Optimizing ANFIS using simulated annealing algorithm for classification of microarray gene expression cancer data
In the medical field, successful classification of microarray gene expression data is of major importance for cancer diagnosis. However, due to the profusion of genes number, the performance of classifying DNA microarray gene expression data using statistical algorithms is often limited. Recently, t...
Gespeichert in:
Veröffentlicht in: | Medical & biological engineering & computing 2021-03, Vol.59 (3), p.497-509 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 509 |
---|---|
container_issue | 3 |
container_start_page | 497 |
container_title | Medical & biological engineering & computing |
container_volume | 59 |
creator | Haznedar, Bulent Arslan, Mustafa Turan Kalinli, Adem |
description | In the medical field, successful classification of microarray gene expression data is of major importance for cancer diagnosis. However, due to the profusion of genes number, the performance of classifying DNA microarray gene expression data using statistical algorithms is often limited. Recently, there has been an important increase in the studies on the utilization of artificial intelligence methods, for the purpose of classifying large-scale data. In this context, a hybrid approach based on the adaptive neuro-fuzzy inference system (ANFIS), the fuzzy c-means clustering (FCM), and the simulated annealing (SA) algorithm is proposed in this study. The proposed method is applied to classify five different cancer datasets (i.e., lung cancer, central nervous system cancer, brain cancer, endometrial cancer, and prostate cancer). The backpropagation algorithm, hybrid algorithm, genetic algorithm, and the other statistical methods such as Bayesian network, support vector machine, and J48 decision tree are used to compare the proposed approach’s performance to other algorithms. The results show that the performance of training FCM-based ANFIS using SA algorithm for classifying all the cancer datasets becomes more successful with the average accuracy rate of 96.28% and the results of the other methods are also satisfactory. The proposed method gives more effective results than the others for classifying DNA microarray cancer gene expression data.
Graphical abstract
Basic structure of proposed method |
doi_str_mv | 10.1007/s11517-021-02331-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2487162028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487162028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-6cb3a3d5a57d5e5b03e2ff73cc3b391298eb32d72f2f88e771435762125c6db33</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhi1EVba0f4BDZYlLL2k9_oiTI0JQkFA5tD1bjjNejBJnsRMJ9tfjZSmVeujBssfzzGvPvIScAPsKjOlvGUCBrhiHsoSAantAVqBlCaWUh2TFQLKKATRH5EPO96yQisv35EgIJYUEsSIPt5s5jGEb4pqe_bi8_kmXvDvnMC6DnbGnNka0w-7ODusphflupH5K1A025-CDs3OYIp08HYNLk03JPtE1RqT4uElYmJJ1NjpMtLez_UjeeTtk_PS6H5Pflxe_zq-qm9vv1-dnN5WT0M5V7TphRa-s0r1C1TGB3HstnBOdaIG3DXaC95p77psGtQYplK45cOXqvhPimHzZ627S9LBgns0YssNhsBGnJRsuGw01Z7wp6Ok_6P20pFh-V6hWQdu2NSsU31Oly5wTerNJYbTpyQAzO0PM3hBTxmxeDDHbUvT5VXrpRuzfSv44UACxB3JJxTWmv2__R_YZCtSXXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495199960</pqid></control><display><type>article</type><title>Optimizing ANFIS using simulated annealing algorithm for classification of microarray gene expression cancer data</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Haznedar, Bulent ; Arslan, Mustafa Turan ; Kalinli, Adem</creator><creatorcontrib>Haznedar, Bulent ; Arslan, Mustafa Turan ; Kalinli, Adem</creatorcontrib><description>In the medical field, successful classification of microarray gene expression data is of major importance for cancer diagnosis. However, due to the profusion of genes number, the performance of classifying DNA microarray gene expression data using statistical algorithms is often limited. Recently, there has been an important increase in the studies on the utilization of artificial intelligence methods, for the purpose of classifying large-scale data. In this context, a hybrid approach based on the adaptive neuro-fuzzy inference system (ANFIS), the fuzzy c-means clustering (FCM), and the simulated annealing (SA) algorithm is proposed in this study. The proposed method is applied to classify five different cancer datasets (i.e., lung cancer, central nervous system cancer, brain cancer, endometrial cancer, and prostate cancer). The backpropagation algorithm, hybrid algorithm, genetic algorithm, and the other statistical methods such as Bayesian network, support vector machine, and J48 decision tree are used to compare the proposed approach’s performance to other algorithms. The results show that the performance of training FCM-based ANFIS using SA algorithm for classifying all the cancer datasets becomes more successful with the average accuracy rate of 96.28% and the results of the other methods are also satisfactory. The proposed method gives more effective results than the others for classifying DNA microarray cancer gene expression data.
