The photochemical reaction of phenol becomes ultrafast at the air–water interface
Reactions at the interface between water and other phases play important roles in nature and in various chemical systems. Although some experimental and theoretical studies suggest that chemical reactions at water interfaces can be different from those in bulk water—for example, ‘on-water catalysis’...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2021-04, Vol.13 (4), p.306-311 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 311 |
---|---|
container_issue | 4 |
container_start_page | 306 |
container_title | Nature chemistry |
container_volume | 13 |
creator | Kusaka, Ryoji Nihonyanagi, Satoshi Tahara, Tahei |
description | Reactions at the interface between water and other phases play important roles in nature and in various chemical systems. Although some experimental and theoretical studies suggest that chemical reactions at water interfaces can be different from those in bulk water—for example, ‘on-water catalysis’ and the activation of photochemically inert fatty acids at the air–water interface upon photoexcitation—directly investigating these differences and generating molecular-level understanding has proved difficult. Here, we report on the direct probing of a photochemical reaction occurring at the air–water interface, using ultrafast phase-sensitive interface-selective nonlinear vibrational spectroscopy. The femtosecond time-resolved data obtained clearly show that the photoionization reaction of phenol proceeds 10
4
times faster at the water surface than in the bulk aqueous phase (upon irradiation with photons with the same energy). This finding demonstrates that photochemical reactions at water interfaces are very different from those in bulk water, reflecting distinct reaction environments at the interface.
Reactions at the interface between water and other phases play important roles in various chemical settings. Now, ultrafast phase-sensitive interface-selective vibrational spectroscopy has revealed that the photoionization of phenol can occur four orders of magnitude faster at the water surface than in the bulk aqueous phase. |
doi_str_mv | 10.1038/s41557-020-00619-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2487749192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487749192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-1fa76d1fb84614eafee53fd3205afdee074c2177eb16d1342444499369e9fa6d3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMo3l_AhRTcuKnm2jRLEW8guHBch0x64lTaZkxSxJ3v4Bv6JEZnHMGFWSSB8_1_wofQAcEnBLP6NHIihCwxxSXGFVGlWEPbRApRcsbV-urO8BbaifEpQ4KRahNtMSZELZncRveTGRTzmU_ezqBvremKAMam1g-Fd3kCg--KKVjfQyzGLgXjTEyFSUXKSdOGj7f3F5MgFO2Qd2cs7KENZ7oI-8tzFz1cXkzOr8vbu6ub87Pb0nJZp5I4I6uGuGnNK8LBOADBXMMoFsY1AFhyS4mUMCUZY5zyvJRilQLlTNWwXXS86J0H_zxCTLpvo4WuMwP4MWrKaym5Iopm9OgP-uTHMOTfaSoIZXUlapUpuqBs8DEGcHoe2t6EV02w_lKuF8p1Vq6_lWuRQ4fL6nHaQ7OK_DjOAFsAMY-GRwi_b_9T-wkBe4zj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512386589</pqid></control><display><type>article</type><title>The photochemical reaction of phenol becomes ultrafast at the air–water interface</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kusaka, Ryoji ; Nihonyanagi, Satoshi ; Tahara, Tahei</creator><creatorcontrib>Kusaka, Ryoji ; Nihonyanagi, Satoshi ; Tahara, Tahei</creatorcontrib><description>Reactions at the interface between water and other phases play important roles in nature and in various chemical systems. Although some experimental and theoretical studies suggest that chemical reactions at water interfaces can be different from those in bulk water—for example, ‘on-water catalysis’ and the activation of photochemically inert fatty acids at the air–water interface upon photoexcitation—directly investigating these differences and generating molecular-level understanding has proved difficult. Here, we report on the direct probing of a photochemical reaction occurring at the air–water interface, using ultrafast phase-sensitive interface-selective nonlinear vibrational spectroscopy. The femtosecond time-resolved data obtained clearly show that the photoionization reaction of phenol proceeds 10
4
times faster at the water surface than in the bulk aqueous phase (upon irradiation with photons with the same energy). This finding demonstrates that photochemical reactions at water interfaces are very different from those in bulk water, reflecting distinct reaction environments at the interface.
