A method to screen left ventricular dysfunction through ECG based on convolutional neural network
Objective This study aims to develop an artificial intelligence‐based method to screen patients with left ventricular ejection fraction (LVEF) of 50% or lesser using electrocardiogram (ECG) data alone. Methods Convolutional neural network (CNN) is a class of deep neural networks, which has been wide...
Gespeichert in:
Veröffentlicht in: | Journal of cardiovascular electrophysiology 2021-04, Vol.32 (4), p.1095-1102 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1102 |
---|---|
container_issue | 4 |
container_start_page | 1095 |
container_title | Journal of cardiovascular electrophysiology |
container_volume | 32 |
creator | Sun, Jin‐Yu Qiu, Yue Guo, Hong‐Cheng Hua, Yang Shao, Bo Qiao, Yu‐Cong Guo, Jin Ding, Han‐Lin Zhang, Zhen‐Ye Miao, Ling‐Feng Wang, Ning Zhang, Yu‐Min Chen, Yan Lu, Juan Dai, Min Zhang, Chang‐Ying Wang, Ru‐Xing |
description | Objective
This study aims to develop an artificial intelligence‐based method to screen patients with left ventricular ejection fraction (LVEF) of 50% or lesser using electrocardiogram (ECG) data alone.
Methods
Convolutional neural network (CNN) is a class of deep neural networks, which has been widely used in medical image recognition. We collected standard 12‐lead ECG and transthoracic echocardiogram (TTE) data including the LVEF value. Then, we paired the ECG and TTE data from the same individual. For multiple ECG‐TTE pairs from a single individual, only the earliest data pair was included. All the ECG‐TTE pairs were randomly divided into the training, validation, or testing data set in a ratio of 9:1:1 to create or evaluate the CNN model. Finally, we assessed the screening performance by overall accuracy, sensitivity, specificity, positive predictive value, and negative predictive value.
Results
We retrospectively enrolled a total of 26 786 ECG‐TTE pairs and randomly divided them into training (n = 21 732), validation (n = 2 530), and testing data set (n = 2 530). In the testing set, the CNN algorithm showed an overall accuracy of 73.9%, sensitivity of 69.2%, specificity of 70.5%, positive predictive value of 70.1%, and negative predictive value of 69.9%.
Conclusion
Our results demonstrate that a well‐trained CNN algorithm may be used as a low‐cost and noninvasive method to identify patients with left ventricular dysfunction. |
doi_str_mv | 10.1111/jce.14936 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2488168489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488168489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3536-7a2c93050367604643a536c8c74ee7f9e05c20a4dafb1c97c085de9b8ae1c4373</originalsourceid><addsrcrecordid>eNp10MtKxDAUBuAgiuNt4QtIwI0u6iTNrV1KGW8IbnRd0vTU6dhpxqQZmbc32tGFYDYnHD5-Dj9Cp5Rc0fimCwNXlOdM7qADKjhJMirVbvwTLhKWKTZBh94vCKFMErGPJowJKVKqDpC-xksY5rbGg8XeOIAed9AMeA394FoTOu1wvfFN6M3Q2h4Pc2fD6xzPiltcaQ81jktj-7XtwhfQHe4huO8xfFj3doz2Gt15ONnOI_RyM3su7pLHp9v74voxMUwwmSidmpwRQZhUknDJmY5rkxnFAVSTAxEmJZrXuqmoyZUhmaghrzIN1HCm2BG6GHNXzr4H8EO5bL2BrtM92ODLlGexloxneaTnf-jCBhdPj0qQPKVpKmRUl6MyznrvoClXrl1qtykpKb96L2Pv5Xfv0Z5tE0O1hPpX_hQdwXQEH20Hm_-TyodiNkZ-AlUCi_M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509212256</pqid></control><display><type>article</type><title>A method to screen left ventricular dysfunction through ECG based on convolutional neural network</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sun, Jin‐Yu ; Qiu, Yue ; Guo, Hong‐Cheng ; Hua, Yang ; Shao, Bo ; Qiao, Yu‐Cong ; Guo, Jin ; Ding, Han‐Lin ; Zhang, Zhen‐Ye ; Miao, Ling‐Feng ; Wang, Ning ; Zhang, Yu‐Min ; Chen, Yan ; Lu, Juan ; Dai, Min ; Zhang, Chang‐Ying ; Wang, Ru‐Xing</creator><creatorcontrib>Sun, Jin‐Yu ; Qiu, Yue ; Guo, Hong‐Cheng ; Hua, Yang ; Shao, Bo ; Qiao, Yu‐Cong ; Guo, Jin ; Ding, Han‐Lin ; Zhang, Zhen‐Ye ; Miao, Ling‐Feng ; Wang, Ning ; Zhang, Yu‐Min ; Chen, Yan ; Lu, Juan ; Dai, Min ; Zhang, Chang‐Ying ; Wang, Ru‐Xing</creatorcontrib><description>Objective
This study aims to develop an artificial intelligence‐based method to screen patients with left ventricular ejection fraction (LVEF) of 50% or lesser using electrocardiogram (ECG) data alone.
