Geometrical representations for MCDA
In this paper geometrical representations for multicriteria decision problems are proposed. This new approach provides assistance to understand the conflictual aspects of the criteria and to tackle the problem of the weights associated to them. A generalized criterion, including a preference functio...
Gespeichert in:
Veröffentlicht in: | European journal of operational research 1988, Vol.34 (1), p.69-77 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 77 |
---|---|
container_issue | 1 |
container_start_page | 69 |
container_title | European journal of operational research |
container_volume | 34 |
creator | Mareschal, Bertrand Brans, Jean-Pierre |
description | In this paper geometrical representations for multicriteria decision problems are proposed. This new approach provides assistance to understand the conflictual aspects of the criteria and to tackle the problem of the weights associated to them. A generalized criterion, including a preference function, is first generated for each criterion. This allows to define unicriterion preference flows for which a geometrical representation can be obtained by using the Principal Components Analysis. The actions are represented by points and criteria by axes in the PCA plane. A decision axis taking into account the weights associated to the criteria can be defined. This technique provides the decision-maker with a considerable enrichment for the understanding of his problem: clusters of actions can be considered, the importance of the criteria can be evaluated, conflictual criteria are immediately detected, incomparability between actions is emphasized and explained, best compromise actions are easily selected, new decision-axes representing possible clusters of criteria can be considered, undesirable actions can be eliminated, … The technique consists in a powerful new qualitative decision tool. It is illustrated in the paper on some examples treated by the
Promethee I and II methods. A didactic and user-friendly microcomputer code is available. |
doi_str_mv | 10.1016/0377-2217(88)90456-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_24889521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0377221788904560</els_id><sourcerecordid>24889521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-d6cd876275cc0d8b05f1c2bae630a145a21bd12b16e8e9617a66c34eee8724e03</originalsourceid><addsrcrecordid>eNp9kE1LAzEYhIMoWD_-gYciRfSwmjfJJtmLUOonKF70HNLsu5jSbmqyLfjvzdrSgwcPk-QwMxkeQs6AXgMFeUO5UgVjoC61vqqoKGVB98gAtGKF1JLuk8HOckiOUppRSqGEckBGjxgW2EXv7HwYcRkxYdvZzoc2DZsQh6-Tu_EJOWjsPOHp9j4mHw_375On4uXt8Xkyfimc0KoraulqrSRTpXO01lNaNuDY1KLk1IIoLYNpDWwKEjVWEpSV0nGBiHmoQMqPycWmdxnD1wpTZxY-OZzPbYthlQwTWlclg2w8_2OchVVs8zbDqAApGefZJDYmF0NKERuzjH5h47cBanpupodieihGa_PLzfQjnjaxTAPdLpNX4ixkPGZtuOUiH99ZUOUot75_Zi2zZGVy7We3yFWj7UybMt8m2tb5tKtUUknB-x9vNzbMbNceo0nOY-uw9hFdZ-rg_5_8A-e_l04</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204166233</pqid></control><display><type>article</type><title>Geometrical representations for MCDA</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>Mareschal, Bertrand ; Brans, Jean-Pierre</creator><creatorcontrib>Mareschal, Bertrand ; Brans, Jean-Pierre</creatorcontrib><description>In this paper geometrical representations for multicriteria decision problems are proposed. This new approach provides assistance to understand the conflictual aspects of the criteria and to tackle the problem of the weights associated to them. A generalized criterion, including a preference function, is first generated for each criterion. This allows to define unicriterion preference flows for which a geometrical representation can be obtained by using the Principal Components Analysis. The actions are represented by points and criteria by axes in the PCA plane. A decision axis taking into account the weights associated to the criteria can be defined. This technique provides the decision-maker with a considerable enrichment for the understanding of his problem: clusters of actions can be considered, the importance of the criteria can be evaluated, conflictual criteria are immediately detected, incomparability between actions is emphasized and explained, best compromise actions are easily selected, new decision-axes representing possible clusters of criteria can be considered, undesirable actions can be eliminated, … The technique consists in a powerful new qualitative decision tool. It is illustrated in the paper on some examples treated by the
Promethee I and II methods. A didactic and user-friendly microcomputer code is available.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/0377-2217(88)90456-0</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Clusters ; Criteria ; Decision ; Decision making models ; Decision theory. Utility theory ; Exact sciences and technology ; Mathematical models ; Multiple ; multiple criteria ; Operational research and scientific management ; Operational research. Management science ; Operations research ; practice ; Principal components analysis ; visual modelling</subject><ispartof>European journal of operational research, 1988, Vol.34 (1), p.69-77</ispartof><rights>1988</rights><rights>1988 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Feb 1988</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-d6cd876275cc0d8b05f1c2bae630a145a21bd12b16e8e9617a66c34eee8724e03</citedby><cites>FETCH-LOGICAL-c487t-d6cd876275cc0d8b05f1c2bae630a145a21bd12b16e8e9617a66c34eee8724e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0377-2217(88)90456-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4008,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7676430$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a34_3ay_3a1988_3ai_3a1_3ap_3a69-77.