The photochemical reaction of phenol becomes ultrafast at the air–water interface

Reactions at the interface between water and other phases play important roles in nature and in various chemical systems. Although some experimental and theoretical studies suggest that chemical reactions at water interfaces can be different from those in bulk water—for example, ‘on-water catalysis’...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2021-04, Vol.13 (4), p.306-311
Hauptverfasser: Kusaka, Ryoji, Nihonyanagi, Satoshi, Tahara, Tahei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 311
container_issue 4
container_start_page 306
container_title Nature chemistry
container_volume 13
creator Kusaka, Ryoji
Nihonyanagi, Satoshi
Tahara, Tahei
description Reactions at the interface between water and other phases play important roles in nature and in various chemical systems. Although some experimental and theoretical studies suggest that chemical reactions at water interfaces can be different from those in bulk water—for example, ‘on-water catalysis’ and the activation of photochemically inert fatty acids at the air–water interface upon photoexcitation—directly investigating these differences and generating molecular-level understanding has proved difficult. Here, we report on the direct probing of a photochemical reaction occurring at the air–water interface, using ultrafast phase-sensitive interface-selective nonlinear vibrational spectroscopy. The femtosecond time-resolved data obtained clearly show that the photoionization reaction of phenol proceeds 10 4 times faster at the water surface than in the bulk aqueous phase (upon irradiation with photons with the same energy). This finding demonstrates that photochemical reactions at water interfaces are very different from those in bulk water, reflecting distinct reaction environments at the interface. Reactions at the interface between water and other phases play important roles in various chemical settings. Now, ultrafast phase-sensitive interface-selective vibrational spectroscopy has revealed that the photoionization of phenol can occur four orders of magnitude faster at the water surface than in the bulk aqueous phase.
doi_str_mv 10.1038/s41557-020-00619-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2487749192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487749192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-1fa76d1fb84614eafee53fd3205afdee074c2177eb16d1342444499369e9fa6d3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMo3l_AhRTcuKnm2jRLEW8guHBch0x64lTaZkxSxJ3v4Bv6JEZnHMGFWSSB8_1_wofQAcEnBLP6NHIihCwxxSXGFVGlWEPbRApRcsbV-urO8BbaifEpQ4KRahNtMSZELZncRveTGRTzmU_ezqBvremKAMam1g-Fd3kCg--KKVjfQyzGLgXjTEyFSUXKSdOGj7f3F5MgFO2Qd2cs7KENZ7oI-8tzFz1cXkzOr8vbu6ub87Pb0nJZp5I4I6uGuGnNK8LBOADBXMMoFsY1AFhyS4mUMCUZY5zyvJRilQLlTNWwXXS86J0H_zxCTLpvo4WuMwP4MWrKaym5Iopm9OgP-uTHMOTfaSoIZXUlapUpuqBs8DEGcHoe2t6EV02w_lKuF8p1Vq6_lWuRQ4fL6nHaQ7OK_DjOAFsAMY-GRwi_b_9T-wkBe4zj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512386589</pqid></control><display><type>article</type><title>The photochemical reaction of phenol becomes ultrafast at the air–water interface</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kusaka, Ryoji ; Nihonyanagi, Satoshi ; Tahara, Tahei</creator><creatorcontrib>Kusaka, Ryoji ; Nihonyanagi, Satoshi ; Tahara, Tahei</creatorcontrib><description>Reactions at the interface between water and other phases play important roles in nature and in various chemical systems. Although some experimental and theoretical studies suggest that chemical reactions at water interfaces can be different from those in bulk water—for example, ‘on-water catalysis’ and the activation of photochemically inert fatty acids at the air–water interface upon photoexcitation—directly investigating these differences and generating molecular-level understanding has proved difficult. Here, we report on the direct probing of a photochemical reaction occurring at the air–water interface, using ultrafast phase-sensitive interface-selective nonlinear vibrational spectroscopy. The femtosecond time-resolved data obtained clearly show that the photoionization reaction of phenol proceeds 10 4 times faster at the water surface than in the bulk aqueous phase (upon irradiation with photons with the same energy). This finding demonstrates that photochemical reactions at water interfaces are very different from those in bulk water, reflecting distinct reaction environments at the interface. Reactions at the interface between water and other phases play important roles in various chemical settings. Now, ultrafast phase-sensitive interface-selective vibrational spectroscopy has revealed that the photoionization of phenol can occur four orders of magnitude faster at the water surface than in the bulk aqueous phase.