A VOP generation tool: automatic segmentation of moving objects in image sequences based on spatio-temporal information

The new MPEG-4 video coding standard enables content-based functionalities. In order to support the philosophy of the MPEG-4 visual standard, each frame of video sequences should be represented in terms of video object planes (VOPs). In other words, video objects to be encoded in still pictures or v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 1999-12, Vol.9 (8), p.1216-1226
Hauptverfasser: Kim, Munchurl, Choi, Jae Gark, Kim, Daehee, Lee, Hyung, Lee, Myoung Ho, Ahn, Chieteuk, Ho, Yo-Sung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1226
container_issue 8
container_start_page 1216
container_title IEEE transactions on circuits and systems for video technology
container_volume 9
creator Kim, Munchurl
Choi, Jae Gark
Kim, Daehee
Lee, Hyung
Lee, Myoung Ho
Ahn, Chieteuk
Ho, Yo-Sung
description The new MPEG-4 video coding standard enables content-based functionalities. In order to support the philosophy of the MPEG-4 visual standard, each frame of video sequences should be represented in terms of video object planes (VOPs). In other words, video objects to be encoded in still pictures or video sequences should be prepared before the encoding process starts. Therefore, it requires a prior decomposition of sequences into VOPs so that each VOP represents a moving object. This paper addresses an image segmentation method for separating moving objects from the background in image sequences. The proposed method utilizes the following spatio-temporal information. (1) For localization of moving objects in the image sequence, two consecutive image frames in the temporal direction are examined and a hypothesis testing is performed by comparing two variance estimates from two consecutive difference images, which results in an F-test. (2) Spatial segmentation is performed to divide each image into semantic regions and to find precise object boundaries of the moving objects. The temporal segmentation yields a change detection mask that indicates moving areas (foreground) and nonmoving areas (background), and spatial segmentation produces spatial segmentation masks. A combination of the spatial and temporal segmentation masks produces VOPs faithfully. This paper presents various experimental results.
doi_str_mv 10.1109/76.809157
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_24876519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>809157</ieee_id><sourcerecordid>919920322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-c84d7829e1ff6fe1a3105994e1d70ce16c269f3cf2f7f57d792a6e341a12c9a63</originalsourceid><addsrcrecordid>eNqF0TtPwzAQAOAIgUQpDKxMnkAMKT4njmO2quIlVSoDsEauc45SJXGIXRD_HpdUjDDZ8n0-3SOKzoHOAKi8EdkspxK4OIgmwHkeM0b5YbhTDnHOgB9HJ85tKIU0T8Uk-pyTt9UzqbDDQfnadsRb29wStfW2DQ-aOKxa7PwYtIa09qPuKmLXG9TekbojdasqDO59i51GR9bKYUmCdv3uV-yx7e2gmmCNHdqfTKfRkVGNw7P9OY1e7-9eFo_xcvXwtJgvY50m3Mc6T0uRM4lgTGYQVBIakTJFKAXVCJlmmTSJNswIw0UpJFMZJikoYFqqLJlGV2PefrChPueLtnYam0Z1aLeukCAlowljQV7-KVkuGGcS_odpLjIOMsDrEerBOjegKfohzGr4KoAWu20VIivGbQV7MdoaEX_dPvgNWK-QpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24876519</pqid></control><display><type>article</type><title>A VOP generation tool: automatic segmentation of moving objects in image sequences based on spatio-temporal information</title><source>IEEE Electronic Library (IEL)</source><creator>Kim, Munchurl ; Choi, Jae Gark ; Kim, Daehee ; Lee, Hyung ; Lee, Myoung Ho ; Ahn, Chieteuk ; Ho, Yo-Sung</creator><creatorcontrib>Kim, Munchurl ; Choi, Jae Gark ; Kim, Daehee ; Lee, Hyung ; Lee, Myoung Ho ; Ahn, Chieteuk ; Ho, Yo-Sung</creatorcontrib><description>The new MPEG-4 video coding standard enables content-based functionalities. In order to support the philosophy of the MPEG-4 visual standard, each frame of video sequences should be represented in terms of video object planes (VOPs). In other words, video objects to be encoded in still pictures or video sequences should be prepared before the encoding process starts. Therefore, it requires a prior decomposition of sequences into VOPs so that each VOP represents a moving object. This paper addresses an image segmentation method for separating moving objects from the background in image sequences. The proposed method utilizes the following spatio-temporal information. (1) For localization of moving objects in the image sequence, two consecutive image frames in the temporal direction are examined and a hypothesis testing is performed by comparing two variance estimates from two consecutive difference images, which results in an F-test. (2) Spatial segmentation is performed to divide each image into semantic regions and to find precise object boundaries of the moving objects. The temporal segmentation yields a change detection mask that indicates moving areas (foreground) and nonmoving areas (background), and spatial segmentation produces spatial segmentation masks. A combination of the spatial and temporal segmentation masks produces VOPs faithfully. This paper presents various experimental results.