Functional Regulatory Mechanisms Underlying Bone Marrow Mesenchymal Stem Cell Senescence During Cell Passages

Mesenchymal stem cell (MSC) transplantation is an effective periodontal regenerative therapy. MSCs are multipotent, have self-renewal ability, and can differentiate into periodontal cells. However, senescence is inevitable for MSCs. In vitro, cell senescence can be induced by long-term culture with/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell biochemistry and biophysics 2021-06, Vol.79 (2), p.321-336
Hauptverfasser: Iwata, T., Mizuno, N., Ishida, S., Kajiya, M., Nagahara, T., Kaneda-Ikeda, E., Yoshioka, M., Munenaga, S., Ouhara, K., Fujita, T., Kawaguchi, H., Kurihara, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 336
container_issue 2
container_start_page 321
container_title Cell biochemistry and biophysics
container_volume 79
creator Iwata, T.
Mizuno, N.
Ishida, S.
Kajiya, M.
Nagahara, T.
Kaneda-Ikeda, E.
Yoshioka, M.
Munenaga, S.
Ouhara, K.
Fujita, T.
Kawaguchi, H.
Kurihara, H.
description Mesenchymal stem cell (MSC) transplantation is an effective periodontal regenerative therapy. MSCs are multipotent, have self-renewal ability, and can differentiate into periodontal cells. However, senescence is inevitable for MSCs. In vitro, cell senescence can be induced by long-term culture with/without cell passage. However, the regulatory mechanism of MSC senescence remains unclear. Undifferentiated MSC-specific transcription factors can regulate MSC function. Herein, we identified the regulatory transcription factors involved in MSC senescence and elucidated their mechanisms of action. We cultured human MSCs (hMSCs) with repetitive cell passages to induce cell senescence and evaluated the mRNA and protein expression of cell senescence-related genes. Additionally, we silenced the cell senescence-induced transcription factors, GATA binding protein 6 (GATA6) and SRY-box 11 (SOX11), and investigated senescence-related signaling pathways. With repeated passages, the number of senescent cells increased, while the cell proliferation capacity decreased; GATA6 mRNA expression was upregulated and that of SOX11 was downregulated. Repetitive cell passages decreased Wnt and bone morphogenetic protein (BMP) signaling pathway-related gene expression. Silencing of GATA6 and SOX11 regulated Wnt and BMP signaling pathway-related genes and affected cell senescence-related genes; moreover, SOX11 silencing regulated GATA6 expression. Hence, we identified them as pair of regulatory transcription factors for cell senescence in hMSCs via the Wnt and BMP signaling pathways.
doi_str_mv 10.1007/s12013-021-00969-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2487749044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524567699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-ea8879bc5291b7f5b5133dae6e316452dd03c43aa830c741b1124286789c864b3</originalsourceid><addsrcrecordid>eNp9kUlPwzAUhC0EglL4AxxQJC5cAl4T-whllahALGfLcV5LqsQpdiKUf49LWSQOnPz0_M3YmkHogOATgnF-GgjFhKWYkhRjlal02EAjIoSKK8k244ylSBVRYgfthrDAmFLM-TbaYSxSktARaq56Z7uqdaZOHmHe16Zr_ZBMwb4aV4UmJC-uBF8PlZsn562DZGq8b98jEcDZ16GJwqcOmmQCdZzAQbDxApKL3q80n-sHE4KZQ9hDWzNTB9j_Osfo5eryeXKT3t1f307O7lLLOelSMFLmqrCCKlLkM1EIwlhpIANGMi5oWWJmOTNGMmxzTgpCKKcyy6WyMuMFG6Pjte_St289hE43VfxWXRsHbR805TLPuYphRPToD7poex_jiJSgXGR5plSk6Jqyvg3Bw0wvfdUYP2iC9aoMvS5DxzL0Zxl6iKLDL-u-aKD8kXynHwG2BsJylRX437f_sf0ANzyU6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524567699</pqid></control><display><type>article</type><title>Functional Regulatory Mechanisms Underlying Bone Marrow Mesenchymal Stem Cell Senescence During Cell Passages</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Iwata, T. ; Mizuno, N. ; Ishida, S. ; Kajiya, M. ; Nagahara, T. ; Kaneda-Ikeda, E. ; Yoshioka, M. ; Munenaga, S. ; Ouhara, K. ; Fujita, T. ; Kawaguchi, H. ; Kurihara, H.</creator><creatorcontrib>Iwata, T. ; Mizuno, N. ; Ishida, S. ; Kajiya, M. ; Nagahara, T. ; Kaneda-Ikeda, E. ; Yoshioka, M. ; Munenaga, S. ; Ouhara, K. ; Fujita, T. ; Kawaguchi, H. ; Kurihara, H.