Reactions at the interface between water and other phases play important roles in various chemical settings. Now, ultrafast phase-sensitive interface-selective vibrational spectroscopy has revealed that the photoionization of phenol can occur four orders of magnitude faster at the water surface than in the bulk aqueous phase.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-020-00619-5</identifier><identifier>PMID: 33558737</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/439 ; 639/638/440/527 ; 639/638/440/94 ; 639/638/440/950 ; 639/638/542/971 ; Air-water interface ; Analytical Chemistry ; Biochemistry ; Catalysis ; Chemical reactions ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Fatty acids ; Inorganic Chemistry ; Interface reactions ; Interfaces ; Irradiation ; Organic Chemistry ; Phenols ; Photochemical reactions ; Photochemicals ; Photoexcitation ; Photoionization ; Photons ; Physical Chemistry ; Radiation ; Spectroscopy ; Spectrum analysis</subject><ispartof>Nature chemistry, 2021-04, Vol.13 (4), p.306-311</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-1fa76d1fb84614eafee53fd3205afdee074c2177eb16d1342444499369e9fa6d3</citedby><cites>FETCH-LOGICAL-c478t-1fa76d1fb84614eafee53fd3205afdee074c2177eb16d1342444499369e9fa6d3</cites><orcidid>0000-0003-0014-7427 ; 0000-0002-6340-8535 ; 0000-0002-1407-1761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41557-020-00619-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41557-020-00619-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33558737$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kusaka, Ryoji</creatorcontrib><creatorcontrib>Nihonyanagi, Satoshi</creatorcontrib><creatorcontrib>Tahara, Tahei</creatorcontrib><title>The photochemical reaction of phenol becomes ultrafast at the air–water interface</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>Nat Chem</addtitle><description>Reactions at the interface between water and other phases play important roles in nature and in various chemical systems. Although some experimental and theoretical studies suggest that chemical reactions at water interfaces can be different from those in bulk water—for example, ‘on-water catalysis’ and the activation of photochemically inert fatty acids at the air–water interface upon photoexcitation—directly investigating these differences and generating molecular-level understanding has proved difficult. Here, we report on the direct probing of a photochemical reaction occurring at the air–water interface, using ultrafast phase-sensitive interface-selective nonlinear vibrational spectroscopy. The femtosecond time-resolved data obtained clearly show that the photoionization reaction of phenol proceeds 10
4
times faster at the water surface than in the bulk aqueous phase (upon irradiation with photons with the same energy). This finding demonstrates that photochemical reactions at water interfaces are very different from those in bulk water, reflecting distinct reaction environments at the interface.
Reactions at the interface between water and other phases play important roles in various chemical settings. Now, ultrafast phase-sensitive interface-selective vibrational spectroscopy has revealed that the photoionization of phenol can occur four orders of magnitude faster at the water surface than in the bulk aqueous phase.</description><subject>639/638/439</subject><subject>639/638/440/527</subject><subject>639/638/440/94</subject><subject>639/638/440/950</subject><subject>639/638/542/971</subject><subject>Air-water interface</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Catalysis</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Fatty acids</subject><subject>Inorganic Chemistry</subject><subject>Interface reactions</subject><subject>Interfaces</subject><subject>Irradiation</subject><subject>Organic Chemistry</subject><subject>Phenols</subject><subject>Photochemical reactions</subject><subject>Photochemicals</subject><subject>Photoexcitation</subject><subject>Photoionization</subject><subject>Photons</subject><subject>Physical Chemistry</subject><subject>Radiation</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKxDAUhoMo3l_AhRTcuKnm2jRLEW8guHBch0x64lTaZkxSxJ3v4Bv6JEZnHMGFWSSB8_1_wofQAcEnBLP6NHIihCwxxSXGFVGlWEPbRApRcsbV-urO8BbaifEpQ4KRahNtMSZELZncRveTGRTzmU_ezqBvremKAMam1g-Fd3kCg--KKVjfQyzGLgXjTEyFSUXKSdOGj7f3F5MgFO2Qd2cs7KENZ7oI-8tzFz1cXkzOr8vbu6ub87Pb0nJZp5I4I6uGuGnNK8LBOADBXMMoFsY1AFhyS4mUMCUZY5zyvJRilQLlTNWwXXS86J0H_zxCTLpvo4WuMwP4MWrKaym5Iopm9OgP-uTHMOTfaSoIZXUlapUpuqBs8DEGcHoe2t6EV02w_lKuF8p1Vq6_lWuRQ4fL6nHaQ7OK_DjOAFsAMY-GRwi_b_9T-wkBe4zj</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Kusaka, Ryoji</creator><creator>Nihonyanagi, Satoshi</creator><creator>Tahara, Tahei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0014-7427</orcidid><orcidid>https://orcid.org/0000-0002-6340-8535</orcidid><orcidid>https://orcid.org/0000-0002-1407-1761</orcidid></search><sort><creationdate>20210401</creationdate><title>The