Functional Regulatory Mechanisms Underlying Bone Marrow Mesenchymal Stem Cell Senescence During Cell Passages
Mesenchymal stem cell (MSC) transplantation is an effective periodontal regenerative therapy. MSCs are multipotent, have self-renewal ability, and can differentiate into periodontal cells. However, senescence is inevitable for MSCs. In vitro, cell senescence can be induced by long-term culture with/...
Gespeichert in:
Veröffentlicht in: | Cell biochemistry and biophysics 2021-06, Vol.79 (2), p.321-336 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 336 |
---|---|
container_issue | 2 |
container_start_page | 321 |
container_title | Cell biochemistry and biophysics |
container_volume | 79 |
creator | Iwata, T. Mizuno, N. Ishida, S. Kajiya, M. Nagahara, T. Kaneda-Ikeda, E. Yoshioka, M. Munenaga, S. Ouhara, K. Fujita, T. Kawaguchi, H. Kurihara, H. |
description | Mesenchymal stem cell (MSC) transplantation is an effective periodontal regenerative therapy. MSCs are multipotent, have self-renewal ability, and can differentiate into periodontal cells. However, senescence is inevitable for MSCs. In vitro, cell senescence can be induced by long-term culture with/without cell passage. However, the regulatory mechanism of MSC senescence remains unclear. Undifferentiated MSC-specific transcription factors can regulate MSC function. Herein, we identified the regulatory transcription factors involved in MSC senescence and elucidated their mechanisms of action. We cultured human MSCs (hMSCs) with repetitive cell passages to induce cell senescence and evaluated the mRNA and protein expression of cell senescence-related genes. Additionally, we silenced the cell senescence-induced transcription factors, GATA binding protein 6 (GATA6) and SRY-box 11 (SOX11), and investigated senescence-related signaling pathways. With repeated passages, the number of senescent cells increased, while the cell proliferation capacity decreased;
GATA6
mRNA expression was upregulated and that of
SOX11
was downregulated. Repetitive cell passages decreased Wnt and bone morphogenetic protein (BMP) signaling pathway-related gene expression. Silencing of
GATA6
and
SOX11
regulated Wnt and BMP signaling pathway-related genes and affected cell senescence-related genes; moreover,
SOX11
silencing regulated
GATA6
expression. Hence, we identified them as pair of regulatory transcription factors for cell senescence in hMSCs via the Wnt and BMP signaling pathways. |
doi_str_mv | 10.1007/s12013-021-00969-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2487749044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524567699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-ea8879bc5291b7f5b5133dae6e316452dd03c43aa830c741b1124286789c864b3</originalsourceid><addsrcrecordid>eNp9kUlPwzAUhC0EglL4AxxQJC5cAl4T-whllahALGfLcV5LqsQpdiKUf49LWSQOnPz0_M3YmkHogOATgnF-GgjFhKWYkhRjlal02EAjIoSKK8k244ylSBVRYgfthrDAmFLM-TbaYSxSktARaq56Z7uqdaZOHmHe16Zr_ZBMwb4aV4UmJC-uBF8PlZsn562DZGq8b98jEcDZ16GJwqcOmmQCdZzAQbDxApKL3q80n-sHE4KZQ9hDWzNTB9j_Osfo5eryeXKT3t1f307O7lLLOelSMFLmqrCCKlLkM1EIwlhpIANGMi5oWWJmOTNGMmxzTgpCKKcyy6WyMuMFG6Pjte_St289hE43VfxWXRsHbR805TLPuYphRPToD7poex_jiJSgXGR5plSk6Jqyvg3Bw0wvfdUYP2iC9aoMvS5DxzL0Zxl6iKLDL-u-aKD8kXynHwG2BsJylRX437f_sf0ANzyU6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524567699</pqid></control><display><type>article</type><title>Functional Regulatory Mechanisms Underlying Bone Marrow Mesenchymal Stem Cell Senescence During Cell Passages</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Iwata, T. ; Mizuno, N. ; Ishida, S. ; Kajiya, M. ; Nagahara, T. ; Kaneda-Ikeda, E. ; Yoshioka, M. ; Munenaga, S. ; Ouhara, K. ; Fujita, T. ; Kawaguchi, H. ; Kurihara, H.</creator><creatorcontrib>Iwata, T. ; Mizuno, N. ; Ishida, S. ; Kajiya, M. ; Nagahara, T. ; Kaneda-Ikeda, E. ; Yoshioka, M. ; Munenaga, S. ; Ouhara, K. ; Fujita, T. ; Kawaguchi, H. ; Kurihara, H.