</creatorcontrib><description>Mesenchymal stem cell (MSC) transplantation is an effective periodontal regenerative therapy. MSCs are multipotent, have self-renewal ability, and can differentiate into periodontal cells. However, senescence is inevitable for MSCs. In vitro, cell senescence can be induced by long-term culture with/without cell passage. However, the regulatory mechanism of MSC senescence remains unclear. Undifferentiated MSC-specific transcription factors can regulate MSC function. Herein, we identified the regulatory transcription factors involved in MSC senescence and elucidated their mechanisms of action. We cultured human MSCs (hMSCs) with repetitive cell passages to induce cell senescence and evaluated the mRNA and protein expression of cell senescence-related genes. Additionally, we silenced the cell senescence-induced transcription factors, GATA binding protein 6 (GATA6) and SRY-box 11 (SOX11), and investigated senescence-related signaling pathways. With repeated passages, the number of senescent cells increased, while the cell proliferation capacity decreased; GATA6 mRNA expression was upregulated and that of SOX11 was downregulated. Repetitive cell passages decreased Wnt and bone morphogenetic protein (BMP) signaling pathway-related gene expression. Silencing of GATA6 and SOX11 regulated Wnt and BMP signaling pathway-related genes and affected cell senescence-related genes; moreover, SOX11 silencing regulated GATA6 expression. Hence, we identified them as pair of regulatory transcription factors for cell senescence in hMSCs via the Wnt and BMP signaling pathways.</description><identifier>ISSN: 1085-9195</identifier><identifier>EISSN: 1559-0283</identifier><identifier>DOI: 10.1007/s12013-021-00969-y</identifier><identifier>PMID: 33559812</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biochemistry ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biophysics ; Biotechnology ; Bone marrow ; Bone Marrow Cells - cytology ; Bone morphogenetic proteins ; Bone Morphogenetic Proteins - genetics ; Bone Morphogenetic Proteins - metabolism ; Cell Biology ; Cell culture ; Cell Differentiation ; Cell Proliferation ; Cell self-renewal ; Cells, Cultured ; Cellular Senescence - genetics ; GATA6 Transcription Factor - antagonists &amp; inhibitors ; GATA6 Transcription Factor - genetics ; GATA6 Transcription Factor - metabolism ; Gene expression ; Gene silencing ; Genes ; Histone Deacetylase 2 - genetics ; Histone Deacetylase 2 - metabolism ; Humans ; Life Sciences ; Mesenchymal stem cells ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - metabolism ; Original Paper ; Pharmacology/Toxicology ; Proteins ; Regulatory mechanisms (biology) ; RNA Interference ; RNA, Small Interfering - metabolism ; Senescence ; Signal transduction ; Signal Transduction - genetics ; Signaling ; SOXC Transcription Factors - antagonists &amp; inhibitors ; SOXC Transcription Factors - genetics ; SOXC Transcription Factors - metabolism ; Stem cells ; Transcription factors ; Transplantation ; Wnt protein ; Wnt Proteins - genetics ; Wnt Proteins - metabolism</subject><ispartof>Cell biochemistry and biophysics, 2021-06, Vol.79 (2), p.321-336</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-ea8879bc5291b7f5b5133dae6e316452dd03c43aa830c741b1124286789c864b3</citedby><cites>FETCH-LOGICAL-c441t-ea8879bc5291b7f5b5133dae6e316452dd03c43aa830c741b1124286789c864b3</cites><orcidid>0000-0001-7345-7480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12013-021-00969-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12013-021-00969-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33559812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iwata, T.</creatorcontrib><creatorcontrib>Mizuno, N.</creatorcontrib><creatorcontrib>Ishida, S.</creatorcontrib><creatorcontrib>Kajiya, M.</creatorcontrib><creatorcontrib>Nagahara, T.</creatorcontrib><creatorcontrib>Kaneda-Ikeda, E.</creatorcontrib><creatorcontrib>Yoshioka, M.</creatorcontrib><creatorcontrib>Munenaga, S.</creatorcontrib><creatorcontrib>Ouhara, K.