Generating t-ary trees in A-order

Two ‘natural’ orders have been defined on the set of t-ary trees. Zaks (1980) referred to these orders as A-order and B-order. Many algorithms have been developed for generating binary and t-ary trees in B-order. Here we develop an algorithm for generating all t-ary trees with n nodes in (reverse) A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 1988-04, Vol.27 (4), p.205-213
Hauptverfasser: van Baronaigien, D.Roelants, Ruskey, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 213
container_issue 4
container_start_page 205
container_title Information processing letters
container_volume 27
creator van Baronaigien, D.Roelants
Ruskey, Frank
description Two ‘natural’ orders have been defined on the set of t-ary trees. Zaks (1980) referred to these orders as A-order and B-order. Many algorithms have been developed for generating binary and t-ary trees in B-order. Here we develop an algorithm for generating all t-ary trees with n nodes in (reverse) A-order, as well as ranking and unranking algorithms. The generation algorithm produces each tree in constant average time. The analysis of the generation algorithm makes use of an interesting bijection on the set of t-ary trees. The ranking algorithm runs in O( tn) time and the unranking algorithm in O( tn lg n) time.
doi_str_mv 10.1016/0020-0190(88)90027-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_24888673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0020019088900270</els_id><sourcerecordid>1136890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-542189792049af69c2fd24890fe0887aac8f65b46de0349f1562ee58e0480ad13</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKtv4GH1IHqITrLZ7OQilKJVKHjRc4jZWUlpd2uyFXx7UysePHgaBr7_Z-Zj7FTAtQChbwAkcBAGLhGvTN5qDntsJLCWXAth9tnoFzlkRyktAECrsh6xsxl1FN0Qurdi4C5-FkMkSkXoignvY0PxmB20bpno5GeO2cv93fP0gc-fZo_TyZz7UsuBV0oKNLWRoIxrtfGybaRCAy0BYu2cx1ZXr0o3BKUyrai0JKqQQCG4RpRjdrHrXcf-fUNpsKuQPC2XrqN-k2wuQ9R1mcHzP-Ci38Qu32ZlWcsKsZIZUjvIxz6lSK1dx7DK_1kBdivNbo3YrRGLaL-lWcix212M8qcfgaJNPlDnqQmR_GCbPvxf8AXBaW9d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237258852</pqid></control><display><type>article</type><title>Generating t-ary trees in A-order</title><source>Elsevier ScienceDirect Journals Complete</source><creator>van Baronaigien, D.Roelants ; Ruskey, Frank</creator><creatorcontrib>van Baronaigien, D.Roelants ; Ruskey, Frank</creatorcontrib><description>Two ‘natural’ orders have been defined on the set of t-ary trees. Zaks (1980) referred to these orders as A-order and B-order. Many algorithms have been developed for generating binary and t-ary trees in B-order. Here we develop an algorithm for generating all t-ary trees with n nodes in (reverse) A-order, as well as ranking and unranking algorithms. The generation algorithm produces each tree in constant average time. The analysis of the generation algorithm makes use of an interesting bijection on the set of t-ary trees. The ranking algorithm runs in O( tn) time and the unranking algorithm in O( tn lg n) time.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/0020-0190(88)90027-0</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A-order ; Algorithms ; Applications ; bijection ; combinatorial generation ; Mathematical analysis ; ranking ; t-ary tree ; Trees</subject><ispartof>Information processing letters, 1988-04, Vol.27 (4), p.205-213</ispartof><rights>1988</rights><rights>Copyright Elsevier Sequoia S.A. Apr 8, 1988</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-542189792049af69c2fd24890fe0887aac8f65b46de0349f1562ee58e0480ad13</citedby><cites>FETCH-LOGICAL-c362t-542189792049af69c2fd24890fe0887aac8f65b46de0349f1562ee58e0480ad13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0020-0190(88)90027-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>van Baronaigien, D.Roelants</creatorcontrib><creatorcontrib>Ruskey, Frank</creatorcontrib><title>Generating t-ary trees in A-order</title><title>Information processing letters</title><description>Two ‘natural’ orders have been defined on the set of t-ary trees. Zaks (1980) referred to these orders as A-order and B-order. Many algorithms have been developed for generating binary and t-ary trees in B-order. Here we develop an algorithm for generating all t-ary trees with n nodes in (reverse) A-order, as well as ranking and unranking algorithms. The generation algorithm produces each tree in constant average time. The analysis of the generation algorithm makes use of an interesting bijection on the set of t-ary trees. The ranking algorithm runs in O( tn) time and the unranking algorithm in O( tn lg n) time.