</creatorcontrib><description>Mesenchymal stem cell (MSC) transplantation is an effective periodontal regenerative therapy. MSCs are multipotent, have self-renewal ability, and can differentiate into periodontal cells. However, senescence is inevitable for MSCs. In vitro, cell senescence can be induced by long-term culture with/without cell passage. However, the regulatory mechanism of MSC senescence remains unclear. Undifferentiated MSC-specific transcription factors can regulate MSC function. Herein, we identified the regulatory transcription factors involved in MSC senescence and elucidated their mechanisms of action. We cultured human MSCs (hMSCs) with repetitive cell passages to induce cell senescence and evaluated the mRNA and protein expression of cell senescence-related genes. Additionally, we silenced the cell senescence-induced transcription factors, GATA binding protein 6 (GATA6) and SRY-box 11 (SOX11), and investigated senescence-related signaling pathways. With repeated passages, the number of senescent cells increased, while the cell proliferation capacity decreased;
GATA6
mRNA expression was upregulated and that of
SOX11
was downregulated. Repetitive cell passages decreased Wnt and bone morphogenetic protein (BMP) signaling pathway-related gene expression. Silencing of
GATA6
and
SOX11
regulated Wnt and BMP signaling pathway-related genes and affected cell senescence-related genes; moreover,
SOX11
silencing regulated
GATA6
expression. Hence, we identified them as pair of regulatory transcription factors for cell senescence in hMSCs via the Wnt and BMP signaling pathways.</description><identifier>ISSN: 1085-9195</identifier><identifier>EISSN: 1559-0283</identifier><identifier>DOI: 10.1007/s12013-021-00969-y</identifier><identifier>PMID: 33559812</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biochemistry ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biophysics ; Biotechnology ; Bone marrow ; Bone Marrow Cells - cytology ; Bone morphogenetic proteins ; Bone Morphogenetic Proteins - genetics ; Bone Morphogenetic Proteins - metabolism ; Cell Biology ; Cell culture ; Cell Differentiation ; Cell Proliferation ; Cell self-renewal ; Cells, Cultured ; Cellular Senescence - genetics ; GATA6 Transcription Factor - antagonists & inhibitors ; GATA6 Transcription Factor - genetics ; GATA6 Transcription Factor - metabolism ; Gene expression ; Gene silencing ; Genes ; Histone Deacetylase 2 - genetics ; Histone Deacetylase 2 - metabolism ; Humans ; Life Sciences ; Mesenchymal stem cells ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - metabolism ; Original Paper ; Pharmacology/Toxicology ; Proteins ; Regulatory mechanisms (biology) ; RNA Interference ; RNA, Small Interfering - metabolism ; Senescence ; Signal transduction ; Signal Transduction - genetics ; Signaling ; SOXC Transcription Factors - antagonists & inhibitors ; SOXC Transcription Factors - genetics ; SOXC Transcription Factors - metabolism ; Stem cells ; Transcription factors ; Transplantation ; Wnt protein ; Wnt Proteins - genetics ; Wnt Proteins - metabolism</subject><ispartof>Cell biochemistry and biophysics, 2021-06, Vol.79 (2), p.321-336</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-ea8879bc5291b7f5b5133dae6e316452dd03c43aa830c741b1124286789c864b3</citedby><cites>FETCH-LOGICAL-c441t-ea8879bc5291b7f5b5133dae6e316452dd03c43aa830c741b1124286789c864b3</cites><orcidid>0000-0001-7345-7480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12013-021-00969-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12013-021-00969-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33559812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iwata, T.</creatorcontrib><creatorcontrib>Mizuno, N.</creatorcontrib><creatorcontrib>Ishida, S.</creatorcontrib><creatorcontrib>Kajiya, M.</creatorcontrib><creatorcontrib>Nagahara, T.</creatorcontrib><creatorcontrib>Kaneda-Ikeda, E.</creatorcontrib><creatorcontrib>Yoshioka, M.</creatorcontrib><creatorcontrib>Munenaga, S.</creatorcontrib><creatorcontrib>Ouhara, K.</creatorcontrib><creatorcontrib>Fujita, T.</creatorcontrib><creatorcontrib>Kawaguchi, H.