</creatorcontrib><creatorcontrib>Fujita, T.</creatorcontrib><creatorcontrib>Kawaguchi, H.</creatorcontrib><creatorcontrib>Kurihara, H.</creatorcontrib><title>Functional Regulatory Mechanisms Underlying Bone Marrow Mesenchymal Stem Cell Senescence During Cell Passages</title><title>Cell biochemistry and biophysics</title><addtitle>Cell Biochem Biophys</addtitle><addtitle>Cell Biochem Biophys</addtitle><description>Mesenchymal stem cell (MSC) transplantation is an effective periodontal regenerative therapy. MSCs are multipotent, have self-renewal ability, and can differentiate into periodontal cells. However, senescence is inevitable for MSCs. In vitro, cell senescence can be induced by long-term culture with/without cell passage. However, the regulatory mechanism of MSC senescence remains unclear. Undifferentiated MSC-specific transcription factors can regulate MSC function. Herein, we identified the regulatory transcription factors involved in MSC senescence and elucidated their mechanisms of action. We cultured human MSCs (hMSCs) with repetitive cell passages to induce cell senescence and evaluated the mRNA and protein expression of cell senescence-related genes. Additionally, we silenced the cell senescence-induced transcription factors, GATA binding protein 6 (GATA6) and SRY-box 11 (SOX11), and investigated senescence-related signaling pathways. With repeated passages, the number of senescent cells increased, while the cell proliferation capacity decreased; GATA6 mRNA expression was upregulated and that of SOX11 was downregulated. Repetitive cell passages decreased Wnt and bone morphogenetic protein (BMP) signaling pathway-related gene expression. Silencing of GATA6 and SOX11 regulated Wnt and BMP signaling pathway-related genes and affected cell senescence-related genes; moreover, SOX11 silencing regulated GATA6 expression. Hence, we identified them as pair of regulatory transcription factors for cell senescence in hMSCs via the Wnt and BMP signaling pathways.</description><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biophysics</subject><subject>Biotechnology</subject><subject>Bone marrow</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone morphogenetic proteins</subject><subject>Bone Morphogenetic Proteins - genetics</subject><subject>Bone Morphogenetic Proteins - metabolism</subject><subject>Cell Biology</subject><subject>Cell culture</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cell self-renewal</subject><subject>Cells, Cultured</subject><subject>Cellular Senescence - genetics</subject><subject>GATA6 Transcription Factor - antagonists &amp; inhibitors</subject><subject>GATA6 Transcription Factor - genetics</subject><subject>GATA6 Transcription Factor - metabolism</subject><subject>Gene expression</subject><subject>Gene silencing</subject><subject>Genes</subject><subject>Histone Deacetylase 2 - genetics</subject><subject>Histone Deacetylase 2 - metabolism</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Original Paper</subject><subject>Pharmacology/Toxicology</subject><subject>Proteins</subject><subject>Regulatory mechanisms (biology)</subject><subject>RNA Interference</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Senescence</subject><subject>Signal transduction</subject><subject>Signal Transduction - genetics</subject><subject>Signaling</subject><subject>SOXC Transcription Factors - antagonists &amp; inhibitors</subject><subject>SOXC Transcription Factors - genetics</subject><subject>SOXC Transcription Factors - metabolism</subject><subject>Stem cells</subject><subject>Transcription factors</subject><subject>Transplantation</subject><subject>Wnt protein</subject><subject>Wnt Proteins - genetics</subject><subject>Wnt Proteins - metabolism</subject><issn>1085-9195</issn><issn>1559-0283</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUlPwzAUhC0EglL4AxxQJC5cAl4T-whllahALGfLcV5LqsQpdiKUf49LWSQOnPz0_M3YmkHogOATgnF-GgjFhKWYkhRjlal02EAjIoSKK8k244ylSBVRYgfthrDAmFLM-TbaYSxSktARaq56Z7uqdaZOHmHe16Zr_ZBMwb4aV4UmJC-uBF8PlZsn562DZGq8b98jEcDZ16GJwqcOmmQCdZzAQbDxApKL3q80n-sHE4KZQ9hDWzNTB9j_Osfo5eryeXKT3t1f307O7lLLOelSMFLmqrCCKlLkM1EIwlhpIANGMi5oWWJmOTNGMmxzTgpCKKcyy6WyMuMFG6Pjte_St289hE43VfxWXRsHbR805TLPuYphRPToD7poex_jiJSgXGR5plSk6Jqyvg3Bw0wvfdUYP2iC9aoMvS5DxzL0Zxl6iKLDL-u-aKD8kXynHwG2BsJylRX437f_sf0ANzyU6g</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Iwata, T.