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-020-00619-5</identifier><identifier>PMID: 33558737</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/439 ; 639/638/440/527 ; 639/638/440/94 ; 639/638/440/950 ; 639/638/542/971 ; Air-water interface ; Analytical Chemistry ; Biochemistry ; Catalysis ; Chemical reactions ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Fatty acids ; Inorganic Chemistry ; Interface reactions ; Interfaces ; Irradiation ; Organic Chemistry ; Phenols ; Photochemical reactions ; Photochemicals ; Photoexcitation ; Photoionization ; Photons ; Physical Chemistry ; Radiation ; Spectroscopy ; Spectrum analysis</subject><ispartof>Nature chemistry, 2021-04, Vol.13 (4), p.306-311</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-1fa76d1fb84614eafee53fd3205afdee074c2177eb16d1342444499369e9fa6d3</citedby><cites>FETCH-LOGICAL-c478t-1fa76d1fb84614eafee53fd3205afdee074c2177eb16d1342444499369e9fa6d3</cites><orcidid>0000-0003-0014-7427 ; 0000-0002-6340-8535 ; 0000-0002-1407-1761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41557-020-00619-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41557-020-00619-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33558737$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kusaka, Ryoji</creatorcontrib><creatorcontrib>Nihonyanagi, Satoshi</creatorcontrib><creatorcontrib>Tahara, Tahei</creatorcontrib><title>The photochemical reaction of phenol becomes ultrafast at the air–water interface</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>Nat Chem</addtitle><description>Reactions at the interface between water and other phases play important roles in nature and in various chemical systems. Although some experimental and theoretical studies suggest that chemical reactions at water interfaces can be different from those in bulk water—for example, ‘on-water catalysis’ and the activation of photochemically inert fatty acids at the air–water interface upon photoexcitation—directly investigating these differences and generating molecular-level understanding has proved difficult. Here, we report on the direct probing of a photochemical reaction occurring at the air–water interface, using ultrafast phase-sensitive interface-selective nonlinear vibrational spectroscopy. The femtosecond time-resolved data obtained clearly show that the photoionization reaction of phenol proceeds 10 4 times faster at the water surface than in the bulk aqueous phase (upon irradiation with photons with the same energy). This finding demonstrates that photochemical reactions at water interfaces are very different from those in bulk water, reflecting distinct reaction environments at the interface. Reactions at the interface between water and other phases play important roles in various chemical settings. Now, ultrafast phase-sensitive interface-selective vibrational spectroscopy has revealed that the photoionization of phenol can occur four orders of magnitude faster at the water surface than in the bulk aqueous phase.</description><subject>639/638/439</subject><subject>639/638/440/527</subject><subject>639/638/440/94</subject><subject>639/638/440/950</subject><subject>639/638/542/971</subject><subject>Air-water interface</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Catalysis</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Fatty acids</subject><subject>Inorganic Chemistry</subject><subject>Interface reactions</subject><subject>Interfaces</subject><subject>Irradiation</subject><subject>Organic Chemistry</subject><subject>Phenols</subject><subject>Photochemical reactions</subject><subject>Photochemicals</subject><subject>Photoexcitation</subject><subject>Photoionization</subject><subject>Photons</subject><subject>Physical Chemistry</subject><subject>Radiation</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKxDAUhoMo3l_AhRTcuKnm2jRLEW8guHBch0x64lTaZkxSxJ3v4Bv6JEZnHMGFWSSB8_1_wofQAcEnBLP6NHIihCwxxSXGFVGlWEPbRApRcsbV-urO8BbaifEpQ4KRahNtMSZELZncRveTGRTzmU_ezqBvremKAMam1g-Fd3kCg--KKVjfQyzGLgXjTEyFSUXKSdOGj7f3F5MgFO2Qd2cs7KENZ7oI-8tzFz1cXkzOr8vbu6ub87Pb0nJZp5I4I6uGuGnNK8LBOADBXMMoFsY1AFhyS4mUMCUZY5zyvJRilQLlTNWwXXS86J0H_zxCTLpvo4WuMwP4MWrKaym5Iopm9OgP-uTHMOTfaSoIZXUlapUpuqBs8DEGcHoe2t6EV02w_lKuF8p1Vq6_lWuRQ4fL6nHaQ7OK_DjOAFsAMY-GRwi_b_9T-wkBe4zj</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Kusaka, Ryoji</creator><creator>Nihonyanagi, Satoshi</creator><creator>Tahara, Tahei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0014-7427</orcidid><orcidid>https://orcid.org/0000-0002-6340-8535</orcidid><orcidid>https://orcid.org/0000-0002-1407-1761</orcidid></search><sort><creationdate>20210401</creationdate><title>The