A VOP generation tool: automatic segmentation of moving objects in image sequences based on spatio-temporal information
The new MPEG-4 video coding standard enables content-based functionalities. In order to support the philosophy of the MPEG-4 visual standard, each frame of video sequences should be represented in terms of video object planes (VOPs). In other words, video objects to be encoded in still pictures or v...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 1999-12, Vol.9 (8), p.1216-1226 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1226 |
---|---|
container_issue | 8 |
container_start_page | 1216 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 9 |
creator | Kim, Munchurl Choi, Jae Gark Kim, Daehee Lee, Hyung Lee, Myoung Ho Ahn, Chieteuk Ho, Yo-Sung |
description | The new MPEG-4 video coding standard enables content-based functionalities. In order to support the philosophy of the MPEG-4 visual standard, each frame of video sequences should be represented in terms of video object planes (VOPs). In other words, video objects to be encoded in still pictures or video sequences should be prepared before the encoding process starts. Therefore, it requires a prior decomposition of sequences into VOPs so that each VOP represents a moving object. This paper addresses an image segmentation method for separating moving objects from the background in image sequences. The proposed method utilizes the following spatio-temporal information. (1) For localization of moving objects in the image sequence, two consecutive image frames in the temporal direction are examined and a hypothesis testing is performed by comparing two variance estimates from two consecutive difference images, which results in an F-test. (2) Spatial segmentation is performed to divide each image into semantic regions and to find precise object boundaries of the moving objects. The temporal segmentation yields a change detection mask that indicates moving areas (foreground) and nonmoving areas (background), and spatial segmentation produces spatial segmentation masks. A combination of the spatial and temporal segmentation masks produces VOPs faithfully. This paper presents various experimental results. |
doi_str_mv | 10.1109/76.809157 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_24876519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>809157</ieee_id><sourcerecordid>919920322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-c84d7829e1ff6fe1a3105994e1d70ce16c269f3cf2f7f57d792a6e341a12c9a63</originalsourceid><addsrcrecordid>eNqF0TtPwzAQAOAIgUQpDKxMnkAMKT4njmO2quIlVSoDsEauc45SJXGIXRD_HpdUjDDZ8n0-3SOKzoHOAKi8EdkspxK4OIgmwHkeM0b5YbhTDnHOgB9HJ85tKIU0T8Uk-pyTt9UzqbDDQfnadsRb29wStfW2DQ-aOKxa7PwYtIa09qPuKmLXG9TekbojdasqDO59i51GR9bKYUmCdv3uV-yx7e2gmmCNHdqfTKfRkVGNw7P9OY1e7-9eFo_xcvXwtJgvY50m3Mc6T0uRM4lgTGYQVBIakTJFKAXVCJlmmTSJNswIw0UpJFMZJikoYFqqLJlGV2PefrChPueLtnYam0Z1aLeukCAlowljQV7-KVkuGGcS_odpLjIOMsDrEerBOjegKfohzGr4KoAWu20VIivGbQV7MdoaEX_dPvgNWK-QpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24876519</pqid></control><display><type>article</type><title>A VOP generation tool: automatic segmentation of moving objects in image sequences based on spatio-temporal information</title><source>IEEE Electronic Library (IEL)</source><creator>Kim, Munchurl ; Choi, Jae Gark ; Kim, Daehee ; Lee, Hyung ; Lee, Myoung Ho ; Ahn, Chieteuk ; Ho, Yo-Sung</creator><creatorcontrib>Kim, Munchurl ; Choi, Jae Gark ; Kim, Daehee ; Lee, Hyung ; Lee, Myoung Ho ; Ahn, Chieteuk ; Ho, Yo-Sung</creatorcontrib><description>The new MPEG-4 video coding standard enables content-based functionalities. In order to support the philosophy of the MPEG-4 visual standard, each frame of video sequences should be represented in terms of video object planes (VOPs). In other words, video objects to be encoded in still pictures or video sequences should be prepared before the encoding process starts. Therefore, it requires a prior decomposition of sequences into VOPs so that each VOP represents a moving object. This paper addresses an image segmentation method for separating moving objects from the background in image sequences. The proposed method utilizes the following spatio-temporal information. (1) For localization of moving objects in the image sequence, two consecutive image frames in the temporal direction are examined and a hypothesis testing is performed by comparing two variance estimates from two consecutive difference images, which results in an F-test. (2) Spatial segmentation is performed to divide each image into semantic regions and to find precise object boundaries of the moving objects. The temporal segmentation yields a change detection mask that indicates moving areas (foreground) and nonmoving areas (background), and spatial segmentation produces spatial segmentation masks. A combination of the spatial and temporal segmentation masks produces VOPs faithfully. This paper presents various experimental results.