</creator><creator>Mizuno, N.</creator><creator>Ishida, S.</creator><creator>Kajiya, M.</creator><creator>Nagahara, T.</creator><creator>Kaneda-Ikeda, E.</creator><creator>Yoshioka, M.</creator><creator>Munenaga, S.</creator><creator>Ouhara, K.</creator><creator>Fujita, T.</creator><creator>Kawaguchi, H.</creator><creator>Kurihara, H.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7345-7480</orcidid></search><sort><creationdate>20210601</creationdate><title>Functional Regulatory Mechanisms Underlying Bone Marrow Mesenchymal Stem Cell Senescence During Cell Passages</title><author>Iwata, T. ; Mizuno, N. ; Ishida, S. ; Kajiya, M. ; Nagahara, T. ; Kaneda-Ikeda, E. ; Yoshioka, M. ; Munenaga, S. ; Ouhara, K. ; Fujita, T. ; Kawaguchi, H. ; Kurihara, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-ea8879bc5291b7f5b5133dae6e316452dd03c43aa830c741b1124286789c864b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biophysics</topic><topic>Biotechnology</topic><topic>Bone marrow</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone morphogenetic proteins</topic><topic>Bone Morphogenetic Proteins - genetics</topic><topic>Bone Morphogenetic Proteins - metabolism</topic><topic>Cell Biology</topic><topic>Cell culture</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cell self-renewal</topic><topic>Cells, Cultured</topic><topic>Cellular Senescence - genetics</topic><topic>GATA6 Transcription Factor - antagonists &amp; inhibitors</topic><topic>GATA6 Transcription Factor - genetics</topic><topic>GATA6 Transcription Factor - metabolism</topic><topic>Gene expression</topic><topic>Gene silencing</topic><topic>Genes</topic><topic>Histone Deacetylase 2 - genetics</topic><topic>Histone Deacetylase 2 - metabolism</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Original Paper</topic><topic>Pharmacology/Toxicology</topic><topic>Proteins</topic><topic>Regulatory mechanisms (biology)</topic><topic>RNA Interference</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Senescence</topic><topic>Signal transduction</topic><topic>Signal Transduction - genetics</topic><topic>Signaling</topic><topic>SOXC Transcription Factors - antagonists &amp; inhibitors</topic><topic>SOXC Transcription Factors - genetics</topic><topic>SOXC Transcription Factors - metabolism</topic><topic>Stem cells</topic><topic>Transcription factors</topic><topic>Transplantation</topic><topic>Wnt protein</topic><topic>Wnt Proteins - genetics</topic><topic>Wnt Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwata, T.</creatorcontrib><creatorcontrib>Mizuno, N.</creatorcontrib><creatorcontrib>Ishida, S.</creatorcontrib><creatorcontrib>Kajiya, M.</creatorcontrib><creatorcontrib>Nagahara, T.</creatorcontrib><creatorcontrib>Kaneda-Ikeda, E.</creatorcontrib><creatorcontrib>Yoshioka, M.</creatorcontrib><creatorcontrib>Munenaga, S.</creatorcontrib><creatorcontrib>Ouhara, K.</creatorcontrib><creatorcontrib>Fujita, T.</creatorcontrib><creatorcontrib>Kawaguchi, H.</creatorcontrib><creatorcontrib>Kurihara, H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cell biochemistry and biophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwata, T.</au><au>Mizuno, N.</au><au>Ishida, S.</au><au>Kajiya, M.</au><au>Nagahara, T.</au><au>Kaneda-Ikeda, E.</au><au>Yoshioka, M.</au><au>Munenaga, S.</au><au>Ouhara, K.</au><au>Fujita, T.</au><au>Kawaguchi, H.