photochemical reaction of phenol becomes ultrafast at the air–water interface</title><author>Kusaka, Ryoji ; Nihonyanagi, Satoshi ; Tahara, Tahei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-1fa76d1fb84614eafee53fd3205afdee074c2177eb16d1342444499369e9fa6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/638/439</topic><topic>639/638/440/527</topic><topic>639/638/440/94</topic><topic>639/638/440/950</topic><topic>639/638/542/971</topic><topic>Air-water interface</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Catalysis</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Fatty acids</topic><topic>Inorganic Chemistry</topic><topic>Interface reactions</topic><topic>Interfaces</topic><topic>Irradiation</topic><topic>Organic Chemistry</topic><topic>Phenols</topic><topic>Photochemical reactions</topic><topic>Photochemicals</topic><topic>Photoexcitation</topic><topic>Photoionization</topic><topic>Photons</topic><topic>Physical Chemistry</topic><topic>Radiation</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kusaka, Ryoji</creatorcontrib><creatorcontrib>Nihonyanagi, Satoshi</creatorcontrib><creatorcontrib>Tahara, Tahei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kusaka, Ryoji</au><au>Nihonyanagi, Satoshi</au><au>Tahara, Tahei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The photochemical reaction of phenol becomes ultrafast at the air–water interface</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><addtitle>Nat Chem</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>13</volume><issue>4</issue><spage>306</spage><epage>311</epage><pages>306-311</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Reactions at the interface between water and other phases play important roles in nature and in various chemical systems. Although some experimental and theoretical studies suggest that chemical reactions at water interfaces can be different from those in bulk water—for example, ‘on-water catalysis’ and the activation of photochemically inert fatty acids at the air–water interface upon photoexcitation—directly investigating these differences and generating molecular-level understanding has proved difficult. Here, we report on the direct probing of a photochemical reaction occurring at the air–water interface, using ultrafast phase-sensitive interface-selective nonlinear vibrational spectroscopy. The femtosecond time-resolved data obtained clearly show that the photoionization reaction of phenol proceeds 10 4 times faster at the water surface than in the bulk aqueous phase (upon irradiation with photons with the same energy). This finding demonstrates that photochemical reactions at water interfaces are very different from those in bulk water, reflecting distinct reaction environments at the interface. Reactions at the interface between water and other phases play important roles in various chemical settings. Now, ultrafast phase-sensitive interface-selective vibrational spectroscopy has revealed that the photoionization of phenol can occur four orders of magnitude faster at the water surface than in the bulk aqueous phase.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33558737</pmid><doi>10.1038/s41557-020-00619-5</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0014-7427</orcidid><orcidid>https://orcid.org/0000-0002-6340-8535</orcidid><orcidid>https://orcid.org/0000-0002-1407-1761</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2021-04, Vol.13 (4), p.306-311
issn 1755-4330
1755-4349
language eng
recordid cdi_proquest_miscellaneous_2487749192
source Nature; SpringerLink Journals - AutoHoldings
subjects 639/638/439
639/638/440/527
639/638/440/94
639/638/440/950
639/638/542/971
Air-water interface
Analytical Chemistry
Biochemistry
Catalysis
Chemical reactions
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Fatty acids
Inorganic Chemistry
Interface reactions
Interfaces
Irradiation
Organic Chemistry
Phenols
Photochemical reactions
Photochemicals
Photoexcitation
Photoionization
Photons
Physical Chemistry
Radiation
Spectroscopy
Spectrum analysis
title The photochemical reaction of phenol becomes ultrafast at the air–water interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20photochemical%20reaction%20of%20phenol%20becomes%20ultrafast%20at%20the%20air%E2%80%93water%20interface&rft.jtitle=Nature%20chemistry&rft.au=Kusaka,%20Ryoji&rft.date=2021-04-01&rft.volume=13&rft.issue=4&rft.spage=306&rft.epage=311&rft.pages=306-311&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-020-00619-5&rft_dat=%3Cproquest_cross%3E2487749192%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512386589&rft_id=info:pmid/33558737&rfr_iscdi=true