A method to screen left ventricular dysfunction through ECG based on convolutional neural network

Objective This study aims to develop an artificial intelligence‐based method to screen patients with left ventricular ejection fraction (LVEF) of 50% or lesser using electrocardiogram (ECG) data alone. Methods Convolutional neural network (CNN) is a class of deep neural networks, which has been wide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cardiovascular electrophysiology 2021-04, Vol.32 (4), p.1095-1102
Hauptverfasser: Sun, Jin‐Yu, Qiu, Yue, Guo, Hong‐Cheng, Hua, Yang, Shao, Bo, Qiao, Yu‐Cong, Guo, Jin, Ding, Han‐Lin, Zhang, Zhen‐Ye, Miao, Ling‐Feng, Wang, Ning, Zhang, Yu‐Min, Chen, Yan, Lu, Juan, Dai, Min, Zhang, Chang‐Ying, Wang, Ru‐Xing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1102
container_issue 4
container_start_page 1095
container_title Journal of cardiovascular electrophysiology
container_volume 32
creator Sun, Jin‐Yu
Qiu, Yue
Guo, Hong‐Cheng
Hua, Yang
Shao, Bo
Qiao, Yu‐Cong
Guo, Jin
Ding, Han‐Lin
Zhang, Zhen‐Ye
Miao, Ling‐Feng
Wang, Ning
Zhang, Yu‐Min
Chen, Yan
Lu, Juan
Dai, Min
Zhang, Chang‐Ying
Wang, Ru‐Xing
description Objective This study aims to develop an artificial intelligence‐based method to screen patients with left ventricular ejection fraction (LVEF) of 50% or lesser using electrocardiogram (ECG) data alone. Methods Convolutional neural network (CNN) is a class of deep neural networks, which has been widely used in medical image recognition. We collected standard 12‐lead ECG and transthoracic echocardiogram (TTE) data including the LVEF value. Then, we paired the ECG and TTE data from the same individual. For multiple ECG‐TTE pairs from a single individual, only the earliest data pair was included. All the ECG‐TTE pairs were randomly divided into the training, validation, or testing data set in a ratio of 9:1:1 to create or evaluate the CNN model. Finally, we assessed the screening performance by overall accuracy, sensitivity, specificity, positive predictive value, and negative predictive value. Results We retrospectively enrolled a total of 26 786 ECG‐TTE pairs and randomly divided them into training (n = 21 732), validation (n = 2 530), and testing data set (n = 2 530). In the testing set, the CNN algorithm showed an overall accuracy of 73.9%, sensitivity of 69.2%, specificity of 70.5%, positive predictive value of 70.1%, and negative predictive value of 69.9%. Conclusion Our results demonstrate that a well‐trained CNN algorithm may be used as a low‐cost and noninvasive method to identify patients with left ventricular dysfunction.
doi_str_mv 10.1111/jce.14936
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2488168489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488168489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3536-7a2c93050367604643a536c8c74ee7f9e05c20a4dafb1c97c085de9b8ae1c4373</originalsourceid><addsrcrecordid>eNp10MtKxDAUBuAgiuNt4QtIwI0u6iTNrV1KGW8IbnRd0vTU6dhpxqQZmbc32tGFYDYnHD5-Dj9Cp5Rc0fimCwNXlOdM7qADKjhJMirVbvwTLhKWKTZBh94vCKFMErGPJowJKVKqDpC-xksY5rbGg8XeOIAed9AMeA394FoTOu1wvfFN6M3Q2h4Pc2fD6xzPiltcaQ81jktj-7XtwhfQHe4huO8xfFj3doz2Gt15ONnOI_RyM3su7pLHp9v74voxMUwwmSidmpwRQZhUknDJmY5rkxnFAVSTAxEmJZrXuqmoyZUhmaghrzIN1HCm2BG6GHNXzr4H8EO5bL2BrtM92ODLlGexloxneaTnf-jCBhdPj0qQPKVpKmRUl6MyznrvoClXrl1qtykpKb96L2Pv5Xfv0Z5tE0O1hPpX_hQdwXQEH20Hm_-TyodiNkZ-AlUCi_M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509212256</pqid></control><display><type>article</type><title>A method to screen left ventricular dysfunction through ECG based on convolutional neural network</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sun, Jin‐Yu ; Qiu, Yue ; Guo, Hong‐Cheng ; Hua, Yang ; Shao, Bo ; Qiao, Yu‐Cong ; Guo, Jin ; Ding, Han‐Lin ; Zhang, Zhen‐Ye ; Miao, Ling‐Feng ; Wang, Ning ; Zhang, Yu‐Min ; Chen, Yan ; Lu, Juan ; Dai, Min ; Zhang, Chang‐Ying ; Wang, Ru‐Xing</creator><creatorcontrib>Sun, Jin‐Yu ; Qiu, Yue ; Guo, Hong‐Cheng ; Hua, Yang ; Shao, Bo ; Qiao, Yu‐Cong ; Guo, Jin ; Ding, Han‐Lin ; Zhang, Zhen‐Ye ; Miao, Ling‐Feng ; Wang, Ning ; Zhang, Yu‐Min ; Chen, Yan ; Lu, Juan ; Dai, Min ; Zhang, Chang‐Ying ; Wang, Ru‐Xing</creatorcontrib><description>Objective This study aims to develop an