Antiferromagnetic half-skyrmions and bimerons at room temperature

In the quest for post-CMOS (complementary metal–oxide–semiconductor) technologies, driven by the need for improved efficiency and performance, topologically protected ferromagnetic ‘whirls’ such as skyrmions 1 – 8 and their anti-particles have shown great promise as solitonic information carriers in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2021-02, Vol.590 (7844), p.74-79
Hauptverfasser: Jani, Hariom, Lin, Jheng-Cyuan, Chen, Jiahao, Harrison, Jack, Maccherozzi, Francesco, Schad, Jonathon, Prakash, Saurav, Eom, Chang-Beom, Ariando, A., Venkatesan, T., Radaelli, Paolo G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 79
container_issue 7844
container_start_page 74
container_title Nature (London)
container_volume 590
creator Jani, Hariom
Lin, Jheng-Cyuan
Chen, Jiahao
Harrison, Jack
Maccherozzi, Francesco
Schad, Jonathon
Prakash, Saurav
Eom, Chang-Beom
Ariando, A.
Venkatesan, T.
Radaelli, Paolo G.
description In the quest for post-CMOS (complementary metal–oxide–semiconductor) technologies, driven by the need for improved efficiency and performance, topologically protected ferromagnetic ‘whirls’ such as skyrmions 1 – 8 and their anti-particles have shown great promise as solitonic information carriers in racetrack memory-in-logic or neuromorphic devices 1 , 9 – 11 . However, the presence of dipolar fields in ferromagnets, which restricts the formation of ultrasmall topological textures 3 , 6 , 8 , 9 , 12 , and the deleterious skyrmion Hall effect, when skyrmions are driven by spin torques 9 , 10 , 12 , have thus far inhibited their practical implementation. Antiferromagnetic analogues, which are predicted to demonstrate relativistic dynamics, fast deflection-free motion and size scaling, have recently become the subject of intense focus 9 , 13 – 19 , but they have yet to be experimentally demonstrated in natural antiferromagnetic systems. Here we realize a family of topological antiferromagnetic spin textures in α-Fe 2 O 3 —an Earth-abundant oxide insulator—capped with a platinum overlayer. By exploiting a first-order analogue of the Kibble–Zurek mechanism 20 , 21 , we stabilize exotic merons and antimerons (half-skyrmions) 8 and their pairs (bimerons) 16 , 22 , which can be erased by magnetic fields and regenerated by temperature cycling. These structures have characteristic sizes of the order of 100 nanometres and can be chemically controlled via precise tuning of the exchange and anisotropy, with pathways through which further scaling may be achieved. Driven by current-based spin torques from the heavy-metal overlayer, some of these antiferromagnetic textures could emerge as prime candidates for low-energy antiferromagnetic spintronics at room temperature 1 , 9 – 11 , 23 . A family of topological antiferromagnetic spin textures is realized at room temperature in α-Fe 2 O 3 , and their reversible and field-free stabilization using a Kibble–Zurek-like temperature cycling is demonstrated.
doi_str_mv 10.1038/s41586-021-03219-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2486466974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486869552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-6537c9580206b60c81691ee3241f490b11da57400d4daf20941f77dbc1cf789e3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EoqXwBxhQJBYWw_O3PVYVXxISC8yWkzglpU6KnQz994SmgMTAZNk-976ng9A5gWsCTN8kToSWGCjBwCgxWB6gKeFKYi61OkRTAKoxaCYn6CSlFQAIovgxmjAmmJSCTtF83nR15WNsg1s2vquL7M2tK5zetzHUbZMy15RZXgcfd5cui20bss6HjY-u66M_RUeVWyd_tj9n6PXu9mXxgJ-e7x8X8ydccE46LAVThREaKMhcQqGJNMR7RjmpuIGckNIJxQFKXrqKghnelSrzghSV0sazGboaezex_eh96myoU-HXa9f4tk-Wci25lEbxAb38g67aPjbDdjtKSyMEHSg6UkVsU4q-sptYBxe3loD9EmxHwXYQbHeCrRxCF_vqPg--_Il8Gx0ANgJp-GqWPv7O_qf2E902hMc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486869552</pqid></control><display><type>article</type><title>Antiferromagnetic half-skyrmions and bimerons at room temperature</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Jani, Hariom ; Lin, Jheng-Cyuan ; Chen, Jiahao ; Harrison, Jack ; Maccherozzi, Francesco ; Schad, Jonathon ; Prakash, Saurav ; Eom, Chang-Beom ; Ariando, A. ; Venkatesan, T. ; Radaelli, Paolo G.