</description><subject>A-order</subject><subject>Algorithms</subject><subject>Applications</subject><subject>bijection</subject><subject>combinatorial generation</subject><subject>Mathematical analysis</subject><subject>ranking</subject><subject>t-ary tree</subject><subject>Trees</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKtv4GH1IHqITrLZ7OQilKJVKHjRc4jZWUlpd2uyFXx7UysePHgaBr7_Z-Zj7FTAtQChbwAkcBAGLhGvTN5qDntsJLCWXAth9tnoFzlkRyktAECrsh6xsxl1FN0Qurdi4C5-FkMkSkXoignvY0PxmB20bpno5GeO2cv93fP0gc-fZo_TyZz7UsuBV0oKNLWRoIxrtfGybaRCAy0BYu2cx1ZXr0o3BKUyrai0JKqQQCG4RpRjdrHrXcf-fUNpsKuQPC2XrqN-k2wuQ9R1mcHzP-Ci38Qu32ZlWcsKsZIZUjvIxz6lSK1dx7DK_1kBdivNbo3YrRGLaL-lWcix212M8qcfgaJNPlDnqQmR_GCbPvxf8AXBaW9d</recordid><startdate>19880408</startdate><enddate>19880408</enddate><creator>van Baronaigien, D.Roelants</creator><creator>Ruskey, Frank</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19880408</creationdate><title>Generating t-ary trees in A-order</title><author>van Baronaigien, D.Roelants ; Ruskey, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-542189792049af69c2fd24890fe0887aac8f65b46de0349f1562ee58e0480ad13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>A-order</topic><topic>Algorithms</topic><topic>Applications</topic><topic>bijection</topic><topic>combinatorial generation</topic><topic>Mathematical analysis</topic><topic>ranking</topic><topic>t-ary tree</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Baronaigien, D.Roelants</creatorcontrib><creatorcontrib>Ruskey, Frank</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Baronaigien, D.Roelants</au><au>Ruskey, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generating t-ary trees in A-order</atitle><jtitle>Information processing letters</jtitle><date>1988-04-08</date><risdate>1988</risdate><volume>27</volume><issue>4</issue><spage>205</spage><epage>213</epage><pages>205-213</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>Two ‘natural’ orders have been defined on the set of t-ary trees. Zaks (1980) referred to these orders as A-order and B-order. Many algorithms have been developed for generating binary and t-ary trees in B-order. Here we develop an algorithm for generating all t-ary trees with n nodes in (reverse) A-order, as well as ranking and unranking algorithms. The generation algorithm produces each tree in constant average time. The analysis of the generation algorithm makes use of an interesting bijection on the set of t-ary trees. The ranking algorithm runs in O( tn) time and the unranking algorithm in O( tn lg n) time.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0020-0190(88)90027-0</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0190
ispartof Information processing letters, 1988-04, Vol.27 (4), p.205-213
issn 0020-0190
1872-6119
language eng
recordid cdi_proquest_miscellaneous_24888673
source Elsevier ScienceDirect Journals Complete
subjects A-order
Algorithms
Applications
bijection
combinatorial generation
Mathematical analysis
ranking
t-ary tree
Trees
title Generating t-ary trees in A-order
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A43%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generating%20t-ary%20trees%20in%20A-order&rft.jtitle=Information%20processing%20letters&rft.au=van%20Baronaigien,%20D.Roelants&rft.date=1988-04-08&rft.volume=27&rft.issue=4&rft.spage=205&rft.epage=213&rft.pages=205-213&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/0020-0190(88)90027-0&rft_dat=%3Cproquest_cross%3E1136890%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237258852&rft_id=info:pmid/&rft_els_id=0020019088900270&rfr_iscdi=true