photochemical reaction of phenol becomes ultrafast at the air–water interface</title><author>Kusaka, Ryoji ; Nihonyanagi, Satoshi ; Tahara, Tahei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-1fa76d1fb84614eafee53fd3205afdee074c2177eb16d1342444499369e9fa6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/638/439</topic><topic>639/638/440/527</topic><topic>639/638/440/94</topic><topic>639/638/440/950</topic><topic>639/638/542/971</topic><topic>Air-water interface</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Catalysis</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Fatty acids</topic><topic>Inorganic Chemistry</topic><topic>Interface reactions</topic><topic>Interfaces</topic><topic>Irradiation</topic><topic>Organic Chemistry</topic><topic>Phenols</topic><topic>Photochemical reactions</topic><topic>Photochemicals</topic><topic>Photoexcitation</topic><topic>Photoionization</topic><topic>Photons</topic><topic>Physical Chemistry</topic><topic>Radiation</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kusaka, Ryoji</creatorcontrib><creatorcontrib>Nihonyanagi, Satoshi</creatorcontrib><creatorcontrib>Tahara, Tahei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kusaka, Ryoji</au><au>Nihonyanagi, Satoshi</au><au>Tahara, Tahei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The photochemical reaction of phenol becomes ultrafast at the air–water interface</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><addtitle>Nat Chem</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>13</volume><issue>4</issue><spage>306</spage><epage>311</epage><pages>306-311</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Reactions at the interface between water and other phases play important roles in nature and in various chemical systems. Although some experimental and theoretical studies suggest that chemical reactions at water interfaces can be different from those in bulk water—for example, ‘on-water catalysis’ and the activation of photochemically inert fatty acids at the air–water interface upon photoexcitation—directly investigating these differences and generating molecular-level understanding has proved difficult. Here, we report on the direct probing of a photochemical reaction occurring at the air–water interface, using ultrafast phase-sensitive interface-selective nonlinear vibrational spectroscopy. The femtosecond time-resolved data obtained clearly show that the photoionization reaction of phenol proceeds 10
4
times faster at the water surface than in the bulk aqueous phase (upon irradiation with photons with the same energy). This finding demonstrates that photochemical reactions at water interfaces are very different from those in bulk water, reflecting distinct reaction environments at the interface.
Reactions at the interface between water and other phases play important roles in various chemical settings. Now, ultrafast phase-sensitive interface-selective vibrational spectroscopy has revealed that the photoionization of phenol can occur four orders of magnitude faster at the water surface than in the bulk aqueous phase.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33558737</pmid><doi>10.1038/s41557-020-00619-5</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0014-7427</orcidid><orcidid>https://orcid.org/0000-0002-6340-8535</orcidid><orcidid>https://orcid.org/0000-0002-1407-1761</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2021-04, Vol.13 (4), p.306-311 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_proquest_miscellaneous_2487749192 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 639/638/439 639/638/440/527 639/638/440/94 639/638/440/950 639/638/542/971 Air-water interface Analytical Chemistry Biochemistry Catalysis Chemical reactions Chemistry Chemistry and Materials Science Chemistry/Food Science Fatty acids Inorganic Chemistry Interface reactions Interfaces Irradiation Organic Chemistry Phenols Photochemical reactions Photochemicals Photoexcitation Photoionization Photons Physical Chemistry Radiation Spectroscopy Spectrum analysis |
title | The photochemical reaction of phenol becomes ultrafast at the air–water interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20photochemical%20reaction%20of%20phenol%20becomes%20ultrafast%20at%20the%20air%E2%80%93water%20interface&rft.jtitle=Nature%20chemistry&rft.au=Kusaka,%20Ryoji&rft.date=2021-04-01&rft.volume=13&rft.issue=4&rft.spage=306&rft.epage=311&rft.pages=306-311&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-020-00619-5&rft_dat=%3Cproquest_cross%3E2487749192%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512386589&rft_id=info:pmid/33558737&rfr_iscdi=true |