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Mareschal, Bertrand</creatorcontrib><creatorcontrib>Brans, Jean-Pierre</creatorcontrib><title>Geometrical representations for MCDA</title><title>European journal of operational research</title><description>In this paper geometrical representations for multicriteria decision problems are proposed. This new approach provides assistance to understand the conflictual aspects of the criteria and to tackle the problem of the weights associated to them. A generalized criterion, including a preference function, is first generated for each criterion. This allows to define unicriterion preference flows for which a geometrical representation can be obtained by using the Principal Components Analysis. The actions are represented by points and criteria by axes in the PCA plane. A decision axis taking into account the weights associated to the criteria can be defined. This technique provides the decision-maker with a considerable enrichment for the understanding of his problem: clusters of actions can be considered, the importance of the criteria can be evaluated, conflictual criteria are immediately detected, incomparability between actions is emphasized and explained, best compromise actions are easily selected, new decision-axes representing possible clusters of criteria can be considered, undesirable actions can be eliminated, … The technique consists in a powerful new qualitative decision tool. It is illustrated in the paper on some examples treated by the
Promethee I and II methods. A didactic and user-friendly microcomputer code is available.</description><subject>Applied sciences</subject><subject>Clusters</subject><subject>Criteria</subject><subject>Decision</subject><subject>Decision making models</subject><subject>Decision theory. Utility theory</subject><subject>Exact sciences and technology</subject><subject>Mathematical models</subject><subject>Multiple</subject><subject>multiple criteria</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><subject>practice</subject><subject>Principal components analysis</subject><subject>visual modelling</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kE1LAzEYhIMoWD_-gYciRfSwmjfJJtmLUOonKF70HNLsu5jSbmqyLfjvzdrSgwcPk-QwMxkeQs6AXgMFeUO5UgVjoC61vqqoKGVB98gAtGKF1JLuk8HOckiOUppRSqGEckBGjxgW2EXv7HwYcRkxYdvZzoc2DZsQh6-Tu_EJOWjsPOHp9j4mHw_375On4uXt8Xkyfimc0KoraulqrSRTpXO01lNaNuDY1KLk1IIoLYNpDWwKEjVWEpSV0nGBiHmoQMqPycWmdxnD1wpTZxY-OZzPbYthlQwTWlclg2w8_2OchVVs8zbDqAApGefZJDYmF0NKERuzjH5h47cBanpupodieihGa_PLzfQjnjaxTAPdLpNX4ixkPGZtuOUiH99ZUOUot75_Zi2zZGVy7We3yFWj7UybMt8m2tb5tKtUUknB-x9vNzbMbNceo0nOY-uw9hFdZ-rg_5_8A-e_l04</recordid><startdate>1988</startdate><enddate>1988</enddate><creator>Mareschal, Bertrand</creator><creator>Brans, Jean-Pierre</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1988</creationdate><title>Geometrical representations for MCDA</title><author>Mareschal, Bertrand ; Brans, Jean-Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-d6cd876275cc0d8b05f1c2bae630a145a21bd12b16e8e9617a66c34eee8724e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Applied sciences</topic><topic>Clusters</topic><topic>Criteria</topic><topic>Decision</topic><topic>Decision making models</topic><topic>Decision theory. Utility theory</topic><topic>Exact sciences and technology</topic><topic>Mathematical models</topic><topic>Multiple</topic><topic>multiple criteria</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><topic>practice</topic><topic>Principal components analysis</topic><topic>visual modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mareschal, Bertrand</creatorcontrib><creatorcontrib>Brans, Jean-Pierre</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mareschal, Bertrand</au><au>Brans, Jean-Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometrical representations for MCDA</atitle><jtitle>European journal of operational research</jtitle><date>1988</date><risdate>1988</risdate><volume>34</volume><issue>1</issue><spage>69</spage><epage>77</epage><pages>69-77</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>In this paper geometrical representations for multicriteria decision problems are proposed. This new approach provides assistance to understand the conflictual aspects of the criteria and to tackle the problem of the weights associated to them. A generalized criterion, including a preference function, is first generated for each criterion. This allows to define unicriterion preference flows for which a geometrical representation can be obtained by using the Principal Components Analysis. The actions are represented by points and criteria by axes in the PCA plane. A decision axis taking into account the weights associated to the criteria can be defined. This technique provides the decision-maker with a considerable enrichment for the understanding of his problem: clusters of actions can be considered, the importance of the criteria can be evaluated, conflictual criteria are immediately detected, incomparability between actions is emphasized and explained, best compromise actions are easily selected, new decision-axes representing possible clusters of criteria can be considered, undesirable actions can be eliminated, … The technique consists in a powerful new qualitative decision tool. It is illustrated in the paper on some examples treated by the
Promethee I and II methods. A didactic and user-friendly microcomputer code is available.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0377-2217(88)90456-0</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-2217 |
ispartof | European journal of operational research, 1988, Vol.34 (1), p.69-77 |
issn | 0377-2217 1872-6860 |
language | eng |
recordid | cdi_proquest_miscellaneous_24889521 |
source | RePEc; Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Clusters Criteria Decision Decision making models Decision theory. Utility theory Exact sciences and technology Mathematical models Multiple multiple criteria Operational research and scientific management Operational research. Management science Operations research practice Principal components analysis visual modelling |
title | Geometrical representations for MCDA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A00%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometrical%20representations%20for%20MCDA&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Mareschal,%20Bertrand&rft.date=1988&rft.volume=34&rft.issue=1&rft.spage=69&rft.epage=77&rft.pages=69-77&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/0377-2217(88)90456-0&rft_dat=%3Cproquest_cross%3E24889521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204166233&rft_id=info:pmid/&rft_els_id=0377221788904560&rfr_iscdi=true |