How Mechanical Forces Shape Plant Organs

Plants produce organs of various shapes and sizes. While much has been learned about genetic regulation of organogenesis, the integration of mechanics in the process is also gaining attention. Here, we consider the role of forces as instructive signals in organ morphogenesis. Turgor pressure is the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2021-02, Vol.31 (3), p.R143-R159
Hauptverfasser: Trinh, Duy-Chi, Alonso-Serra, Juan, Asaoka, Mariko, Colin, Leia, Cortes, Matthieu, Malivert, Alice, Takatani, Shogo, Zhao, Feng, Traas, Jan, Trehin, Christophe, Hamant, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page R159
container_issue 3
container_start_page R143
container_title Current biology
container_volume 31
creator Trinh, Duy-Chi
Alonso-Serra, Juan
Asaoka, Mariko
Colin, Leia
Cortes, Matthieu
Malivert, Alice
Takatani, Shogo
Zhao, Feng
Traas, Jan
Trehin, Christophe
Hamant, Olivier
description Plants produce organs of various shapes and sizes. While much has been learned about genetic regulation of organogenesis, the integration of mechanics in the process is also gaining attention. Here, we consider the role of forces as instructive signals in organ morphogenesis. Turgor pressure is the primary cause of mechanical signals in developing organs. Because plant cells are glued to each other, mechanical signals act, in essence, at multiple scales, through cell wall contiguity and water flux. In turn, cells use such signals to resist mechanical stress, for instance, by reinforcing their cell walls. We show that the three elemental shapes behind plant organs — spheres, cylinders and lamina — can be actively maintained by such a mechanical feedback. Combinations of this 3-letter alphabet can generate more complex shapes. Furthermore, mechanical conflicts emerge at the boundary between domains exhibiting different growth rates or directions. These secondary mechanical signals contribute to three other organ shape features — folds, shape reproducibility and growth arrest. The further integration of mechanical signals with the molecular network offers many fruitful prospects for the scientific community, including the role of proprioception in organ shape robustness or the definition of cell and organ identities as a result of an interplay between biochemical and mechanical signals. Trinh et al. review the role of forces as instructive signals in plant organ morphogenesis.
doi_str_mv 10.1016/j.cub.2020.12.001
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_2488171399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982220318200</els_id><sourcerecordid>2488171399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-4e4749143238d09ffdd6a4b4d20290778a41aeb4ed8e62d019f14f54a96d97043</originalsourceid><addsrcrecordid>eNp9kMFOAjEQhhujEUQfwIvZIx527XTLto0nQ0RMMJio56a0s7JkYbEFjG9vySJHT5OZfP-fyUfINdAMKBR3i8xuZxmjLO4soxROSBekUCnlfHBKulQVNFWSsQ65CGERASZVcU46eT4ogIPokv64-U5e0M7NqrKmTkaNtxiSt7lZY_Jam9UmmfpPswqX5Kw0dcCrw-yRj9Hj-3CcTqZPz8OHSWpzKTYpRy64Ap6zXDqqytK5wvAZd_FLRYWQhoPBGUcnsWCOgiqBlwNuVOGUoDzvkdu2d25qvfbV0vgf3ZhKjx8men-jXLFBXogdRLbfsmvffG0xbPSyChbr-DY226AZlxIE5EpFFFrU-iYEj-WxG6jey9QLHWXqvUwNTEdXMXNzqN_OluiOiT97EbhvAYxCdhV6HWyFK4uu8mg32jXVP_W_O36AuQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488171399</pqid></control><display><type>article</type><title>How Mechanical Forces Shape Plant Organs</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Trinh, Duy-Chi ; Alonso-Serra, Juan ; Asaoka, Mariko ; Colin, Leia ; Cortes, Matthieu ; Malivert, Alice ; Takatani, Shogo ; Zhao, Feng ; Traas, Jan ; Trehin, Christophe ; Hamant, Olivier</creator><creatorcontrib>Trinh, Duy-Chi ; Alonso-Serra, Juan ; Asaoka, Mariko ; Colin, Leia ; Cortes, Matthieu ; Malivert, Alice ; Takatani, Shogo ; Zhao, Feng ; Traas, Jan ; Trehin, Christophe ; Hamant, Olivier</creatorcontrib><description>Plants produce organs of various shapes and sizes. While much has been learned about genetic regulation of organogenesis, the integration of mechanics in the process is also gaining attention. Here, we consider the role of forces as instructive signals in organ morphogenesis. Turgor pressure is the primary cause of mechanical signals in developing organs. Because plant cells are glued to each other, mechanical signals act, in essence, at multiple scales, through cell wall contiguity and water flux. In turn, cells use such signals to resist mechanical stress, for instance, by reinforcing their cell walls. We show that the three elemental shapes behind plant organs — spheres, cylinders and lamina — can be actively maintained by such a mechanical feedback. Combinations of this 3-letter alphabet can generate more complex shapes. Furthermore, mechanical conflicts emerge at the boundary between domains exhibiting different growth rates or directions. These secondary mechanical signals contribute to three other organ shape features — folds, shape reproducibility and growth arrest. The further integration of mechanical signals with the molecular network offers many fruitful prospects for the scientific community, including the role of proprioception in organ shape robustness or the definition of cell and organ identities as a result of an interplay between biochemical and mechanical signals. Trinh et al. review the role of forces as instructive signals in plant organ morphogenesis.