>Stromal Cells - immunology</subject><subject>Toll-Like Receptor 4 - genetics</subject><subject>Toll-Like Receptor 4 - metabolism</subject><subject>Tumor necrosis factor</subject><subject>Vagina</subject><subject>Western blotting</subject><issn>1046-7408</issn><issn>1600-0897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctu1TAQhi0EoqWw4AWQJTawSGvHceIsq4peUKVKFawtX6anPiR28EVVdzwCL9CX40nqcAoLJGYzo5lPv-bXj9BbSg5prSO1dYeUdYQ9Q_u0J6QhYhye15l0fTN0ROyhVyltCal7NrxEe4xxQTgf9tHDNRhYcoi_fvx0PkNUJju_wUsMGZzH35xXCXCLTfA5Ol0yJJwDvg0pY-e9yoDdPBcPOEJagk_1rjbK-Xo_LSnoKgjRlRn7YiZQuU5Vd1YmhuVWbVbcW2zBOFvUhFOOYa7dwDSl1-jFjZoSvHnqB-jr6acvJ-fN5dXZxcnxZWMYZ6zhAyHQaqOEHinokfe6HYBWi2BGQ4myVFMuLF23nSa6AwuWjZQw0WsL7AB92OlW298LpCxnl9YPlIdQkmw7MbacsrGt6Pt_0G0o0dfvZMu7ngjR8pX6uKOqy5Qi3MglulnFe0mJXDOTNTP5O7PKvntSLHoG-5f8E1IFjnbAnZvg_v9K8vjzxU7yEQLUpNU</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Park, Ji‐Yeon</creator><creator>Lee, Tae‐Sung</creator><creator>Noh, Eui Jeong</creator><creator>Jang, Ah‐Ra</creator><creator>Ahn, Jae‐Hun</creator><creator>Kim, Dong‐Yeon</creator><creator>Jung, Do‐Hyeon</creator><creator>Song, Eun‐Jung</creator><creator>Lee, Yeon‐Ji</creator><creator>Lee, Yun‐Ji</creator><creator>Lee, Sung Ki</creator><creator>Park, Jong‐Hwan</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1495-488X</orcidid><orcidid>https://orcid.org/0000-0002-6941-192X</orcidid></search><sort><creationdate>202107</creationdate><title>Receptor‐interacting protein kinase 2 contributes to host innate immune responses against Fusobacterium nucleatum in macrophages and decidual stromal cells</title><author>Park, Ji‐Yeon ; Lee, Tae‐Sung ; Noh, Eui Jeong ; Jang, Ah‐Ra ; Ahn, Jae‐Hun ; Kim, Dong‐Yeon ; Jung, Do‐Hyeon ; Song, Eun‐Jung ; Lee, Yeon‐Ji ; Lee, Yun‐Ji ; Lee, Sung Ki ; Park, Jong‐Hwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3533-5700e2bca8b91eb956b27e1805ec9c10ad1b158d127e14b0b4eded3910386bde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Bone marrow</topic><topic>Cells, Cultured</topic><topic>Chorioamnionitis</topic><topic>Decidua</topic><topic>Decidua - pathology</topic><topic>decidual stromal cells</topic><topic>Female</topic><topic>Fusobacterium Infections - immunology</topic><topic>Fusobacterium nucleatum</topic><topic>Fusobacterium nucleatum - physiology</topic><topic>Host-Pathogen Interactions</topic><topic>Immune response</topic><topic>Immunity, Innate</topic><topic>Innate immunity</topic><topic>Kinases</topic><topic>Macrophages</topic><topic>Macrophages - immunology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Monocyte chemoattractant protein 1</topic><topic>Nitric oxide</topic><topic>Nitric-oxide synthase</topic><topic>Nod1 protein</topic><topic>NOD2 protein</topic><topic>Oligomerization</topic><topic>Phosphorylation</topic><topic>Protein expression</topic><topic>Protein kinase</topic><topic>Proteins</topic><topic>Receptor-Interacting Protein Serine-Threonine Kinase 2 - genetics</topic><topic>Receptor-Interacting Protein Serine-Threonine Kinase 2 - metabolism</topic><topic>Ripk2</topic><topic>Stromal cells</topic><topic>Stromal Cells - immunology</topic><topic>Toll-Like Receptor 4 - genetics</topic><topic>Toll-Like Receptor 4 - metabolism</topic><topic>Tumor necrosis factor</topic><topic>Vagina</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Ji‐Yeon</creatorcontrib><creatorcontrib>Lee, Tae‐Sung</creatorcontrib><creatorcontrib>Noh, Eui Jeong</creatorcontrib><creatorcontrib>Jang, Ah‐Ra</creatorcontrib><creatorcontrib>Ahn, Jae‐Hun</creatorcontrib><creatorcontrib>Kim, Dong‐Yeon</creatorcontrib><creatorcontrib>Jung, Do‐Hyeon</creatorcontrib><creatorcontrib>Song, Eun‐Jung</creatorcontrib><creatorcontrib>Lee, Yeon‐Ji</creatorcontrib><creatorcontrib>Lee, Yun‐Ji</creatorcontrib><creatorcontrib>Lee, Sung Ki</creatorcontrib><creatorcontrib>Park, Jong‐Hwan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of reproductive immunology (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Ji‐Yeon</au><au>Lee, Tae‐Sung</au><au>Noh, Eui Jeong</au><au>Jang, Ah‐Ra</au><au>Ahn, Jae‐Hun</au><au>Kim, Dong‐Yeon</au><au>Jung, Do‐Hyeon</au><au>Song, Eun‐Jung</au><au>Lee, Yeon‐Ji</au><au>Lee, Yun‐Ji</au><au>Lee, Sung Ki</au><au>Park, Jong‐Hwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Receptor‐interacting protein kinase 2 contributes to host innate immune responses against Fusobacterium nucleatum in macrophages and decidual stromal cells</atitle><jtitle>American journal of reproductive immunology (1989)</jtitle><addtitle>Am J Reprod Immunol</addtitle><date>2021-07</date><risdate>2021</risdate><volume>86</volume><issue>1</issue><spage>e13403</spage><epage>n/a</epage><pages>e13403-n/a</pages><issn>1046-7408</issn><eissn>1600-0897</eissn><abstract>Problem
Chorioamnionitis is caused by a bacterial infection that ascends from the vagina and can cause adverse pregnancy outcomes (APOs). Fusobacterium nucleatum (F. nucleatum) is a periodontal pathogen associated with the occurrence of APOs. In this study, we evaluated whether receptor‐interacting protein kinase 2 (Ripk2), an adaptor protein of the cytosolic receptors nucleotide‐binding oligomerization domain (NOD)1 and NOD2, in macrophages and human decidual stromal cells (hDSCs) contributes to immune responses against F. nucleatum.