</creator><creatorcontrib>Jani, Hariom ; Lin, Jheng-Cyuan ; Chen, Jiahao ; Harrison, Jack ; Maccherozzi, Francesco ; Schad, Jonathon ; Prakash, Saurav ; Eom, Chang-Beom ; Ariando, A. ; Venkatesan, T. ; Radaelli, Paolo G.</creatorcontrib><description>In the quest for post-CMOS (complementary metal–oxide–semiconductor) technologies, driven by the need for improved efficiency and performance, topologically protected ferromagnetic ‘whirls’ such as skyrmions 1 – 8 and their anti-particles have shown great promise as solitonic information carriers in racetrack memory-in-logic or neuromorphic devices 1 , 9 – 11 . However, the presence of dipolar fields in ferromagnets, which restricts the formation of ultrasmall topological textures 3 , 6 , 8 , 9 , 12 , and the deleterious skyrmion Hall effect, when skyrmions are driven by spin torques 9 , 10 , 12 , have thus far inhibited their practical implementation. Antiferromagnetic analogues, which are predicted to demonstrate relativistic dynamics, fast deflection-free motion and size scaling, have recently become the subject of intense focus 9 , 13 – 19 , but they have yet to be experimentally demonstrated in natural antiferromagnetic systems. Here we realize a family of topological antiferromagnetic spin textures in α-Fe 2 O 3 —an Earth-abundant oxide insulator—capped with a platinum overlayer. By exploiting a first-order analogue of the Kibble–Zurek mechanism 20 , 21 , we stabilize exotic merons and antimerons (half-skyrmions) 8 and their pairs (bimerons) 16 , 22 , which can be erased by magnetic fields and regenerated by temperature cycling. These structures have characteristic sizes of the order of 100 nanometres and can be chemically controlled via precise tuning of the exchange and anisotropy, with pathways through which further scaling may be achieved. Driven by current-based spin torques from the heavy-metal overlayer, some of these antiferromagnetic textures could emerge as prime candidates for low-energy antiferromagnetic spintronics at room temperature 1 , 9 – 11 , 23 . A family of topological antiferromagnetic spin textures is realized at room temperature in α-Fe 2 O 3 , and their reversible and field-free stabilization using a Kibble–Zurek-like temperature cycling is demonstrated.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-03219-6</identifier><identifier>PMID: 33536652</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/544 ; 639/301/119/997 ; 639/766/119/1001 ; 639/766/119/2793 ; 639/766/119/2795 ; Anisotropy ; Antiferromagnetism ; Antiparticles ; CMOS ; Ferric oxide ; Ferromagnetism ; Hall effect ; Heavy metals ; Humanities and Social Sciences ; Hypothetical particles ; Magnetic fields ; multidisciplinary ; Particle theory ; Platinum ; Room temperature ; Science ; Science (multidisciplinary) ; Spintronics ; Temperature</subject><ispartof>Nature (London), 2021-02, Vol.590 (7844), p.74-79</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>Copyright Nature Publishing Group Feb 4, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-6537c9580206b60c81691ee3241f490b11da57400d4daf20941f77dbc1cf789e3</citedby><cites>FETCH-LOGICAL-c441t-6537c9580206b60c81691ee3241f490b11da57400d4daf20941f77dbc1cf789e3</cites><orcidid>0000-0002-8510-3919 ; 0000-0003-4787-1869 ; 0000-0002-6717-035X ; 0000-0001-9683-4584 ; 0000-0003-4902-5180 ; 0000-0002-1334-5767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-021-03219-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-021-03219-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33536652$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jani, Hariom</creatorcontrib><creatorcontrib>Lin, Jheng-Cyuan</creatorcontrib><creatorcontrib>Chen, Jiahao</creatorcontrib><creatorcontrib>Harrison, Jack</creatorcontrib><creatorcontrib>Maccherozzi, Francesco</creatorcontrib><creatorcontrib>Schad, Jonathon</creatorcontrib><creatorcontrib>Prakash, Saurav</creatorcontrib><creatorcontrib>Eom, Chang-Beom</creatorcontrib><creatorcontrib>Ariando, A.</creatorcontrib><creatorcontrib>Venkatesan, T.