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2020.12.001</identifier><identifier>PMID: 33561417</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Biomechanical Phenomena ; Cell Wall ; Life Sciences ; Plant Cells ; Plant Development ; Plants ; Reproducibility of Results ; Stress, Mechanical ; Vegetal Biology</subject><ispartof>Current biology, 2021-02, Vol.31 (3), p.R143-R159</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-4e4749143238d09ffdd6a4b4d20290778a41aeb4ed8e62d019f14f54a96d97043</citedby><cites>FETCH-LOGICAL-c387t-4e4749143238d09ffdd6a4b4d20290778a41aeb4ed8e62d019f14f54a96d97043</cites><orcidid>0000-0001-6906-6620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960982220318200$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33561417$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-04925367$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Trinh, Duy-Chi</creatorcontrib><creatorcontrib>Alonso-Serra, Juan</creatorcontrib><creatorcontrib>Asaoka, Mariko</creatorcontrib><creatorcontrib>Colin, Leia</creatorcontrib><creatorcontrib>Cortes, Matthieu</creatorcontrib><creatorcontrib>Malivert, Alice</creatorcontrib><creatorcontrib>Takatani, Shogo</creatorcontrib><creatorcontrib>Zhao, Feng</creatorcontrib><creatorcontrib>Traas, Jan</creatorcontrib><creatorcontrib>Trehin, Christophe</creatorcontrib><creatorcontrib>Hamant, Olivier</creatorcontrib><title>How Mechanical Forces Shape Plant Organs</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Plants produce organs of various shapes and sizes. While much has been learned about genetic regulation of organogenesis, the integration of mechanics in the process is also gaining attention. Here, we consider the role of forces as instructive signals in organ morphogenesis. Turgor pressure is the primary cause of mechanical signals in developing organs. Because plant cells are glued to each other, mechanical signals act, in essence, at multiple scales, through cell wall contiguity and water flux. In turn, cells use such signals to resist mechanical stress, for instance, by reinforcing their cell walls. We show that the three elemental shapes behind plant organs — spheres, cylinders and lamina — can be actively maintained by such a mechanical feedback. Combinations of this 3-letter alphabet can generate more complex shapes. Furthermore, mechanical conflicts emerge at the boundary between domains exhibiting different growth rates or directions. These secondary mechanical signals contribute to three other organ shape features — folds, shape reproducibility and growth arrest. The further integration of mechanical signals with the molecular network offers many fruitful prospects for the scientific community, including the role of proprioception in organ shape robustness or the definition of cell and organ identities as a result of an interplay between biochemical and mechanical signals. Trinh et al. review the role of forces as instructive signals in plant organ morphogenesis.</description><subject>Biomechanical Phenomena</subject><subject>Cell Wall</subject><subject>Life Sciences</subject><subject>Plant Cells</subject><subject>Plant Development</subject><subject>Plants</subject><subject>Reproducibility of Results</subject><subject>Stress, Mechanical</subject><subject>Vegetal Biology</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMFOAjEQhhujEUQfwIvZIx527XTLto0nQ0RMMJio56a0s7JkYbEFjG9vySJHT5OZfP-fyUfINdAMKBR3i8xuZxmjLO4soxROSBekUCnlfHBKulQVNFWSsQ65CGERASZVcU46eT4ogIPokv64-U5e0M7NqrKmTkaNtxiSt7lZY_Jam9UmmfpPswqX5Kw0dcCrw-yRj9Hj-3CcTqZPz8OHSWpzKTYpRy64Ap6zXDqqytK5wvAZd_FLRYWQhoPBGUcnsWCOgiqBlwNuVOGUoDzvkdu2d25qvfbV0vgf3ZhKjx8men-jXLFBXogdRLbfsmvffG0xbPSyChbr-DY226AZlxIE5EpFFFrU-iYEj-WxG6jey9QLHWXqvUwNTEdXMXNzqN_OluiOiT97EbhvAYxCdhV6HWyFK4uu8mg32jXVP_W_O36AuQ</recordid><startdate>20210208</startdate><enddate>20210208</enddate><creator>Trinh, Duy-Chi</creator><creator>Alonso-Serra, Juan</creator><creator>Asaoka, Mariko</creator><creator>Colin, Leia</creator><creator>Cortes, Matthieu</creator><creator>Malivert, Alice</creator><creator>Takatani, Shogo</creator><creator>Zhao, Feng</creator><creator>Traas, Jan</creator><creator>Trehin, Christophe</creator><creator>Hamant, Olivier</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6906-6620</orcidid></search><sort><creationdate>20210208</creationdate><title>How