Geometrical representations for MCDA

In this paper geometrical representations for multicriteria decision problems are proposed. This new approach provides assistance to understand the conflictual aspects of the criteria and to tackle the problem of the weights associated to them. A generalized criterion, including a preference functio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 1988, Vol.34 (1), p.69-77
Hauptverfasser: Mareschal, Bertrand, Brans, Jean-Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 77
container_issue 1
container_start_page 69
container_title European journal of operational research
container_volume 34
creator Mareschal, Bertrand
Brans, Jean-Pierre
description In this paper geometrical representations for multicriteria decision problems are proposed. This new approach provides assistance to understand the conflictual aspects of the criteria and to tackle the problem of the weights associated to them. A generalized criterion, including a preference function, is first generated for each criterion. This allows to define unicriterion preference flows for which a geometrical representation can be obtained by using the Principal Components Analysis. The actions are represented by points and criteria by axes in the PCA plane. A decision axis taking into account the weights associated to the criteria can be defined. This technique provides the decision-maker with a considerable enrichment for the understanding of his problem: clusters of actions can be considered, the importance of the criteria can be evaluated, conflictual criteria are immediately detected, incomparability between actions is emphasized and explained, best compromise actions are easily selected, new decision-axes representing possible clusters of criteria can be considered, undesirable actions can be eliminated, … The technique consists in a powerful new qualitative decision tool. It is illustrated in the paper on some examples treated by the Promethee I and II methods. A didactic and user-friendly microcomputer code is available.
doi_str_mv 10.1016/0377-2217(88)90456-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_24889521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0377221788904560</els_id><sourcerecordid>24889521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-d6cd876275cc0d8b05f1c2bae630a145a21bd12b16e8e9617a66c34eee8724e03</originalsourceid><addsrcrecordid>eNp9kE1LAzEYhIMoWD_-gYciRfSwmjfJJtmLUOonKF70HNLsu5jSbmqyLfjvzdrSgwcPk-QwMxkeQs6AXgMFeUO5UgVjoC61vqqoKGVB98gAtGKF1JLuk8HOckiOUppRSqGEckBGjxgW2EXv7HwYcRkxYdvZzoc2DZsQh6-Tu_EJOWjsPOHp9j4mHw_375On4uXt8Xkyfimc0KoraulqrSRTpXO01lNaNuDY1KLk1IIoLYNpDWwKEjVWEpSV0nGBiHmoQMqPycWmdxnD1wpTZxY-OZzPbYthlQwTWlclg2w8_2OchVVs8zbDqAApGefZJDYmF0NKERuzjH5h47cBanpupodieihGa_PLzfQjnjaxTAPdLpNX4ixkPGZtuOUiH99ZUOUot75_Zi2zZGVy7We3yFWj7UybMt8m2tb5tKtUUknB-x9vNzbMbNceo0nOY-uw9hFdZ-rg_5_8A-e_l04</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204166233</pqid></control><display><type>article</type><title>Geometrical representations for MCDA</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>Mareschal, Bertrand ; Brans, Jean-Pierre</creator><creatorcontrib>Mareschal, Bertrand ; Brans, Jean-Pierre</creatorcontrib><description>In this paper geometrical representations for multicriteria decision problems are proposed. This new approach provides assistance to understand the conflictual aspects of the criteria and to tackle the problem of the weights associated to them. A generalized criterion, including a preference function, is first generated for each criterion. This allows to define unicriterion preference flows for which a geometrical representation can be obtained by using the Principal Components Analysis. The actions are represented by points and criteria by axes in the PCA plane. A decision axis taking into account the weights associated to the criteria can be defined. This technique provides the decision-maker with a considerable enrichment for the understanding of his problem: clusters of actions can be considered, the importance of the criteria can be evaluated, conflictual criteria are immediately detected, incomparability between actions is emphasized and explained, best compromise actions are easily selected, new decision-axes representing possible clusters of criteria can be considered, undesirable actions can be eliminated, … The technique consists in a powerful new qualitative decision tool. It is illustrated in the paper on some examples treated by the Promethee I and II methods. A didactic and user-friendly microcomputer code is available.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/0377-2217(88)90456-0</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Clusters ; Criteria ; Decision ; Decision making models ; Decision theory. Utility theory ; Exact sciences and technology ; Mathematical models ; Multiple ; multiple criteria ; Operational research and scientific management ; Operational research. Management science ; Operations research ; practice ; Principal components analysis ; visual modelling</subject><ispartof>European journal of operational research, 1988, Vol.34 (1), p.69-77</ispartof><rights>1988</rights><rights>1988 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Feb 1988</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-d6cd876275cc0d8b05f1c2bae630a145a21bd12b16e8e9617a66c34eee8724e03</citedby><cites>FETCH-LOGICAL-c487t-d6cd876275cc0d8b05f1c2bae630a145a21bd12b16e8e9617a66c34eee8724e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0377-2217(88)90456-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7676430$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a34_3ay_3a1988_3ai_3a1_3ap_3a69-77.