Graphical abstract
Basic structure of proposed method</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-021-02331-z</identifier><identifier>PMID: 33543413</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive systems ; Algorithms ; Artificial intelligence ; Artificial neural networks ; Back propagation ; Bayesian analysis ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Cancer ; Central nervous system ; Classification ; Clustering ; Computer Applications ; Datasets ; Decision trees ; Deoxyribonucleic acid ; DNA ; DNA chips ; DNA microarrays ; Endometrial cancer ; Endometrium ; Fuzzy logic ; Gene expression ; Genetic algorithms ; Human Physiology ; Imaging ; Lung cancer ; Original Article ; Prostate cancer ; Radiology ; Simulated annealing ; Statistical analysis ; Statistical methods ; Statistics ; Support vector machines</subject><ispartof>Medical & biological engineering & computing, 2021-03, Vol.59 (3), p.497-509</ispartof><rights>International Federation for Medical and Biological Engineering 2021</rights><rights>International Federation for Medical and Biological Engineering 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-6cb3a3d5a57d5e5b03e2ff73cc3b391298eb32d72f2f88e771435762125c6db33</citedby><cites>FETCH-LOGICAL-c419t-6cb3a3d5a57d5e5b03e2ff73cc3b391298eb32d72f2f88e771435762125c6db33</cites><orcidid>0000-0003-0692-9921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-021-02331-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-021-02331-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33543413$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haznedar, Bulent</creatorcontrib><creatorcontrib>Arslan, Mustafa Turan</creatorcontrib><creatorcontrib>Kalinli, Adem</creatorcontrib><title>Optimizing ANFIS using simulated annealing algorithm for classification of microarray gene expression cancer data</title><title>Medical & biological engineering & computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>In the medical field, successful classification of microarray gene expression data is of major importance for cancer diagnosis. However, due to the profusion of genes number, the performance of classifying DNA microarray gene expression data using statistical algorithms is often limited. Recently, there has been an important increase in the studies on the utilization of artificial intelligence methods, for the purpose of classifying large-scale data. In this context, a hybrid approach based on the adaptive neuro-fuzzy inference system (ANFIS), the fuzzy c-means clustering (FCM), and the simulated annealing (SA) algorithm is proposed in this study. The proposed method is applied to classify five different cancer datasets (i.e., lung cancer, central nervous system cancer, brain cancer, endometrial cancer, and prostate cancer). The backpropagation algorithm, hybrid algorithm, genetic algorithm, and the other statistical methods such as Bayesian network, support vector machine, and J48 decision tree are used to compare the proposed approach’s performance to other algorithms. The results show that the performance of training FCM-based ANFIS using SA algorithm for classifying all the cancer datasets becomes more successful with the average accuracy rate of 96.28% and the results of the other methods are also satisfactory. The proposed method gives more effective results than the others for classifying DNA microarray cancer gene expression data.
Graphical abstract
Basic structure of proposed method</description><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Bayesian analysis</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Cancer</subject><subject>Central nervous system</subject><subject>Classification</subject><subject>Clustering</subject><subject>Computer Applications</subject><subject>Datasets</subject><subject>Decision trees</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA chips</subject><subject>DNA microarrays</subject><subject>Endometrial cancer</subject><subject>Endometrium</subject><subject>Fuzzy logic</subject><subject>Gene expression</subject><subject>Genetic algorithms</subject><subject>Human Physiology</subject><subject>Imaging</subject><subject>Lung cancer</subject><subject>Original Article</subject><subject>Prostate cancer</subject><subject>Radiology</subject><subject>Simulated annealing</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Support vector machines</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1P3DAQhi1EVba0f4BDZYlLL2k9_oiTI0JQkFA5tD1bjjNejBJnsRMJ9tfjZSmVeujBssfzzGvPvIScAPsKjOlvGUCBrhiHsoSAantAVqBlCaWUh2TFQLKKATRH5EPO96yQisv35EgIJYUEsSIPt5s5jGEb4pqe_bi8_kmXvDvnMC6DnbGnNka0w-7ODusphflupH5K1A025-CDs3OYIp08HYNLk03JPtE1RqT4uElYmJJ1NjpMtLez_UjeeTtk_PS6H5Pflxe_zq-qm9vv1-dnN5WT0M5V7TphRa-s0r1C1TGB3HstnBOdaIG3DXaC95p77psGtQYplK45cOXqvhPimHzZ627S9LBgns0YssNhsBGnJRsuGw01Z7wp6Ok_6P20pFh-V6hWQdu2NSsU31Oly5wTerNJYbTpyQAzO0PM3hBTxmxeDDHbUvT5VXrpRuzfSv44UACxB3JJxTWmv2__R_YZCtSXXg</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Haznedar, Bulent</creator><creator>Arslan, Mustafa Turan</creator><creator>Kalinli, Adem</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0692-9921</orcidid></search><sort><creationdate>20210301</creationdate><title>Optimizing