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/76.809157</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Broadcast technology ; Change detection ; Encoding ; Frames ; Image segmentation ; Image sequences ; Masks ; MPEG 4 Standard ; Performance evaluation ; Radio broadcasting ; Segmentation ; Temporal logic ; Testing ; Video coding ; Video sequences</subject><ispartof>IEEE transactions on circuits and systems for video technology, 1999-12, Vol.9 (8), p.1216-1226</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-c84d7829e1ff6fe1a3105994e1d70ce16c269f3cf2f7f57d792a6e341a12c9a63</citedby><cites>FETCH-LOGICAL-c435t-c84d7829e1ff6fe1a3105994e1d70ce16c269f3cf2f7f57d792a6e341a12c9a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/809157$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/809157$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, Munchurl</creatorcontrib><creatorcontrib>Choi, Jae Gark</creatorcontrib><creatorcontrib>Kim, Daehee</creatorcontrib><creatorcontrib>Lee, Hyung</creatorcontrib><creatorcontrib>Lee, Myoung Ho</creatorcontrib><creatorcontrib>Ahn, Chieteuk</creatorcontrib><creatorcontrib>Ho, Yo-Sung</creatorcontrib><title>A VOP generation tool: automatic segmentation of moving objects in image sequences based on spatio-temporal information</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>The new MPEG-4 video coding standard enables content-based functionalities. In order to support the philosophy of the MPEG-4 visual standard, each frame of video sequences should be represented in terms of video object planes (VOPs). In other words, video objects to be encoded in still pictures or video sequences should be prepared before the encoding process starts. Therefore, it requires a prior decomposition of sequences into VOPs so that each VOP represents a moving object. This paper addresses an image segmentation method for separating moving objects from the background in image sequences. The proposed method utilizes the following spatio-temporal information. (1) For localization of moving objects in the image sequence, two consecutive image frames in the temporal direction are examined and a hypothesis testing is performed by comparing two variance estimates from two consecutive difference images, which results in an F-test. (2) Spatial segmentation is performed to divide each image into semantic regions and to find precise object boundaries of the moving objects. The temporal segmentation yields a change detection mask that indicates moving areas (foreground) and nonmoving areas (background), and spatial segmentation produces spatial segmentation masks. A combination of the spatial and temporal segmentation masks produces VOPs faithfully. This paper presents various experimental results.</description><subject>Broadcast technology</subject><subject>Change detection</subject><subject>Encoding</subject><subject>Frames</subject><subject>Image segmentation</subject><subject>Image sequences</subject><subject>Masks</subject><subject>MPEG 4 Standard</subject><subject>Performance evaluation</subject><subject>Radio broadcasting</subject><subject>Segmentation</subject><subject>Temporal logic</subject><subject>Testing</subject><subject>Video coding</subject><subject>Video sequences</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0TtPwzAQAOAIgUQpDKxMnkAMKT4njmO2quIlVSoDsEauc45SJXGIXRD_HpdUjDDZ8n0-3SOKzoHOAKi8EdkspxK4OIgmwHkeM0b5YbhTDnHOgB9HJ85tKIU0T8Uk-pyTt9UzqbDDQfnadsRb29wStfW2DQ-aOKxa7PwYtIa09qPuKmLXG9TekbojdasqDO59i51GR9bKYUmCdv3uV-yx7e2gmmCNHdqfTKfRkVGNw7P9OY1e7-9eFo_xcvXwtJgvY50m3Mc6T0uRM4lgTGYQVBIakTJFKAXVCJlmmTSJNswIw0UpJFMZJikoYFqqLJlGV2PefrChPueLtnYam0Z1aLeukCAlowljQV7-KVkuGGcS_odpLjIOMsDrEerBOjegKfohzGr4KoAWu20VIivGbQV7MdoaEX_dPvgNWK-QpA</recordid><startdate>19991201</startdate><enddate>19991201</enddate><creator>Kim, Munchurl</creator><creator>Choi, Jae Gark</creator><creator>Kim, Daehee</creator><creator>Lee, Hyung</creator><creator>Lee, Myoung Ho</creator><creator>Ahn, Chieteuk</creator><creator>Ho, Yo-Sung</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7SC</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19991201</creationdate><title>A