Optimizing ANFIS using simulated annealing algorithm for classification of microarray gene expression cancer data

In the medical field, successful classification of microarray gene expression data is of major importance for cancer diagnosis. However, due to the profusion of genes number, the performance of classifying DNA microarray gene expression data using statistical algorithms is often limited. Recently, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical & biological engineering & computing 2021-03, Vol.59 (3), p.497-509
Hauptverfasser: Haznedar, Bulent, Arslan, Mustafa Turan, Kalinli, Adem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 509
container_issue 3
container_start_page 497
container_title Medical & biological engineering & computing
container_volume 59
creator Haznedar, Bulent
Arslan, Mustafa Turan
Kalinli, Adem
description In the medical field, successful classification of microarray gene expression data is of major importance for cancer diagnosis. However, due to the profusion of genes number, the performance of classifying DNA microarray gene expression data using statistical algorithms is often limited. Recently, there has been an important increase in the studies on the utilization of artificial intelligence methods, for the purpose of classifying large-scale data. In this context, a hybrid approach based on the adaptive neuro-fuzzy inference system (ANFIS), the fuzzy c-means clustering (FCM), and the simulated annealing (SA) algorithm is proposed in this study. The proposed method is applied to classify five different cancer datasets (i.e., lung cancer, central nervous system cancer, brain cancer, endometrial cancer, and prostate cancer). The backpropagation algorithm, hybrid algorithm, genetic algorithm, and the other statistical methods such as Bayesian network, support vector machine, and J48 decision tree are used to compare the proposed approach’s performance to other algorithms. The results show that the performance of training FCM-based ANFIS using SA algorithm for classifying all the cancer datasets becomes more successful with the average accuracy rate of 96.28% and the results of the other methods are also satisfactory. The proposed method gives more effective results than the others for classifying DNA microarray cancer gene expression data. Graphical abstract Basic structure of proposed method
doi_str_mv 10.1007/s11517-021-02331-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2487162028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487162028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-6cb3a3d5a57d5e5b03e2ff73cc3b391298eb32d72f2f88e771435762125c6db33</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhi1EVba0f4BDZYlLL2k9_oiTI0JQkFA5tD1bjjNejBJnsRMJ9tfjZSmVeujBssfzzGvPvIScAPsKjOlvGUCBrhiHsoSAantAVqBlCaWUh2TFQLKKATRH5EPO96yQisv35EgIJYUEsSIPt5s5jGEb4pqe_bi8_kmXvDvnMC6DnbGnNka0w-7ODusphflupH5K1A025-CDs3OYIp08HYNLk03JPtE1RqT4uElYmJJ1NjpMtLez_UjeeTtk_PS6H5Pflxe_zq-qm9vv1-dnN5WT0M5V7TphRa-s0r1C1TGB3HstnBOdaIG3DXaC95p77psGtQYplK45cOXqvhPimHzZ627S9LBgns0YssNhsBGnJRsuGw01Z7wp6Ok_6P20pFh-V6hWQdu2NSsU31Oly5wTerNJYbTpyQAzO0PM3hBTxmxeDDHbUvT5VXrpRuzfSv44UACxB3JJxTWmv2__R_YZCtSXXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495199960</pqid></control><display><type>article</type><title>Optimizing ANFIS using simulated annealing algorithm for classification of microarray gene expression cancer data</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Haznedar, Bulent ; Arslan, Mustafa Turan ; Kalinli, Adem</creator><creatorcontrib>Haznedar, Bulent ; Arslan, Mustafa Turan ; Kalinli, Adem</creatorcontrib><description>In the medical field, successful classification of microarray gene expression data is of major importance for cancer diagnosis. However, due to the profusion of genes number, the performance of classifying DNA microarray gene expression data using statistical algorithms is often limited. Recently, there has been an important increase in the studies on the utilization of artificial intelligence methods, for the purpose of classifying large-scale data. In this context, a hybrid approach based on the adaptive neuro-fuzzy inference system (ANFIS), the fuzzy c-means clustering (FCM), and the simulated annealing (SA) algorithm is proposed in this study. The proposed method is applied to classify five different cancer datasets (i.e., lung cancer, central nervous system cancer, brain cancer, endometrial cancer, and prostate cancer). The backpropagation algorithm, hybrid algorithm, genetic algorithm, and the other statistical methods such as Bayesian network, support vector machine, and J48 decision tree are used to compare the proposed approach’s performance to other algorithms. The results show that the performance of training FCM-based ANFIS using SA algorithm for classifying all the cancer datasets becomes more successful with the average accuracy rate of 96.28% and the results of the other methods are also satisfactory. The proposed method gives more effective results than the others for classifying DNA microarray cancer gene expression data. Graphical abstract Basic structure