ANFIS using simulated annealing algorithm for classification of microarray gene expression cancer data</title><author>Haznedar, Bulent ; Arslan, Mustafa Turan ; Kalinli, Adem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-6cb3a3d5a57d5e5b03e2ff73cc3b391298eb32d72f2f88e771435762125c6db33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Bayesian analysis</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Cancer</topic><topic>Central nervous system</topic><topic>Classification</topic><topic>Clustering</topic><topic>Computer Applications</topic><topic>Datasets</topic><topic>Decision trees</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA chips</topic><topic>DNA microarrays</topic><topic>Endometrial cancer</topic><topic>Endometrium</topic><topic>Fuzzy logic</topic><topic>Gene expression</topic><topic>Genetic algorithms</topic><topic>Human Physiology</topic><topic>Imaging</topic><topic>Lung cancer</topic><topic>Original Article</topic><topic>Prostate cancer</topic><topic>Radiology</topic><topic>Simulated annealing</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haznedar, Bulent</creatorcontrib><creatorcontrib>Arslan, Mustafa Turan</creatorcontrib><creatorcontrib>Kalinli, Adem</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Medical & biological engineering & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haznedar, Bulent</au><au>Arslan, Mustafa Turan</au><au>Kalinli, Adem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing ANFIS using simulated annealing algorithm for classification of microarray gene expression cancer data</atitle><jtitle>Medical & biological engineering & computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>59</volume><issue>3</issue><spage>497</spage><epage>509</epage><pages>497-509</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>In the medical field, successful classification of microarray gene expression data is of major importance for cancer diagnosis. However, due to the profusion of genes number, the performance of classifying DNA microarray gene expression data using statistical algorithms is often limited. Recently, there has been an important increase in the studies on the utilization of artificial intelligence methods, for the purpose of classifying large-scale data. In this context, a hybrid approach based on the adaptive neuro-fuzzy inference system (ANFIS), the fuzzy c-means clustering (FCM), and the simulated annealing (SA) algorithm is proposed in this study. The proposed method is applied to classify five different cancer datasets (i.e., lung cancer, central nervous system cancer, brain cancer, endometrial cancer, and prostate cancer). The backpropagation algorithm, hybrid algorithm, genetic algorithm, and the other statistical methods such as Bayesian network, support vector machine, and J48 decision tree are used to compare the proposed approach’s performance to other algorithms. The results show that the performance of training FCM-based ANFIS using SA algorithm for classifying all the cancer datasets becomes more successful with the average accuracy rate of 96.28% and the results of the other methods are also satisfactory. The proposed method gives more effective results than the others for classifying DNA microarray cancer gene expression data.
Graphical abstract
Basic structure of proposed method</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33543413</pmid><doi>10.1007/s11517-021-02331-z</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0692-9921</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-0118 |
ispartof | Medical & biological engineering & computing, 2021-03, Vol.59 (3), p.497-509 |
issn | 0140-0118 1741-0444 |
language | eng |
recordid | cdi_proquest_miscellaneous_2487162028 |
source | Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Adaptive systems Algorithms Artificial intelligence Artificial neural networks Back propagation Bayesian analysis Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Cancer Central nervous system Classification Clustering Computer Applications Datasets Decision trees Deoxyribonucleic acid DNA DNA chips DNA microarrays Endometrial cancer Endometrium Fuzzy logic Gene expression Genetic algorithms Human Physiology Imaging Lung cancer Original Article Prostate cancer Radiology Simulated annealing Statistical analysis Statistical methods Statistics Support vector machines |
title | Optimizing ANFIS using simulated annealing algorithm for classification of microarray gene expression cancer data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20ANFIS%20using%20simulated%20annealing%20algorithm%20for%20classification%20of%20microarray%20gene%20expression%20cancer%20data&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Haznedar,%20Bulent&rft.date=2021-03-01&rft.volume=59&rft.issue=3&rft.spage=497&rft.epage=509&rft.pages=497-509&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-021-02331-z&rft_dat=%3Cproquest_cross%3E2487162028%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2495199960&rft_id=info:pmid/33543413&rfr_iscdi=true |