Method of Study
Bone marrow‐derived macrophages (BMDMs) isolated from wild‐type (WT) and Ripk2‐deficient mice and hDSCs were cultured with F. nucleatum (MOI 1, 10, 100). BMDMs and hDSCs were assessed using enzyme‐linked immunosorbent assay, Western blot analysis, real‐time PCR, and nitrite assay.
Results
Fusobacterium nucleatum‐induced production of IL‐6, but not of TNF‐α and IL‐10, was lower in Ripk2‐deficient BMDMs than in WT cells. Western blotting revealed a decrease in F. nucleatum‐induced p65 phosphorylation in Ripk2‐deficient macrophages, whereas mitogen‐activated protein kinases activation was comparable between WT and Ripk2‐deficient cells. The production of nitric oxide (NO) in response to F. nucleatum and the gene and protein expression of inducible NO synthase was impaired in Ripk2‐deficient BMDMs. In hDSCs, F. nucleatum upregulated the gene and protein expression of NOD1, NOD2, and Ripk2 in a time‐dependent manner. F. nucleatum also increased the production of IL‐6, CXCL8, and CCL2, whereas this production was decreased by the Ripk2 inhibitors SB203580 and PP2.
Conclusions
In conclusion, Ripk2 signaling appears to contribute to the F. nucleatum‐induced immune response and can be a preventive and therapeutic target against APOs.</abstract><cop>Denmark</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33580557</pmid><doi>10.1111/aji.13403</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1495-488X</orcidid><orcidid>https://orcid.org/0000-0002-6941-192X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1046-7408 |
ispartof | American journal of reproductive immunology (1989), 2021-07, Vol.86 (1), p.e13403-n/a |
issn | 1046-7408 1600-0897 |
language | eng |
recordid | cdi_proquest_miscellaneous_2489251392 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Animals Bone marrow Cells, Cultured Chorioamnionitis Decidua Decidua - pathology decidual stromal cells Female Fusobacterium Infections - immunology Fusobacterium nucleatum Fusobacterium nucleatum - physiology Host-Pathogen Interactions Immune response Immunity, Innate Innate immunity Kinases Macrophages Macrophages - immunology Mice Mice, Inbred C57BL Mice, Knockout Monocyte chemoattractant protein 1 Nitric oxide Nitric-oxide synthase Nod1 protein NOD2 protein Oligomerization Phosphorylation Protein expression Protein kinase Proteins Receptor-Interacting Protein Serine-Threonine Kinase 2 - genetics Receptor-Interacting Protein Serine-Threonine Kinase 2 - metabolism Ripk2 Stromal cells Stromal Cells - immunology Toll-Like Receptor 4 - genetics Toll-Like Receptor 4 - metabolism Tumor necrosis factor Vagina Western blotting |
title | Receptor‐interacting protein kinase 2 contributes to host innate immune responses against Fusobacterium nucleatum in macrophages and decidual stromal cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A39%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Receptor%E2%80%90interacting%20protein%20kinase%202%20contributes%20to%20host%20innate%20immune%20responses%20against%20Fusobacterium%20nucleatum%20in%20macrophages%20and%20decidual%20stromal%20cells&rft.jtitle=American%20journal%20of%20reproductive%20immunology%20(1989)&rft.au=Park,%20Ji%E2%80%90Yeon&rft.date=2021-07&rft.volume=86&rft.issue=1&rft.spage=e13403&rft.epage=n/a&rft.pages=e13403-n/a&rft.issn=1046-7408&rft.eissn=1600-0897&rft_id=info:doi/10.1111/aji.13403&rft_dat=%3Cproquest_cross%3E2546088252%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546088252&rft_id=info:pmid/33580557&rfr_iscdi=true |