</creatorcontrib><creatorcontrib>Radaelli, Paolo G.</creatorcontrib><title>Antiferromagnetic half-skyrmions and bimerons at room temperature</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>In the quest for post-CMOS (complementary metal–oxide–semiconductor) technologies, driven by the need for improved efficiency and performance, topologically protected ferromagnetic ‘whirls’ such as skyrmions 1 – 8 and their anti-particles have shown great promise as solitonic information carriers in racetrack memory-in-logic or neuromorphic devices 1 , 9 – 11 . However, the presence of dipolar fields in ferromagnets, which restricts the formation of ultrasmall topological textures 3 , 6 , 8 , 9 , 12 , and the deleterious skyrmion Hall effect, when skyrmions are driven by spin torques 9 , 10 , 12 , have thus far inhibited their practical implementation. Antiferromagnetic analogues, which are predicted to demonstrate relativistic dynamics, fast deflection-free motion and size scaling, have recently become the subject of intense focus 9 , 13 – 19 , but they have yet to be experimentally demonstrated in natural antiferromagnetic systems. Here we realize a family of topological antiferromagnetic spin textures in α-Fe 2 O 3 —an Earth-abundant oxide insulator—capped with a platinum overlayer. By exploiting a first-order analogue of the Kibble–Zurek mechanism 20 , 21 , we stabilize exotic merons and antimerons (half-skyrmions) 8 and their pairs (bimerons) 16 , 22 , which can be erased by magnetic fields and regenerated by temperature cycling. These structures have characteristic sizes of the order of 100 nanometres and can be chemically controlled via precise tuning of the exchange and anisotropy, with pathways through which further scaling may be achieved. Driven by current-based spin torques from the heavy-metal overlayer, some of these antiferromagnetic textures could emerge as prime candidates for low-energy antiferromagnetic spintronics at room temperature 1 , 9 – 11 , 23 . A family of topological antiferromagnetic spin textures is realized at room temperature in α-Fe 2 O 3 , and their reversible and field-free stabilization using a Kibble–Zurek-like temperature cycling is demonstrated.</description><subject>639/301/119/544</subject><subject>639/301/119/997</subject><subject>639/766/119/1001</subject><subject>639/766/119/2793</subject><subject>639/766/119/2795</subject><subject>Anisotropy</subject><subject>Antiferromagnetism</subject><subject>Antiparticles</subject><subject>CMOS</subject><subject>Ferric oxide</subject><subject>Ferromagnetism</subject><subject>Hall effect</subject><subject>Heavy metals</subject><subject>Humanities and Social Sciences</subject><subject>Hypothetical particles</subject><subject>Magnetic fields</subject><subject>multidisciplinary</subject><subject>Particle theory</subject><subject>Platinum</subject><subject>Room temperature</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spintronics</subject><subject>Temperature</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kD1PwzAURS0EoqXwBxhQJBYWw_O3PVYVXxISC8yWkzglpU6KnQz994SmgMTAZNk-976ng9A5gWsCTN8kToSWGCjBwCgxWB6gKeFKYi61OkRTAKoxaCYn6CSlFQAIovgxmjAmmJSCTtF83nR15WNsg1s2vquL7M2tK5zetzHUbZMy15RZXgcfd5cui20bss6HjY-u66M_RUeVWyd_tj9n6PXu9mXxgJ-e7x8X8ydccE46LAVThREaKMhcQqGJNMR7RjmpuIGckNIJxQFKXrqKghnelSrzghSV0sazGboaezex_eh96myoU-HXa9f4tk-Wci25lEbxAb38g67aPjbDdjtKSyMEHSg6UkVsU4q-sptYBxe3loD9EmxHwXYQbHeCrRxCF_vqPg--_Il8Gx0ANgJp-GqWPv7O_qf2E902hMc</recordid><startdate>20210204</startdate><enddate>20210204</enddate><creator>Jani, Hariom</creator><creator>Lin, Jheng-Cyuan</creator><creator>Chen, Jiahao</creator><creator>Harrison, Jack</creator><creator>Maccherozzi, Francesco</creator><creator>Schad, Jonathon</creator><creator>Prakash, Saurav</creator><creator>Eom, Chang-Beom</creator><creator>Ariando, A.</creator><creator>Venkatesan, T.</creator><creator>Radaelli, Paolo G.