</au><au>Kurihara, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Regulatory Mechanisms Underlying Bone Marrow Mesenchymal Stem Cell Senescence During Cell Passages</atitle><jtitle>Cell biochemistry and biophysics</jtitle><stitle>Cell Biochem Biophys</stitle><addtitle>Cell Biochem Biophys</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>79</volume><issue>2</issue><spage>321</spage><epage>336</epage><pages>321-336</pages><issn>1085-9195</issn><eissn>1559-0283</eissn><abstract>Mesenchymal stem cell (MSC) transplantation is an effective periodontal regenerative therapy. MSCs are multipotent, have self-renewal ability, and can differentiate into periodontal cells. However, senescence is inevitable for MSCs. In vitro, cell senescence can be induced by long-term culture with/without cell passage. However, the regulatory mechanism of MSC senescence remains unclear. Undifferentiated MSC-specific transcription factors can regulate MSC function. Herein, we identified the regulatory transcription factors involved in MSC senescence and elucidated their mechanisms of action. We cultured human MSCs (hMSCs) with repetitive cell passages to induce cell senescence and evaluated the mRNA and protein expression of cell senescence-related genes. Additionally, we silenced the cell senescence-induced transcription factors, GATA binding protein 6 (GATA6) and SRY-box 11 (SOX11), and investigated senescence-related signaling pathways. With repeated passages, the number of senescent cells increased, while the cell proliferation capacity decreased; GATA6 mRNA expression was upregulated and that of SOX11 was downregulated. Repetitive cell passages decreased Wnt and bone morphogenetic protein (BMP) signaling pathway-related gene expression. Silencing of GATA6 and SOX11 regulated Wnt and BMP signaling pathway-related genes and affected cell senescence-related genes; moreover, SOX11 silencing regulated GATA6 expression. Hence, we identified them as pair of regulatory transcription factors for cell senescence in hMSCs via the Wnt and BMP signaling pathways.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33559812</pmid><doi>10.1007/s12013-021-00969-y</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7345-7480</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1085-9195
ispartof Cell biochemistry and biophysics, 2021-06, Vol.79 (2), p.321-336
issn 1085-9195
1559-0283
language eng
recordid cdi_proquest_miscellaneous_2487749044
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Biochemistry
Biological and Medical Physics
Biomedical and Life Sciences
Biophysics
Biotechnology
Bone marrow
Bone Marrow Cells - cytology
Bone morphogenetic proteins
Bone Morphogenetic Proteins - genetics
Bone Morphogenetic Proteins - metabolism
Cell Biology
Cell culture
Cell Differentiation
Cell Proliferation
Cell self-renewal
Cells, Cultured
Cellular Senescence - genetics
GATA6 Transcription Factor - antagonists & inhibitors
GATA6 Transcription Factor - genetics
GATA6 Transcription Factor - metabolism
Gene expression
Gene silencing
Genes
Histone Deacetylase 2 - genetics
Histone Deacetylase 2 - metabolism
Humans
Life Sciences
Mesenchymal stem cells
Mesenchymal Stem Cells - cytology
Mesenchymal Stem Cells - metabolism
Original Paper
Pharmacology/Toxicology
Proteins
Regulatory mechanisms (biology)
RNA Interference
RNA, Small Interfering - metabolism
Senescence
Signal transduction
Signal Transduction - genetics
Signaling
SOXC Transcription Factors - antagonists & inhibitors
SOXC Transcription Factors - genetics
SOXC Transcription Factors - metabolism
Stem cells
Transcription factors
Transplantation
Wnt protein
Wnt Proteins - genetics
Wnt Proteins - metabolism
title Functional Regulatory Mechanisms Underlying Bone Marrow Mesenchymal Stem Cell Senescence During Cell Passages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A26%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Regulatory%20Mechanisms%20Underlying%20Bone%20Marrow%20Mesenchymal%20Stem%20Cell%20Senescence%20During%20Cell%20Passages&rft.jtitle=Cell%20biochemistry%20and%20biophysics&rft.au=Iwata,%20T.&rft.date=2021-06-01&rft.volume=79&rft.issue=2&rft.spage=321&rft.epage=336&rft.pages=321-336&rft.issn=1085-9195&rft.eissn=1559-0283&rft_id=info:doi/10.1007/s12013-021-00969-y&rft_dat=%3Cproquest_cross%3E2524567699%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524567699&rft_id=info:pmid/33559812&rfr_iscdi=true