artificial intelligence‐based method to screen patients with left ventricular ejection fraction (LVEF) of 50% or lesser using electrocardiogram (ECG) data alone. Methods Convolutional neural network (CNN) is a class of deep neural networks, which has been widely used in medical image recognition. We collected standard 12‐lead ECG and transthoracic echocardiogram (TTE) data including the LVEF value. Then, we paired the ECG and TTE data from the same individual. For multiple ECG‐TTE pairs from a single individual, only the earliest data pair was included. All the ECG‐TTE pairs were randomly divided into the training, validation, or testing data set in a ratio of 9:1:1 to create or evaluate the CNN model. Finally, we assessed the screening performance by overall accuracy, sensitivity, specificity, positive predictive value, and negative predictive value. Results We retrospectively enrolled a total of 26 786 ECG‐TTE pairs and randomly divided them into training (n = 21 732), validation (n = 2 530), and testing data set (n = 2 530). In the testing set, the CNN algorithm showed an overall accuracy of 73.9%, sensitivity of 69.2%, specificity of 70.5%, positive predictive value of 70.1%, and negative predictive value of 69.9%. Conclusion Our results demonstrate that a well‐trained CNN algorithm may be used as a low‐cost and noninvasive method to identify patients with left ventricular dysfunction.</description><identifier>ISSN: 1045-3873</identifier><identifier>EISSN: 1540-8167</identifier><identifier>DOI: 10.1111/jce.14936</identifier><identifier>PMID: 33565217</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Artificial Intelligence ; convolutional neural network ; deep learning ; Echocardiography ; EKG ; electrocardiogram ; Electrocardiography ; Heart ; heart failure ; Humans ; left ventricular ejection fraction ; Neural networks ; Neural Networks, Computer ; Retrospective Studies ; Stroke Volume ; Ventricle ; Ventricular Dysfunction, Left - diagnostic imaging ; Ventricular Function, Left</subject><ispartof>Journal of cardiovascular electrophysiology, 2021-04, Vol.32 (4), p.1095-1102</ispartof><rights>2021 Wiley Periodicals LLC</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3536-7a2c93050367604643a536c8c74ee7f9e05c20a4dafb1c97c085de9b8ae1c4373</citedby><cites>FETCH-LOGICAL-c3536-7a2c93050367604643a536c8c74ee7f9e05c20a4dafb1c97c085de9b8ae1c4373</cites><orcidid>0000-0001-7355-5048 ; 0000-0003-3018-5387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjce.14936$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjce.14936$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33565217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Jin‐Yu</creatorcontrib><creatorcontrib>Qiu, Yue</creatorcontrib><creatorcontrib>Guo, Hong‐Cheng</creatorcontrib><creatorcontrib>Hua, Yang</creatorcontrib><creatorcontrib>Shao, Bo</creatorcontrib><creatorcontrib>Qiao, Yu‐Cong</creatorcontrib><creatorcontrib>Guo, Jin</creatorcontrib><creatorcontrib>Ding, Han‐Lin</creatorcontrib><creatorcontrib>Zhang, Zhen‐Ye</creatorcontrib><creatorcontrib>Miao, Ling‐Feng</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Zhang, Yu‐Min</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>Lu, Juan</creatorcontrib><creatorcontrib>Dai, Min</creatorcontrib><creatorcontrib>Zhang, Chang‐Ying</creatorcontrib><creatorcontrib>Wang, Ru‐Xing</creatorcontrib><title>A method to screen left ventricular dysfunction through ECG based on convolutional neural network</title><title>Journal of cardiovascular electrophysiology</title><addtitle>J Cardiovasc Electrophysiol</addtitle><description>Objective This study aims to develop an artificial intelligence‐based method to screen patients with left ventricular ejection fraction (LVEF) of 50% or lesser using electrocardiogram (ECG) data alone. Methods Convolutional neural network (CNN) is a class of deep neural networks, which has been widely used in medical image recognition. We collected standard 12‐lead ECG and transthoracic echocardiogram (TTE) data including the LVEF value. Then, we paired the ECG and TTE data from the same individual. For multiple ECG‐TTE pairs from a single individual, only the earliest data pair was included. All the ECG‐TTE pairs