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Mareschal, Bertrand</creatorcontrib><creatorcontrib>Brans, Jean-Pierre</creatorcontrib><title>Geometrical representations for MCDA</title><title>European journal of operational research</title><description>In this paper geometrical representations for multicriteria decision problems are proposed. This new approach provides assistance to understand the conflictual aspects of the criteria and to tackle the problem of the weights associated to them. A generalized criterion, including a preference function, is first generated for each criterion. This allows to define unicriterion preference flows for which a geometrical representation can be obtained by using the Principal Components Analysis. The actions are represented by points and criteria by axes in the PCA plane. A decision axis taking into account the weights associated to the criteria can be defined. This technique provides the decision-maker with a considerable enrichment for the understanding of his problem: clusters of actions can be considered, the importance of the criteria can be evaluated, conflictual criteria are immediately detected, incomparability between actions is emphasized and explained, best compromise actions are easily selected, new decision-axes representing possible clusters of criteria can be considered, undesirable actions can be eliminated, … The technique consists in a powerful new qualitative decision tool. It is illustrated in the paper on some examples treated by the Promethee I and II methods. A didactic and user-friendly microcomputer code is available.</description><subject>Applied sciences</subject><subject>Clusters</subject><subject>Criteria</subject><subject>Decision</subject><subject>Decision making models</subject><subject>Decision theory. Utility theory</subject><subject>Exact sciences and technology</subject><subject>Mathematical models</subject><subject>Multiple</subject><subject>multiple criteria</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><subject>practice</subject><subject>Principal components analysis</subject><subject>visual modelling</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kE1LAzEYhIMoWD_-gYciRfSwmjfJJtmLUOonKF70HNLsu5jSbmqyLfjvzdrSgwcPk-QwMxkeQs6AXgMFeUO5UgVjoC61vqqoKGVB98gAtGKF1JLuk8HOckiOUppRSqGEckBGjxgW2EXv7HwYcRkxYdvZzoc2DZsQh6-Tu_EJOWjsPOHp9j4mHw_375On4uXt8Xkyfimc0KoraulqrSRTpXO01lNaNuDY1KLk1IIoLYNpDWwKEjVWEpSV0nGBiHmoQMqPycWmdxnD1wpTZxY-OZzPbYthlQwTWlclg2w8_2OchVVs8zbDqAApGefZJDYmF0NKERuzjH5h47cBanpupodieihGa_PLzfQjnjaxTAPdLpNX4ixkPGZtuOUiH99ZUOUot75_Zi2zZGVy7We3yFWj7UybMt8m2tb5tKtUUknB-x9vNzbMbNceo0nOY-uw9hFdZ-rg_5_8A-e_l04</recordid><startdate>1988</startdate><enddate>1988</enddate><creator>Mareschal, Bertrand</creator><creator>Brans, Jean-Pierre</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1988</creationdate><title>Geometrical representations for MCDA</title><author>Mareschal, Bertrand ; Brans, Jean-Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-d6cd876275cc0d8b05f1c2bae630a145a21bd12b16e8e9617a66c34eee8724e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Applied sciences</topic><topic>Clusters</topic><topic>Criteria</topic><topic>Decision</topic><topic>Decision making models</topic><topic>Decision theory. Utility theory</topic><topic>Exact sciences and technology</topic><topic>Mathematical models</topic><topic>Multiple</topic><topic>multiple criteria</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><topic>practice</topic><topic>Principal components analysis</topic><topic>visual modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mareschal, Bertrand</creatorcontrib><creatorcontrib>Brans, Jean-Pierre</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mareschal, Bertrand</au><au>Brans, Jean-Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometrical representations for MCDA</atitle><jtitle>European journal of operational research</jtitle><date>1988</date><risdate>1988</risdate><volume>34</volume><issue>1</issue><spage>69</spage><epage>77</epage><pages>69-77</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>In this paper geometrical representations for multicriteria decision problems are proposed. This new approach provides assistance to understand the conflictual aspects of the criteria and to tackle the problem of the weights associated to them. A generalized criterion, including a preference function, is first generated for each criterion. This allows to define unicriterion preference flows for which a geometrical representation can be obtained by using the Principal Components Analysis. The actions are represented by points and criteria by axes in the PCA plane. A decision axis taking into account the weights associated to the criteria can be defined. This technique provides the decision-maker with a considerable enrichment for the understanding of his problem: clusters of actions can be considered, the importance of the criteria can be evaluated, conflictual criteria are immediately detected, incomparability between actions is emphasized and explained, best compromise actions are easily selected, new decision-axes representing possible clusters of criteria can be considered, undesirable actions can be eliminated, … The technique consists in a powerful new qualitative decision tool. It is illustrated in the paper on some examples treated by the Promethee I and II methods. A didactic and user-friendly microcomputer code is available.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0377-2217(88)90456-0</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 1988, Vol.34 (1), p.69-77
issn 0377-2217
1872-6860
language eng
recordid cdi_proquest_miscellaneous_24889521
source RePEc; Access via ScienceDirect (Elsevier)
subjects Applied sciences
Clusters
Criteria
Decision
Decision making models
Decision theory. Utility theory
Exact sciences and technology
Mathematical models
Multiple
multiple criteria
Operational research and scientific management
Operational research. Management science
Operations research
practice
Principal components analysis
visual modelling
title Geometrical representations for MCDA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A00%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometrical%20representations%20for%20MCDA&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Mareschal,%20Bertrand&rft.date=1988&rft.volume=34&rft.issue=1&rft.spage=69&rft.epage=77&rft.pages=69-77&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/0377-2217(88)90456-0&rft_dat=%3Cproquest_cross%3E24889521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204166233&rft_id=info:pmid/&rft_els_id=0377221788904560&rfr_iscdi=true