Methods
Convolutional neural network (CNN) is a class of deep neural networks, which has been widely used in medical image recognition. We collected standard 12‐lead ECG and transthoracic echocardiogram (TTE) data including the LVEF value. Then, we paired the ECG and TTE data from the same individual. For multiple ECG‐TTE pairs from a single individual, only the earliest data pair was included. All the ECG‐TTE pairs were randomly divided into the training, validation, or testing data set in a ratio of 9:1:1 to create or evaluate the CNN model. Finally, we assessed the screening performance by overall accuracy, sensitivity, specificity, positive predictive value, and negative predictive value.
Results
We retrospectively enrolled a total of 26 786 ECG‐TTE pairs and randomly divided them into training (n = 21 732), validation (n = 2 530), and testing data set (n = 2 530). In the testing set, the CNN algorithm showed an overall accuracy of 73.9%, sensitivity of 69.2%, specificity of 70.5%, positive predictive value of 70.1%, and negative predictive value of 69.9%.
Conclusion
Our results demonstrate that a well‐trained CNN algorithm may be used as a low‐cost and noninvasive method to identify patients with left ventricular dysfunction.</description><identifier>ISSN: 1045-3873</identifier><identifier>EISSN: 1540-8167</identifier><identifier>DOI: 10.1111/jce.14936</identifier><identifier>PMID: 33565217</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Artificial Intelligence ; convolutional neural network ; deep learning ; Echocardiography ; EKG ; electrocardiogram ; Electrocardiography ; Heart ; heart failure ; Humans ; left ventricular ejection fraction ; Neural networks ; Neural Networks, Computer ; Retrospective Studies ; Stroke Volume ; Ventricle ; Ventricular Dysfunction, Left - diagnostic imaging ; Ventricular Function, Left</subject><ispartof>Journal of cardiovascular electrophysiology, 2021-04, Vol.32 (4), p.1095-1102</ispartof><rights>2021 Wiley Periodicals LLC</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3536-7a2c93050367604643a536c8c74ee7f9e05c20a4dafb1c97c085de9b8ae1c4373</citedby><cites>FETCH-LOGICAL-c3536-7a2c93050367604643a536c8c74ee7f9e05c20a4dafb1c97c085de9b8ae1c4373</cites><orcidid>0000-0001-7355-5048 ; 0000-0003-3018-5387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjce.14936$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjce.14936$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33565217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Jin‐Yu</creatorcontrib><creatorcontrib>Qiu, Yue</creatorcontrib><creatorcontrib>Guo, Hong‐Cheng</creatorcontrib><creatorcontrib>Hua, Yang</creatorcontrib><creatorcontrib>Shao, Bo</creatorcontrib><creatorcontrib>Qiao, Yu‐Cong</creatorcontrib><creatorcontrib>Guo, Jin</creatorcontrib><creatorcontrib>Ding, Han‐Lin</creatorcontrib><creatorcontrib>Zhang, Zhen‐Ye</creatorcontrib><creatorcontrib>Miao, Ling‐Feng</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Zhang, Yu‐Min</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>Lu, Juan</creatorcontrib><creatorcontrib>Dai, Min</creatorcontrib><creatorcontrib>Zhang, Chang‐Ying</creatorcontrib><creatorcontrib>Wang, Ru‐Xing</creatorcontrib><title>A method to screen left ventricular dysfunction through ECG based on convolutional neural network</title><title>Journal of cardiovascular electrophysiology</title><addtitle>J Cardiovasc Electrophysiol</addtitle><description>Objective
This study aims to develop an artificial intelligence‐based method to screen patients with left ventricular ejection fraction (LVEF) of 50% or lesser using electrocardiogram (ECG) data alone.
Methods
Convolutional neural network (CNN) is a class of deep neural networks, which has been widely used in medical image recognition. We collected standard 12‐lead ECG and transthoracic echocardiogram (TTE) data including the LVEF value. Then, we paired the ECG and TTE data from the same individual. For multiple ECG‐TTE pairs from a single individual, only the earliest data pair was included. All the ECG‐TTE pairs were randomly divided into the training, validation, or testing data set in a ratio of 9:1:1 to create or evaluate the CNN model. Finally, we assessed the screening performance by overall accuracy, sensitivity, specificity, positive predictive value, and negative predictive value.