of proposed method</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-021-02331-z</identifier><identifier>PMID: 33543413</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive systems ; Algorithms ; Artificial intelligence ; Artificial neural networks ; Back propagation ; Bayesian analysis ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Cancer ; Central nervous system ; Classification ; Clustering ; Computer Applications ; Datasets ; Decision trees ; Deoxyribonucleic acid ; DNA ; DNA chips ; DNA microarrays ; Endometrial cancer ; Endometrium ; Fuzzy logic ; Gene expression ; Genetic algorithms ; Human Physiology ; Imaging ; Lung cancer ; Original Article ; Prostate cancer ; Radiology ; Simulated annealing ; Statistical analysis ; Statistical methods ; Statistics ; Support vector machines</subject><ispartof>Medical &amp; biological engineering &amp; computing, 2021-03, Vol.59 (3), p.497-509</ispartof><rights>International Federation for Medical and Biological Engineering 2021</rights><rights>International Federation for Medical and Biological Engineering 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-6cb3a3d5a57d5e5b03e2ff73cc3b391298eb32d72f2f88e771435762125c6db33</citedby><cites>FETCH-LOGICAL-c419t-6cb3a3d5a57d5e5b03e2ff73cc3b391298eb32d72f2f88e771435762125c6db33</cites><orcidid>0000-0003-0692-9921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-021-02331-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-021-02331-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33543413$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haznedar, Bulent</creatorcontrib><creatorcontrib>Arslan, Mustafa Turan</creatorcontrib><creatorcontrib>Kalinli, Adem</creatorcontrib><title>Optimizing ANFIS using simulated annealing algorithm for classification of microarray gene expression cancer data</title><title>Medical &amp; biological engineering &amp; computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>In the medical field, successful classification of microarray gene expression data is of major importance for cancer diagnosis. However, due to the profusion of genes number, the performance of classifying DNA microarray gene expression data using statistical algorithms is often limited. Recently, there has been an important increase in the studies on the utilization of artificial intelligence methods, for the purpose of classifying large-scale data. In this context, a hybrid approach based on the adaptive neuro-fuzzy inference system (ANFIS), the fuzzy c-means clustering (FCM), and the simulated annealing (SA) algorithm is proposed in this study. The proposed method is applied to classify five different cancer datasets (i.e., lung cancer, central nervous system cancer, brain cancer, endometrial cancer, and prostate cancer). The backpropagation algorithm, hybrid algorithm, genetic algorithm, and the other statistical methods such as Bayesian network, support vector machine, and J48 decision tree are used to compare the proposed approach’s performance to other algorithms. The results show that the performance of training FCM-based ANFIS using SA algorithm for classifying all the cancer datasets becomes more successful with the average accuracy rate of 96.28% and the results of the other methods are also satisfactory. The proposed method gives more effective results than the others for classifying DNA microarray cancer gene expression data. Graphical abstract Basic structure of proposed method</description><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Bayesian analysis</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Cancer</subject><subject>Central nervous system</subject><subject>Classification</subject><subject>Clustering</subject><subject>Computer Applications</subject><subject>Datasets</subject><subject>Decision trees</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA chips</subject><subject>DNA microarrays</subject><subject>Endometrial cancer</subject><subject>Endometrium</subject><subject>Fuzzy logic</subject><subject>Gene expression</subject><subject>Genetic algorithms</subject><subject>Human Physiology</subject><subject>Imaging</subject><subject>Lung cancer</subject><subject>Original Article</subject><subject>Prostate cancer</subject><subject>Radiology</subject><subject>Simulated annealing</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Support vector machines</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1P3DAQhi1EVba0f4BDZYlLL2k9_oiTI0JQkFA5tD1bjjNejBJnsRMJ9tfjZSmVeujBssfzzGvPvIScAPsKjOlvGUCBrhiHsoSAantAVqBlCaWUh2TFQLKKATRH5EPO96yQisv35EgIJYUEsSIPt5s5jGEb4pqe_bi8_kmXvDvnMC6DnbGnNka0w-7ODusphflupH5K1A025-CDs3OYIp08HYNLk03JPtE1RqT4uElYmJJ1NjpMtLez_UjeeTtk_PS6H5Pflxe_zq-qm9vv1-dnN5WT0M5V7TphRa-s0r1C1TGB3HstnBOdaIG3DXaC95p77psGtQYplK45cOXqvhPimHzZ627S9LBgns0YssNhsBGnJRsuGw01Z7wp6Ok_6P20pFh-V6hWQdu2NSsU31Oly5wTerNJYbTpyQAzO0PM3hBTxmxeDDHbUvT5VXrpRuzfSv44UACxB3JJxTWmv2__R_YZCtSXXg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Haznedar, Bulent</creator><creator>Arslan, Mustafa Turan</creator><creator>Kalinli, Adem</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0692-9921</orcidid></search><sort><creationdate>20210301</creationdate><title>Optimizing