Mechanical Forces Shape Plant Organs</title><author>Trinh, Duy-Chi ; Alonso-Serra, Juan ; Asaoka, Mariko ; Colin, Leia ; Cortes, Matthieu ; Malivert, Alice ; Takatani, Shogo ; Zhao, Feng ; Traas, Jan ; Trehin, Christophe ; Hamant, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-4e4749143238d09ffdd6a4b4d20290778a41aeb4ed8e62d019f14f54a96d97043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomechanical Phenomena</topic><topic>Cell Wall</topic><topic>Life Sciences</topic><topic>Plant Cells</topic><topic>Plant Development</topic><topic>Plants</topic><topic>Reproducibility of Results</topic><topic>Stress, Mechanical</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trinh, Duy-Chi</creatorcontrib><creatorcontrib>Alonso-Serra, Juan</creatorcontrib><creatorcontrib>Asaoka, Mariko</creatorcontrib><creatorcontrib>Colin, Leia</creatorcontrib><creatorcontrib>Cortes, Matthieu</creatorcontrib><creatorcontrib>Malivert, Alice</creatorcontrib><creatorcontrib>Takatani, Shogo</creatorcontrib><creatorcontrib>Zhao, Feng</creatorcontrib><creatorcontrib>Traas, Jan</creatorcontrib><creatorcontrib>Trehin, Christophe</creatorcontrib><creatorcontrib>Hamant, Olivier</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trinh, Duy-Chi</au><au>Alonso-Serra, Juan</au><au>Asaoka, Mariko</au><au>Colin, Leia</au><au>Cortes, Matthieu</au><au>Malivert, Alice</au><au>Takatani, Shogo</au><au>Zhao, Feng</au><au>Traas, Jan</au><au>Trehin, Christophe</au><au>Hamant, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Mechanical Forces Shape Plant Organs</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2021-02-08</date><risdate>2021</risdate><volume>31</volume><issue>3</issue><spage>R143</spage><epage>R159</epage><pages>R143-R159</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>Plants produce organs of various shapes and sizes. While much has been learned about genetic regulation of organogenesis, the integration of mechanics in the process is also gaining attention. Here, we consider the role of forces as instructive signals in organ morphogenesis. Turgor pressure is the primary cause of mechanical signals in developing organs. Because plant cells are glued to each other, mechanical signals act, in essence, at multiple scales, through cell wall contiguity and water flux. In turn, cells use such signals to resist mechanical stress, for instance, by reinforcing their cell walls. We show that the three elemental shapes behind plant organs — spheres, cylinders and lamina — can be actively maintained by such a mechanical feedback. Combinations of this 3-letter alphabet can generate more complex shapes. Furthermore, mechanical conflicts emerge at the boundary between domains exhibiting different growth rates or directions. These secondary mechanical signals contribute to three other organ shape features — folds, shape reproducibility and growth arrest. The further integration of mechanical signals with the molecular network offers many fruitful prospects for the scientific community, including the role of proprioception in organ shape robustness or the definition of cell and organ identities as a result of an interplay between biochemical and mechanical signals. Trinh et al. review the role of forces as instructive signals in plant organ morphogenesis.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>33561417</pmid><doi>10.1016/j.cub.2020.12.001</doi><orcidid>https://orcid.org/0000-0001-6906-6620</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-9822
ispartof Current biology, 2021-02, Vol.31 (3), p.R143-R159
issn 0960-9822
1879-0445
language eng
recordid cdi_proquest_miscellaneous_2488171399
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Biomechanical Phenomena
Cell Wall
Life Sciences
Plant Cells
Plant Development
Plants
Reproducibility of Results
Stress, Mechanical
Vegetal Biology
title How Mechanical Forces Shape Plant Organs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A08%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Mechanical%20Forces%20Shape%20Plant%20Organs&rft.jtitle=Current%20biology&rft.au=Trinh,%20Duy-Chi&rft.date=2021-02-08&rft.volume=31&rft.issue=3&rft.spage=R143&rft.epage=R159&rft.pages=R143-R159&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2020.12.001&rft_dat=%3Cproquest_hal_p%3E2488171399%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488171399&rft_id=info:pmid/33561417&rft_els_id=S0960982220318200&rfr_iscdi=true