Results
We retrospectively enrolled a total of 26 786 ECG‐TTE pairs and randomly divided them into training (n = 21 732), validation (n = 2 530), and testing data set (n = 2 530). In the testing set, the CNN algorithm showed an overall accuracy of 73.9%, sensitivity of 69.2%, specificity of 70.5%, positive predictive value of 70.1%, and negative predictive value of 69.9%.
Conclusion
Our results demonstrate that a well‐trained CNN algorithm may be used as a low‐cost and noninvasive method to identify patients with left ventricular dysfunction.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>convolutional neural network</subject><subject>deep learning</subject><subject>Echocardiography</subject><subject>EKG</subject><subject>electrocardiogram</subject><subject>Electrocardiography</subject><subject>Heart</subject><subject>heart failure</subject><subject>Humans</subject><subject>left ventricular ejection fraction</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Retrospective Studies</subject><subject>Stroke Volume</subject><subject>Ventricle</subject><subject>Ventricular Dysfunction, Left - diagnostic imaging</subject><subject>Ventricular Function, Left</subject><issn>1045-3873</issn><issn>1540-8167</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10MtKxDAUBuAgiuNt4QtIwI0u6iTNrV1KGW8IbnRd0vTU6dhpxqQZmbc32tGFYDYnHD5-Dj9Cp5Rc0fimCwNXlOdM7qADKjhJMirVbvwTLhKWKTZBh94vCKFMErGPJowJKVKqDpC-xksY5rbGg8XeOIAed9AMeA394FoTOu1wvfFN6M3Q2h4Pc2fD6xzPiltcaQ81jktj-7XtwhfQHe4huO8xfFj3doz2Gt15ONnOI_RyM3su7pLHp9v74voxMUwwmSidmpwRQZhUknDJmY5rkxnFAVSTAxEmJZrXuqmoyZUhmaghrzIN1HCm2BG6GHNXzr4H8EO5bL2BrtM92ODLlGexloxneaTnf-jCBhdPj0qQPKVpKmRUl6MyznrvoClXrl1qtykpKb96L2Pv5Xfv0Z5tE0O1hPpX_hQdwXQEH20Hm_-TyodiNkZ-AlUCi_M</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Sun, Jin‐Yu</creator><creator>Qiu, Yue</creator><creator>Guo, Hong‐Cheng</creator><creator>Hua, Yang</creator><creator>Shao, Bo</creator><creator>Qiao, Yu‐Cong</creator><creator>Guo, Jin</creator><creator>Ding, Han‐Lin</creator><creator>Zhang, Zhen‐Ye</creator><creator>Miao, Ling‐Feng</creator><creator>Wang, Ning</creator><creator>Zhang, Yu‐Min</creator><creator>Chen, Yan</creator><creator>Lu, Juan</creator><creator>Dai, Min</creator><creator>Zhang, Chang‐Ying</creator><creator>Wang, Ru‐Xing</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7355-5048</orcidid><orcidid>https://orcid.org/0000-0003-3018-5387</orcidid></search><sort><creationdate>202104</creationdate><title>A method to screen left ventricular dysfunction through ECG based on convolutional neural network</title><author>Sun, Jin‐Yu ; Qiu, Yue ; Guo, Hong‐Cheng ; Hua, Yang ; Shao, Bo ; Qiao, Yu‐Cong ; Guo, Jin ; Ding, Han‐Lin ; Zhang, Zhen‐Ye ; Miao, Ling‐Feng ; Wang, Ning ; Zhang, Yu‐Min ; Chen, Yan ; Lu, Juan ; Dai, Min ; Zhang, Chang‐Ying ; Wang, Ru‐Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3536-7a2c93050367604643a536c8c74ee7f9e05c20a4dafb1c97c085de9b8ae1c4373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>convolutional neural network</topic><topic>deep learning</topic><topic>Echocardiography</topic><topic>EKG</topic><topic>electrocardiogram</topic><topic>Electrocardiography</topic><topic>Heart</topic><topic>heart failure</topic><topic>Humans</topic><topic>left ventricular ejection fraction</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Retrospective Studies</topic><topic>Stroke Volume</topic><topic>Ventricle</topic><topic>Ventricular Dysfunction, Left - diagnostic imaging</topic><topic>Ventricular Function, Left</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jin‐Yu</creatorcontrib><creatorcontrib>Qiu, Yue</creatorcontrib><creatorcontrib>Guo, Hong‐Cheng</creatorcontrib><creatorcontrib>Hua, Yang</creatorcontrib><creatorcontrib>Shao, Bo</creatorcontrib><creatorcontrib>Qiao, Yu‐Cong</creatorcontrib><creatorcontrib>Guo, Jin</creatorcontrib><creatorcontrib>Ding, Han‐Lin</creatorcontrib><creatorcontrib>Zhang, Zhen‐Ye</creatorcontrib><creatorcontrib>Miao, Ling‐Feng</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Zhang, Yu‐Min</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>Lu, Juan</creatorcontrib><creatorcontrib>Dai, Min</creatorcontrib><creatorcontrib>Zhang, Chang‐Ying</creatorcontrib><creatorcontrib>Wang, Ru‐Xing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cardiovascular electrophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jin‐Yu</au><au>Qiu, Yue</au><au>Guo, Hong‐Cheng</au><au>Hua, Yang</au><au>Shao, Bo</au><au>Qiao, Yu‐Cong</au><au>Guo, Jin</au><au>Ding, Han‐Lin</au><au>Zhang, Zhen‐Ye</au><au>Miao, Ling‐Feng</au><au>Wang, Ning</au><au>Zhang, Yu‐Min</au><au>Chen, Yan</au><au>Lu, Juan</au><au>Dai, Min</au><au>Zhang, Chang‐Ying</au><au>Wang, Ru‐Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method to screen left ventricular dysfunction through ECG based on convolutional neural network</atitle><jtitle>Journal of cardiovascular electrophysiology</jtitle><addtitle>J Cardiovasc Electrophysiol</addtitle><date>2021-04</date><risdate>2021</risdate><volume>32</volume><issue>4</issue><spage>1095</spage><epage>1102</epage><pages>1095-1102</pages><issn>1045-3873</issn><eissn>1540-8167</eissn><abstract>Objective
This study aims to develop an artificial intelligence‐based method to screen patients with left ventricular ejection fraction (LVEF) of 50% or lesser using electrocardiogram (ECG) data alone.
Methods
Convolutional neural network (CNN) is a class of deep neural networks, which has been widely used in medical image recognition. We collected standard 12‐lead ECG and transthoracic echocardiogram (TTE) data including the LVEF value. Then, we paired the ECG and TTE data from the same individual. For multiple ECG‐TTE pairs from a single individual, only the earliest data pair was included. All the ECG‐TTE pairs were randomly divided into the training, validation, or testing data set in a ratio of 9:1:1 to create or evaluate the CNN model. Finally, we assessed the screening performance by overall accuracy, sensitivity, specificity, positive predictive value, and negative predictive value.
Results
We retrospectively enrolled a total of 26 786 ECG‐TTE pairs and randomly divided them into training (n = 21 732), validation (n = 2 530), and testing data set (n = 2 530). In the testing set, the CNN algorithm showed an overall accuracy of 73.9%, sensitivity of 69.2%, specificity of 70.5%, positive predictive value of 70.1%, and negative predictive value of 69.9%.
Conclusion
Our results demonstrate that a well‐trained CNN algorithm may be used as a low‐cost and noninvasive method to identify patients with left ventricular dysfunction.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33565217</pmid><doi>10.1111/jce.14936</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7355-5048</orcidid><orcidid>https://orcid.org/0000-0003-3018-5387</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1045-3873 |
ispartof | Journal of cardiovascular electrophysiology, 2021-04, Vol.32 (4), p.1095-1102 |
issn | 1045-3873 1540-8167 |
language | eng |
recordid | cdi_proquest_miscellaneous_2488168489 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Artificial Intelligence convolutional neural network deep learning Echocardiography EKG electrocardiogram Electrocardiography Heart heart failure Humans left ventricular ejection fraction Neural networks Neural Networks, Computer Retrospective Studies Stroke Volume Ventricle Ventricular Dysfunction, Left - diagnostic imaging Ventricular Function, Left |
title | A method to screen left ventricular dysfunction through ECG based on convolutional neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A16%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20to%20screen%20left%20ventricular%20dysfunction%20through%20ECG%20based%20on%20convolutional%20neural%20network&rft.jtitle=Journal%20of%20cardiovascular%20electrophysiology&rft.au=Sun,%20Jin%E2%80%90Yu&rft.date=2021-04&rft.volume=32&rft.issue=4&rft.spage=1095&rft.epage=1102&rft.pages=1095-1102&rft.issn=1045-3873&rft.eissn=1540-8167&rft_id=info:doi/10.1111/jce.14936&rft_dat=%3Cproquest_cross%3E2488168489%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509212256&rft_id=info:pmid/33565217&rfr_iscdi=true |