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/76.809157</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Broadcast technology ; Change detection ; Encoding ; Frames ; Image segmentation ; Image sequences ; Masks ; MPEG 4 Standard ; Performance evaluation ; Radio broadcasting ; Segmentation ; Temporal logic ; Testing ; Video coding ; Video sequences</subject><ispartof>IEEE transactions on circuits and systems for video technology, 1999-12, Vol.9 (8), p.1216-1226</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-c84d7829e1ff6fe1a3105994e1d70ce16c269f3cf2f7f57d792a6e341a12c9a63</citedby><cites>FETCH-LOGICAL-c435t-c84d7829e1ff6fe1a3105994e1d70ce16c269f3cf2f7f57d792a6e341a12c9a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/809157$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/809157$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, Munchurl</creatorcontrib><creatorcontrib>Choi, Jae Gark</creatorcontrib><creatorcontrib>Kim, Daehee</creatorcontrib><creatorcontrib>Lee, Hyung</creatorcontrib><creatorcontrib>Lee, Myoung Ho</creatorcontrib><creatorcontrib>Ahn, Chieteuk</creatorcontrib><creatorcontrib>Ho, Yo-Sung</creatorcontrib><title>A VOP generation tool: automatic segmentation of moving objects in image sequences based on spatio-temporal information</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>The new MPEG-4 video coding standard enables content-based functionalities. In order to support the philosophy of the MPEG-4 visual standard, each frame of video sequences should be represented in terms of video object planes (VOPs). In other words, video objects to be encoded in still pictures or video sequences should be prepared before the encoding process starts. Therefore, it requires a prior decomposition of sequences into VOPs so that each VOP represents a moving object. This paper addresses an image segmentation method for separating moving objects from the background in image sequences. The proposed method utilizes the following spatio-temporal information. (1) For localization of moving objects in the image sequence, two consecutive image frames in the temporal direction are examined and a hypothesis testing is performed by comparing two variance estimates from two consecutive difference images, which results in an F-test. (2) Spatial segmentation is performed to divide each image into semantic regions and to find precise object boundaries of the moving objects. The temporal segmentation yields a change detection mask that indicates moving areas (foreground) and nonmoving areas (background), and spatial segmentation produces spatial segmentation masks. A combination of the spatial and temporal segmentation masks produces VOPs faithfully. This paper presents various experimental results.</description><subject>Broadcast technology</subject><subject>Change detection</subject><subject>Encoding</subject><subject>Frames</subject><subject>Image segmentation</subject><subject>Image sequences</subject><subject>Masks</subject><subject>MPEG 4 Standard</subject><subject>Performance evaluation</subject><subject>Radio broadcasting</subject><subject>Segmentation</subject><subject>Temporal logic</subject><subject>Testing</subject><subject>Video coding</subject><subject>Video sequences</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0TtPwzAQAOAIgUQpDKxMnkAMKT4njmO2quIlVSoDsEauc45SJXGIXRD_HpdUjDDZ8n0-3SOKzoHOAKi8EdkspxK4OIgmwHkeM0b5YbhTDnHOgB9HJ85tKIU0T8Uk-pyTt9UzqbDDQfnadsRb29wStfW2DQ-aOKxa7PwYtIa09qPuKmLXG9TekbojdasqDO59i51GR9bKYUmCdv3uV-yx7e2gmmCNHdqfTKfRkVGNw7P9OY1e7-9eFo_xcvXwtJgvY50m3Mc6T0uRM4lgTGYQVBIakTJFKAXVCJlmmTSJNswIw0UpJFMZJikoYFqqLJlGV2PefrChPueLtnYam0Z1aLeukCAlowljQV7-KVkuGGcS_odpLjIOMsDrEerBOjegKfohzGr4KoAWu20VIivGbQV7MdoaEX_dPvgNWK-QpA</recordid><startdate>19991201</startdate><enddate>19991201</enddate><creator>Kim, Munchurl</creator><creator>Choi, Jae Gark</creator><creator>Kim, Daehee</creator><creator>Lee, Hyung</creator><creator>Lee, Myoung