ANFIS using simulated annealing algorithm for classification of microarray gene expression cancer data</title><author>Haznedar, Bulent ; Arslan, Mustafa Turan ; Kalinli, Adem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-6cb3a3d5a57d5e5b03e2ff73cc3b391298eb32d72f2f88e771435762125c6db33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Bayesian analysis</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Cancer</topic><topic>Central nervous system</topic><topic>Classification</topic><topic>Clustering</topic><topic>Computer Applications</topic><topic>Datasets</topic><topic>Decision trees</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA chips</topic><topic>DNA microarrays</topic><topic>Endometrial cancer</topic><topic>Endometrium</topic><topic>Fuzzy logic</topic><topic>Gene expression</topic><topic>Genetic algorithms</topic><topic>Human Physiology</topic><topic>Imaging</topic><topic>Lung cancer</topic><topic>Original Article</topic><topic>Prostate cancer</topic><topic>Radiology</topic><topic>Simulated annealing</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haznedar, Bulent</creatorcontrib><creatorcontrib>Arslan, Mustafa Turan</creatorcontrib><creatorcontrib>Kalinli, Adem</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Medical &amp; biological engineering &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haznedar, Bulent</au><au>Arslan, Mustafa Turan</au><au>Kalinli, Adem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing ANFIS using simulated annealing algorithm for classification of microarray gene expression cancer data</atitle><jtitle>Medical &amp; biological engineering &amp; computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>59</volume><issue>3</issue><spage>497</spage><epage>509</epage><pages>497-509</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>In the medical field, successful classification of microarray gene expression data is of major importance for cancer diagnosis. However, due to the profusion of genes number, the performance of classifying DNA microarray gene expression data using statistical algorithms is often limited. Recently, there has been an important increase in the studies on the utilization of artificial intelligence methods, for the purpose of classifying large-scale data. In this context, a hybrid approach based on the adaptive neuro-fuzzy inference system (ANFIS), the fuzzy c-means clustering (FCM), and the simulated annealing (SA) algorithm is proposed in this study. The proposed method is applied to classify five different cancer datasets (i.e., lung cancer, central nervous system cancer, brain cancer, endometrial cancer, and prostate cancer). The backpropagation algorithm, hybrid algorithm, genetic algorithm, and the other statistical methods such as Bayesian network, support vector machine, and J48 decision tree are used to compare the proposed approach’s performance to other algorithms. The results show that the performance of training FCM-based ANFIS using SA algorithm for classifying all the cancer datasets becomes more successful with the average accuracy rate of 96.28% and the results of the other methods are also satisfactory. The proposed method gives more effective results than the others for classifying DNA microarray cancer gene expression data. Graphical abstract Basic structure of proposed method</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33543413</pmid><doi>10.1007/s11517-021-02331-z</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0692-9921</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0140-0118
ispartof Medical & biological engineering & computing, 2021-03, Vol.59 (3), p.497-509
issn 0140-0118
1741-0444
language eng
recordid cdi_proquest_miscellaneous_2487162028
source Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Adaptive systems
Algorithms
Artificial intelligence
Artificial neural networks
Back propagation
Bayesian analysis
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Cancer
Central nervous system
Classification
Clustering
Computer Applications
Datasets
Decision trees
Deoxyribonucleic acid
DNA
DNA chips
DNA microarrays
Endometrial cancer
Endometrium
Fuzzy logic
Gene expression
Genetic algorithms
Human Physiology
Imaging
Lung cancer
Original Article
Prostate cancer
Radiology
Simulated annealing
Statistical analysis
Statistical methods
Statistics
Support vector machines
title Optimizing ANFIS using simulated annealing algorithm for classification of microarray gene expression cancer data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20ANFIS%20using%20simulated%20annealing%20algorithm%20for%20classification%20of%20microarray%20gene%20expression%20cancer%20data&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Haznedar,%20Bulent&rft.date=2021-03-01&rft.volume=59&rft.issue=3&rft.spage=497&rft.epage=509&rft.pages=497-509&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-021-02331-z&rft_dat=%3Cproquest_cross%3E2487162028%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2495199960&rft_id=info:pmid/33543413&rfr_iscdi=true