VOP generation tool: automatic segmentation of moving objects in image sequences based on spatio-temporal information</title><author>Kim, Munchurl ; Choi, Jae Gark ; Kim, Daehee ; Lee, Hyung ; Lee, Myoung Ho ; Ahn, Chieteuk ; Ho, Yo-Sung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-c84d7829e1ff6fe1a3105994e1d70ce16c269f3cf2f7f57d792a6e341a12c9a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Broadcast technology</topic><topic>Change detection</topic><topic>Encoding</topic><topic>Frames</topic><topic>Image segmentation</topic><topic>Image sequences</topic><topic>Masks</topic><topic>MPEG 4 Standard</topic><topic>Performance evaluation</topic><topic>Radio broadcasting</topic><topic>Segmentation</topic><topic>Temporal logic</topic><topic>Testing</topic><topic>Video coding</topic><topic>Video sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Munchurl</creatorcontrib><creatorcontrib>Choi, Jae Gark</creatorcontrib><creatorcontrib>Kim, Daehee</creatorcontrib><creatorcontrib>Lee, Hyung</creatorcontrib><creatorcontrib>Lee, Myoung Ho</creatorcontrib><creatorcontrib>Ahn, Chieteuk</creatorcontrib><creatorcontrib>Ho, Yo-Sung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Munchurl</au><au>Choi, Jae Gark</au><au>Kim, Daehee</au><au>Lee, Hyung</au><au>Lee, Myoung Ho</au><au>Ahn, Chieteuk</au><au>Ho, Yo-Sung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A VOP generation tool: automatic segmentation of moving objects in image sequences based on spatio-temporal information</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>1999-12-01</date><risdate>1999</risdate><volume>9</volume><issue>8</issue><spage>1216</spage><epage>1226</epage><pages>1216-1226</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>The new MPEG-4 video coding standard enables content-based functionalities. In order to support the philosophy of the MPEG-4 visual standard, each frame of video sequences should be represented in terms of video object planes (VOPs). In other words, video objects to be encoded in still pictures or video sequences should be prepared before the encoding process starts. Therefore, it requires a prior decomposition of sequences into VOPs so that each VOP represents a moving object. This paper addresses an image segmentation method for separating moving objects from the background in image sequences. The proposed method utilizes the following spatio-temporal information. (1) For localization of moving objects in the image sequence, two consecutive image frames in the temporal direction are examined and a hypothesis testing is performed by comparing two variance estimates from two consecutive difference images, which results in an F-test. (2) Spatial segmentation is performed to divide each image into semantic regions and to find precise object boundaries of the moving objects. The temporal segmentation yields a change detection mask that indicates moving areas (foreground) and nonmoving areas (background), and spatial segmentation produces spatial segmentation masks. A combination of the spatial and temporal segmentation masks produces VOPs faithfully. This paper presents various experimental results.</abstract><pub>IEEE</pub><doi>10.1109/76.809157</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 1999-12, Vol.9 (8), p.1216-1226 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_proquest_miscellaneous_24876519 |
source | IEEE Electronic Library (IEL) |
subjects | Broadcast technology Change detection Encoding Frames Image segmentation Image sequences Masks MPEG 4 Standard Performance evaluation Radio broadcasting Segmentation Temporal logic Testing Video coding Video sequences |
title | A VOP generation tool: automatic segmentation of moving objects in image sequences based on spatio-temporal information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T15%3A57%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20VOP%20generation%20tool:%20automatic%20segmentation%20of%20moving%20objects%20in%20image%20sequences%20based%20on%20spatio-temporal%20information&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Kim,%20Munchurl&rft.date=1999-12-01&rft.volume=9&rft.issue=8&rft.spage=1216&rft.epage=1226&rft.pages=1216-1226&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/76.809157&rft_dat=%3Cproquest_RIE%3E919920322%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24876519&rft_id=info:pmid/&rft_ieee_id=809157&rfr_iscdi=true |