</creatorcontrib><creatorcontrib>Kurihara, H.</creatorcontrib><title>Functional Regulatory Mechanisms Underlying Bone Marrow Mesenchymal Stem Cell Senescence During Cell Passages</title><title>Cell biochemistry and biophysics</title><addtitle>Cell Biochem Biophys</addtitle><addtitle>Cell Biochem Biophys</addtitle><description>Mesenchymal stem cell (MSC) transplantation is an effective periodontal regenerative therapy. MSCs are multipotent, have self-renewal ability, and can differentiate into periodontal cells. However, senescence is inevitable for MSCs. In vitro, cell senescence can be induced by long-term culture with/without cell passage. However, the regulatory mechanism of MSC senescence remains unclear. Undifferentiated MSC-specific transcription factors can regulate MSC function. Herein, we identified the regulatory transcription factors involved in MSC senescence and elucidated their mechanisms of action. We cultured human MSCs (hMSCs) with repetitive cell passages to induce cell senescence and evaluated the mRNA and protein expression of cell senescence-related genes. Additionally, we silenced the cell senescence-induced transcription factors, GATA binding protein 6 (GATA6) and SRY-box 11 (SOX11), and investigated senescence-related signaling pathways. With repeated passages, the number of senescent cells increased, while the cell proliferation capacity decreased;
GATA6
mRNA expression was upregulated and that of
SOX11
was downregulated. Repetitive cell passages decreased Wnt and bone morphogenetic protein (BMP) signaling pathway-related gene expression. Silencing of
GATA6
and
SOX11
regulated Wnt and BMP signaling pathway-related genes and affected cell senescence-related genes; moreover,
SOX11
silencing regulated
GATA6
expression. Hence, we identified them as pair of regulatory transcription factors for cell senescence in hMSCs via the Wnt and BMP signaling pathways.</description><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biophysics</subject><subject>Biotechnology</subject><subject>Bone marrow</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone morphogenetic proteins</subject><subject>Bone Morphogenetic Proteins - genetics</subject><subject>Bone Morphogenetic Proteins - metabolism</subject><subject>Cell Biology</subject><subject>Cell culture</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cell self-renewal</subject><subject>Cells, Cultured</subject><subject>Cellular Senescence - genetics</subject><subject>GATA6 Transcription Factor - antagonists & inhibitors</subject><subject>GATA6 Transcription Factor - genetics</subject><subject>GATA6 Transcription Factor - metabolism</subject><subject>Gene expression</subject><subject>Gene silencing</subject><subject>Genes</subject><subject>Histone Deacetylase 2 - genetics</subject><subject>Histone Deacetylase 2 - metabolism</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Original Paper</subject><subject>Pharmacology/Toxicology</subject><subject>Proteins</subject><subject>Regulatory mechanisms (biology)</subject><subject>RNA Interference</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Senescence</subject><subject>Signal transduction</subject><subject>Signal Transduction - genetics</subject><subject>Signaling</subject><subject>SOXC Transcription Factors - antagonists & inhibitors</subject><subject>SOXC Transcription Factors - genetics</subject><subject>SOXC Transcription Factors - metabolism</subject><subject>Stem cells</subject><subject>Transcription factors</subject><subject>Transplantation</subject><subject>Wnt protein</subject><subject>Wnt Proteins - genetics</subject><subject>Wnt Proteins - metabolism</subject><issn>1085-9195</issn><issn>1559-0283</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUlPwzAUhC0EglL4AxxQJC5cAl4T-whllahALGfLcV5LqsQpdiKUf49LWSQOnPz0_M3YmkHogOATgnF-GgjFhKWYkhRjlal02EAjIoSKK8k244ylSBVRYgfthrDAmFLM-TbaYSxSktARaq56Z7uqdaZOHmHe16Zr_ZBMwb4aV4UmJC-uBF8PlZsn562DZGq8b98jEcDZ16GJwqcOmmQCdZzAQbDxApKL3q80n-sHE4KZQ9hDWzNTB9j_Osfo5eryeXKT3t1f307O7lLLOelSMFLmqrCCKlLkM1EIwlhpIANGMi5oWWJmOTNGMmxzTgpCKKcyy6WyMuMFG6Pjte_St289hE43VfxWXRsHbR805TLPuYphRPToD7poex_jiJSgXGR5plSk6Jqyvg3Bw0wvfdUYP2iC9aoMvS5DxzL0Zxl6iKLDL-u-aKD8kXynHwG2BsJylRX437f_sf0ANzyU6g</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Iwata, T.