Ho</creator><creator>Ahn, Chieteuk</creator><creator>Ho, Yo-Sung</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7SC</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19991201</creationdate><title>A VOP generation tool: automatic segmentation of moving objects in image sequences based on spatio-temporal information</title><author>Kim, Munchurl ; Choi, Jae Gark ; Kim, Daehee ; Lee, Hyung ; Lee, Myoung Ho ; Ahn, Chieteuk ; Ho, Yo-Sung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-c84d7829e1ff6fe1a3105994e1d70ce16c269f3cf2f7f57d792a6e341a12c9a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Broadcast technology</topic><topic>Change detection</topic><topic>Encoding</topic><topic>Frames</topic><topic>Image segmentation</topic><topic>Image sequences</topic><topic>Masks</topic><topic>MPEG 4 Standard</topic><topic>Performance evaluation</topic><topic>Radio broadcasting</topic><topic>Segmentation</topic><topic>Temporal logic</topic><topic>Testing</topic><topic>Video coding</topic><topic>Video sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Munchurl</creatorcontrib><creatorcontrib>Choi, Jae Gark</creatorcontrib><creatorcontrib>Kim, Daehee</creatorcontrib><creatorcontrib>Lee, Hyung</creatorcontrib><creatorcontrib>Lee, Myoung Ho</creatorcontrib><creatorcontrib>Ahn, Chieteuk</creatorcontrib><creatorcontrib>Ho, Yo-Sung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Munchurl</au><au>Choi, Jae Gark</au><au>Kim, Daehee</au><au>Lee, Hyung</au><au>Lee, Myoung Ho</au><au>Ahn, Chieteuk</au><au>Ho, Yo-Sung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A VOP generation tool: automatic segmentation of moving objects in image sequences based on spatio-temporal information</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>1999-12-01</date><risdate>1999</risdate><volume>9</volume><issue>8</issue><spage>1216</spage><epage>1226</epage><pages>1216-1226</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>The new MPEG-4 video coding standard enables content-based functionalities. In order to support the philosophy of the MPEG-4 visual standard, each frame of video sequences should be represented in terms of video object planes (VOPs). In other words, video objects to be encoded in still pictures or video sequences should be prepared before the encoding process starts. Therefore, it requires a prior decomposition of sequences into VOPs so that each VOP represents a moving object. This paper addresses an image segmentation method for separating moving objects from the background in image sequences. The proposed method utilizes the following spatio-temporal information. (1) For localization of moving objects in the image sequence, two consecutive image frames in the temporal direction are examined and a hypothesis testing is performed by comparing two variance estimates from two consecutive difference images, which results in an F-test. (2) Spatial segmentation is performed to divide each image into semantic regions and to find precise object boundaries of the moving objects. The temporal segmentation yields a change detection mask that indicates moving areas (foreground) and nonmoving areas (background), and spatial segmentation produces spatial segmentation masks. A combination of the spatial and temporal segmentation masks produces VOPs faithfully. This paper presents various experimental results.</abstract><pub>IEEE</pub><doi>10.1109/76.809157</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 1999-12, Vol.9 (8), p.1216-1226
issn 1051-8215
1558-2205
language eng
recordid cdi_proquest_miscellaneous_24876519
source IEEE Electronic Library (IEL)
subjects Broadcast technology
Change detection
Encoding
Frames
Image segmentation
Image sequences
Masks
MPEG 4 Standard
Performance evaluation
Radio broadcasting
Segmentation
Temporal logic
Testing
Video coding
Video sequences
title A VOP generation tool: automatic segmentation of moving objects in image sequences based on spatio-temporal information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T15%3A57%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20VOP%20generation%20tool:%20automatic%20segmentation%20of%20moving%20objects%20in%20image%20sequences%20based%20on%20spatio-temporal%20information&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Kim,%20Munchurl&rft.date=1999-12-01&rft.volume=9&rft.issue=8&rft.spage=1216&rft.epage=1226&rft.pages=1216-1226&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/76.809157&rft_dat=%3Cproquest_RIE%3E919920322%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24876519&rft_id=info:pmid/&rft_ieee_id=809157&rfr_iscdi=true