were randomly divided into the training, validation, or testing data set in a ratio of 9:1:1 to create or evaluate the CNN model. Finally, we assessed the screening performance by overall accuracy, sensitivity, specificity, positive predictive value, and negative predictive value. Results We retrospectively enrolled a total of 26 786 ECG‐TTE pairs and randomly divided them into training (n = 21 732), validation (n = 2 530), and testing data set (n = 2 530). In the testing set, the CNN algorithm showed an overall accuracy of 73.9%, sensitivity of 69.2%, specificity of 70.5%, positive predictive value of 70.1%, and negative predictive value of 69.9%. Conclusion Our results demonstrate that a well‐trained CNN algorithm may be used as a low‐cost and noninvasive method to identify patients with left ventricular dysfunction.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>convolutional neural network</subject><subject>deep learning</subject><subject>Echocardiography</subject><subject>EKG</subject><subject>electrocardiogram</subject><subject>Electrocardiography</subject><subject>Heart</subject><subject>heart failure</subject><subject>Humans</subject><subject>left ventricular ejection fraction</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Retrospective Studies</subject><subject>Stroke Volume</subject><subject>Ventricle</subject><subject>Ventricular Dysfunction, Left - diagnostic imaging</subject><subject>Ventricular Function, Left</subject><issn>1045-3873</issn><issn>1540-8167</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10MtKxDAUBuAgiuNt4QtIwI0u6iTNrV1KGW8IbnRd0vTU6dhpxqQZmbc32tGFYDYnHD5-Dj9Cp5Rc0fimCwNXlOdM7qADKjhJMirVbvwTLhKWKTZBh94vCKFMErGPJowJKVKqDpC-xksY5rbGg8XeOIAed9AMeA394FoTOu1wvfFN6M3Q2h4Pc2fD6xzPiltcaQ81jktj-7XtwhfQHe4huO8xfFj3doz2Gt15ONnOI_RyM3su7pLHp9v74voxMUwwmSidmpwRQZhUknDJmY5rkxnFAVSTAxEmJZrXuqmoyZUhmaghrzIN1HCm2BG6GHNXzr4H8EO5bL2BrtM92ODLlGexloxneaTnf-jCBhdPj0qQPKVpKmRUl6MyznrvoClXrl1qtykpKb96L2Pv5Xfv0Z5tE0O1hPpX_hQdwXQEH20Hm_-TyodiNkZ-AlUCi_M</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Sun, Jin‐Yu</creator><creator>Qiu, Yue</creator><creator>Guo, Hong‐Cheng</creator><creator>Hua, Yang</creator><creator>Shao, Bo</creator><creator>Qiao, Yu‐Cong</creator><creator>Guo, Jin</creator><creator>Ding, Han‐Lin</creator><creator>Zhang, Zhen‐Ye</creator><creator>Miao, Ling‐Feng</creator><creator>Wang, Ning</creator><creator>Zhang, Yu‐Min</creator><creator>Chen, Yan</creator><creator>Lu, Juan</creator><creator>Dai, Min</creator><creator>Zhang, Chang‐Ying</creator><creator>Wang, Ru‐Xing</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7355-5048</orcidid><orcidid>https://orcid.org/0000-0003-3018-5387</orcidid></search><sort><creationdate>202104</creationdate><title>A method to screen left ventricular dysfunction through ECG based on convolutional neural network</title><author>Sun, Jin‐Yu ; Qiu, Yue ; Guo, Hong‐Cheng ; Hua, Yang ; Shao, Bo ; Qiao, Yu‐Cong ; Guo, Jin ; Ding, Han‐Lin ; Zhang, Zhen‐Ye ; Miao, Ling‐Feng ; Wang, Ning ; Zhang, Yu‐Min ; Chen, Yan ; Lu, Juan ; Dai, Min ; Zhang, Chang‐Ying ; Wang, Ru‐Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3536-7a2c93050367604643a536c8c74ee7f9e05c20a4dafb1c97c085de9b8ae1c4373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>convolutional neural network</topic><topic>deep learning</topic><topic>Echocardiography</topic><topic>EKG</topic><topic>electrocardiogram</topic><topic>Electrocardiography</topic><topic>Heart</topic><topic>heart failure</topic><topic>Humans</topic><topic>left ventricular ejection fraction</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Retrospective Studies</topic><topic>Stroke Volume</topic><topic>Ventricle</topic><topic>Ventricular Dysfunction, Left - diagnostic imaging</topic><topic>Ventricular Function, Left</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jin‐Yu</creatorcontrib><creatorcontrib>Qiu, Yue</creatorcontrib><creatorcontrib>Guo, Hong‐Cheng</creatorcontrib><creatorcontrib>Hua, Yang</creatorcontrib><creatorcontrib>Shao, Bo</creatorcontrib><creatorcontrib>Qiao, Yu‐Cong</creatorcontrib><creatorcontrib>Guo, Jin</creatorcontrib><creatorcontrib>Ding, Han‐Lin</creatorcontrib><creatorcontrib>Zhang, Zhen‐Ye</creatorcontrib><creatorcontrib>Miao, Ling‐Feng</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Zhang, Yu‐Min</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>Lu, Juan</creatorcontrib><creatorcontrib>Dai, Min</creatorcontrib><creatorcontrib>Zhang, Chang‐Ying</creatorcontrib><creatorcontrib>Wang, Ru‐Xing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cardiovascular electrophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jin‐Yu</au><au>Qiu, Yue</au><au>Guo, Hong‐Cheng</au><au>Hua, Yang</au><au>Shao, Bo</au><au>Qiao, Yu‐Cong</au><au>Guo, Jin</au><au>Ding, Han‐Lin</au><au>Zhang, Zhen‐Ye</au><au>Miao, Ling‐Feng</au><au>Wang, Ning</au><au>Zhang, Yu‐Min</au><au>Chen, Yan</au><au>Lu, Juan</au><au>Dai, Min</au><au>Zhang, Chang‐Ying</au><au>Wang, Ru‐Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method to screen left ventricular dysfunction through ECG based on convolutional neural network</atitle><jtitle>Journal of cardiovascular electrophysiology</jtitle><addtitle>J Cardiovasc Electrophysiol</addtitle><date>2021-04</date><risdate>2021</risdate><volume>32</volume><issue>4</issue><spage>1095</spage><epage>1102</epage><pages>1095-1102</pages><issn>1045-3873</issn><eissn>1540-8167</eissn><abstract>Objective This study aims to develop an artificial intelligence‐based method to screen patients with left ventricular ejection fraction (LVEF) of 50% or lesser using electrocardiogram (ECG) data alone. Methods Convolutional neural network (CNN) is a class of deep neural networks, which has been widely used in medical image recognition. We collected standard 12‐lead ECG and transthoracic echocardiogram (TTE) data including the LVEF value. Then, we paired the ECG and TTE data from the same individual. For multiple ECG‐TTE pairs from a single individual, only the earliest data pair was included. All the ECG‐TTE pairs were randomly divided into the training, validation, or testing data set in a ratio of 9:1:1 to create or evaluate the CNN model. Finally, we assessed the screening performance by overall accuracy, sensitivity, specificity, positive predictive value, and negative predictive value. Results We retrospectively enrolled a total of 26 786 ECG‐TTE pairs and randomly divided them into training (n = 21 732), validation (n = 2 530), and testing data set (n = 2 530). In the testing set, the CNN algorithm showed an overall accuracy of 73.9%, sensitivity of 69.2%, specificity of 70.5%, positive predictive value of 70.1%, and negative predictive value of 69.9%. Conclusion Our results demonstrate that a well‐trained CNN algorithm may be used as a low‐cost and noninvasive method to identify patients with left ventricular dysfunction.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33565217</pmid><doi>10.1111/jce.14936</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7355-5048</orcidid><orcidid>https://orcid.org/0000-0003-3018-5387</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1045-3873
ispartof Journal of cardiovascular electrophysiology, 2021-04, Vol.32 (4), p.1095-1102
issn 1045-3873
1540-8167
language eng
recordid cdi_proquest_miscellaneous_2488168489
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Artificial Intelligence
convolutional neural network
deep learning
Echocardiography
EKG
electrocardiogram
Electrocardiography
Heart
heart failure
Humans
left ventricular ejection fraction
Neural networks
Neural Networks, Computer
Retrospective Studies
Stroke Volume
Ventricle
Ventricular Dysfunction, Left - diagnostic imaging
Ventricular Function, Left
title A method to screen left ventricular dysfunction through ECG based on convolutional neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A16%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20to%20screen%20left%20ventricular%20dysfunction%20through%20ECG%20based%20on%20convolutional%20neural%20network&rft.jtitle=Journal%20of%20cardiovascular%20electrophysiology&rft.au=Sun,%20Jin%E2%80%90Yu&rft.date=2021-04&rft.volume=32&rft.issue=4&rft.spage=1095&rft.epage=1102&rft.pages=1095-1102&rft.issn=1045-3873&rft.eissn=1540-8167&rft_id=info:doi/10.1111/jce.14936&rft_dat=%3Cproquest_cross%3E2488168489%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509212256&rft_id=info:pmid/33565217&rfr_iscdi=true