</creator><creator>Mizuno, N.</creator><creator>Ishida, S.</creator><creator>Kajiya, M.</creator><creator>Nagahara, T.</creator><creator>Kaneda-Ikeda, E.</creator><creator>Yoshioka, M.</creator><creator>Munenaga, S.</creator><creator>Ouhara, K.</creator><creator>Fujita, T.</creator><creator>Kawaguchi, H.</creator><creator>Kurihara, H.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7345-7480</orcidid></search><sort><creationdate>20210601</creationdate><title>Functional Regulatory Mechanisms Underlying Bone Marrow Mesenchymal Stem Cell Senescence During Cell Passages</title><author>Iwata, T. ; Mizuno, N. ; Ishida, S. ; Kajiya, M. ; Nagahara, T. ; Kaneda-Ikeda, E. ; Yoshioka, M. ; Munenaga, S. ; Ouhara, K. ; Fujita, T. ; Kawaguchi, H. ; Kurihara, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-ea8879bc5291b7f5b5133dae6e316452dd03c43aa830c741b1124286789c864b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biophysics</topic><topic>Biotechnology</topic><topic>Bone marrow</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone morphogenetic proteins</topic><topic>Bone Morphogenetic Proteins - genetics</topic><topic>Bone Morphogenetic Proteins - metabolism</topic><topic>Cell Biology</topic><topic>Cell culture</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cell self-renewal</topic><topic>Cells, Cultured</topic><topic>Cellular Senescence - genetics</topic><topic>GATA6 Transcription Factor - antagonists & inhibitors</topic><topic>GATA6 Transcription Factor - genetics</topic><topic>GATA6 Transcription Factor - metabolism</topic><topic>Gene expression</topic><topic>Gene silencing</topic><topic>Genes</topic><topic>Histone Deacetylase 2 - genetics</topic><topic>Histone Deacetylase 2 - metabolism</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Original Paper</topic><topic>Pharmacology/Toxicology</topic><topic>Proteins</topic><topic>Regulatory mechanisms (biology)</topic><topic>RNA Interference</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Senescence</topic><topic>Signal transduction</topic><topic>Signal Transduction - genetics</topic><topic>Signaling</topic><topic>SOXC Transcription Factors - antagonists & inhibitors</topic><topic>SOXC Transcription Factors - genetics</topic><topic>SOXC Transcription Factors - metabolism</topic><topic>Stem cells</topic><topic>Transcription factors</topic><topic>Transplantation</topic><topic>Wnt protein</topic><topic>Wnt Proteins - genetics</topic><topic>Wnt Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwata, T.</creatorcontrib><creatorcontrib>Mizuno, N.</creatorcontrib><creatorcontrib>Ishida, S.</creatorcontrib><creatorcontrib>Kajiya, M.</creatorcontrib><creatorcontrib>Nagahara, T.</creatorcontrib><creatorcontrib>Kaneda-Ikeda, E.</creatorcontrib><creatorcontrib>Yoshioka, M.</creatorcontrib><creatorcontrib>Munenaga, S.</creatorcontrib><creatorcontrib>Ouhara, K.</creatorcontrib><creatorcontrib>Fujita, T.</creatorcontrib><creatorcontrib>Kawaguchi, H.</creatorcontrib><creatorcontrib>Kurihara, H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cell biochemistry and biophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwata, T.</au><au>Mizuno, N.</au><au>Ishida, S.</au><au>Kajiya, M.</au><au>Nagahara, T.</au><au>Kaneda-Ikeda, E.</au><au>Yoshioka, M.</au><au>Munenaga, S.</au><au>Ouhara, K.</au><au>Fujita, T.</au><au>Kawaguchi, H.</au><au>Kurihara, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Regulatory Mechanisms Underlying Bone Marrow Mesenchymal Stem Cell Senescence During Cell Passages</atitle><jtitle>Cell biochemistry and biophysics</jtitle><stitle>Cell Biochem Biophys</stitle><addtitle>Cell Biochem Biophys</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>79</volume><issue>2</issue><spage>321</spage><epage>336</epage><pages>321-336</pages><issn>1085-9195</issn><eissn>1559-0283</eissn><abstract>Mesenchymal stem cell (MSC) transplantation is an effective periodontal regenerative therapy. MSCs are multipotent, have self-renewal ability, and can differentiate into periodontal cells. However, senescence is inevitable for MSCs. In vitro, cell senescence can be induced by long-term culture with/without cell passage. However, the regulatory mechanism of MSC senescence remains unclear. Undifferentiated MSC-specific transcription factors can regulate MSC function. Herein, we identified the regulatory transcription factors involved in MSC senescence and elucidated their mechanisms of action. We cultured human MSCs (hMSCs) with repetitive cell passages to induce cell senescence and evaluated the mRNA and protein expression of cell senescence-related genes. Additionally, we silenced the cell senescence-induced transcription factors, GATA binding protein 6 (GATA6) and SRY-box 11 (SOX11), and investigated senescence-related signaling pathways. With repeated passages, the number of senescent cells increased, while the cell proliferation capacity decreased;
GATA6
mRNA expression was upregulated and that of
SOX11
was downregulated. Repetitive cell passages decreased Wnt and bone morphogenetic protein (BMP) signaling pathway-related gene expression. Silencing of
GATA6
and
SOX11
regulated Wnt and BMP signaling pathway-related genes and affected cell senescence-related genes; moreover,
SOX11
silencing regulated
GATA6
expression. Hence, we identified them as pair of regulatory transcription factors for cell senescence in hMSCs via the Wnt and BMP signaling pathways.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33559812</pmid><doi>10.1007/s12013-021-00969-y</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7345-7480</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1085-9195 |
ispartof | Cell biochemistry and biophysics, 2021-06, Vol.79 (2), p.321-336 |
issn | 1085-9195 1559-0283 |
language | eng |
recordid | cdi_proquest_miscellaneous_2487749044 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Biochemistry Biological and Medical Physics Biomedical and Life Sciences Biophysics Biotechnology Bone marrow Bone Marrow Cells - cytology Bone morphogenetic proteins Bone Morphogenetic Proteins - genetics Bone Morphogenetic Proteins - metabolism Cell Biology Cell culture Cell Differentiation Cell Proliferation Cell self-renewal Cells, Cultured Cellular Senescence - genetics GATA6 Transcription Factor - antagonists & inhibitors GATA6 Transcription Factor - genetics GATA6 Transcription Factor - metabolism Gene expression Gene silencing Genes Histone Deacetylase 2 - genetics Histone Deacetylase 2 - metabolism Humans Life Sciences Mesenchymal stem cells Mesenchymal Stem Cells - cytology Mesenchymal Stem Cells - metabolism Original Paper Pharmacology/Toxicology Proteins Regulatory mechanisms (biology) RNA Interference RNA, Small Interfering - metabolism Senescence Signal transduction Signal Transduction - genetics Signaling SOXC Transcription Factors - antagonists & inhibitors SOXC Transcription Factors - genetics SOXC Transcription Factors - metabolism Stem cells Transcription factors Transplantation Wnt protein Wnt Proteins - genetics Wnt Proteins - metabolism |
title | Functional Regulatory Mechanisms Underlying Bone Marrow Mesenchymal Stem Cell Senescence During Cell Passages |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A26%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Regulatory%20Mechanisms%20Underlying%20Bone%20Marrow%20Mesenchymal%20Stem%20Cell%20Senescence%20During%20Cell%20Passages&rft.jtitle=Cell%20biochemistry%20and%20biophysics&rft.au=Iwata,%20T.&rft.date=2021-06-01&rft.volume=79&rft.issue=2&rft.spage=321&rft.epage=336&rft.pages=321-336&rft.issn=1085-9195&rft.eissn=1559-0283&rft_id=info:doi/10.1007/s12013-021-00969-y&rft_dat=%3Cproquest_cross%3E2524567699%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524567699&rft_id=info:pmid/33559812&rfr_iscdi=true |