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8510-3919</orcidid><orcidid>https://orcid.org/0000-0003-4787-1869</orcidid><orcidid>https://orcid.org/0000-0002-6717-035X</orcidid><orcidid>https://orcid.org/0000-0001-9683-4584</orcidid><orcidid>https://orcid.org/0000-0003-4902-5180</orcidid><orcidid>https://orcid.org/0000-0002-1334-5767</orcidid></search><sort><creationdate>20210204</creationdate><title>Antiferromagnetic half-skyrmions and bimerons at room temperature</title><author>Jani, Hariom ; Lin, Jheng-Cyuan ; Chen, Jiahao ; Harrison, Jack ; Maccherozzi, Francesco ; Schad, Jonathon ; Prakash, Saurav ; Eom, Chang-Beom ; Ariando, A. ; Venkatesan, T. ; Radaelli, Paolo G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-6537c9580206b60c81691ee3241f490b11da57400d4daf20941f77dbc1cf789e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301/119/544</topic><topic>639/301/119/997</topic><topic>639/766/119/1001</topic><topic>639/766/119/2793</topic><topic>639/766/119/2795</topic><topic>Anisotropy</topic><topic>Antiferromagnetism</topic><topic>Antiparticles</topic><topic>CMOS</topic><topic>Ferric oxide</topic><topic>Ferromagnetism</topic><topic>Hall effect</topic><topic>Heavy metals</topic><topic>Humanities and Social Sciences</topic><topic>Hypothetical particles</topic><topic>Magnetic fields</topic><topic>multidisciplinary</topic><topic>Particle theory</topic><topic>Platinum</topic><topic>Room temperature</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spintronics</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jani, Hariom</creatorcontrib><creatorcontrib>Lin, Jheng-Cyuan</creatorcontrib><creatorcontrib>Chen, Jiahao</creatorcontrib><creatorcontrib>Harrison, Jack</creatorcontrib><creatorcontrib>Maccherozzi, Francesco</creatorcontrib><creatorcontrib>Schad, Jonathon</creatorcontrib><creatorcontrib>Prakash, Saurav</creatorcontrib><creatorcontrib>Eom, Chang-Beom</creatorcontrib><creatorcontrib>Ariando, A.</creatorcontrib><creatorcontrib>Venkatesan, T.</creatorcontrib><creatorcontrib>Radaelli, Paolo G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jani, Hariom</au><au>Lin, Jheng-Cyuan</au><au>Chen, Jiahao</au><au>Harrison, Jack</au><au>Maccherozzi, Francesco</au><au>Schad, Jonathon</au><au>Prakash, Saurav</au><au>Eom, Chang-Beom</au><au>Ariando, A.</au><au>Venkatesan, T.</au><au>Radaelli, Paolo G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antiferromagnetic half-skyrmions and bimerons at room temperature</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-02-04</date><risdate>2021</risdate><volume>590</volume><issue>7844</issue><spage>74</spage><epage>79</epage><pages>74-79</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>In the quest for post-CMOS (complementary metal–oxide–semiconductor) technologies, driven by the need for improved efficiency and performance, topologically protected ferromagnetic ‘whirls’ such as skyrmions 1 – 8 and their anti-particles have shown great promise as solitonic information carriers in racetrack memory-in-logic or neuromorphic devices 1 , 9 – 11 . However, the presence of dipolar fields in ferromagnets, which restricts the formation of ultrasmall topological textures 3 , 6 , 8 , 9 , 12 , and the deleterious skyrmion Hall effect, when skyrmions are driven by spin torques 9 , 10 , 12 , have thus far inhibited their practical implementation. Antiferromagnetic analogues, which are predicted to demonstrate relativistic dynamics, fast deflection-free motion and size scaling, have recently become the subject of intense focus 9 , 13 – 19 , but they have yet to be experimentally demonstrated in natural antiferromagnetic systems. Here we realize a family of topological antiferromagnetic spin textures in α-Fe 2 O 3 —an Earth-abundant oxide insulator—capped with a platinum overlayer. By exploiting a first-order analogue of the Kibble–Zurek mechanism 20 , 21 , we stabilize exotic merons and antimerons (half-skyrmions) 8 and their pairs (bimerons) 16 , 22 , which can be erased by magnetic fields and regenerated by temperature cycling. These structures have characteristic sizes of the order of 100 nanometres and can be chemically controlled via precise tuning of the exchange and anisotropy, with pathways through which further scaling may be achieved. Driven by current-based spin torques from the heavy-metal overlayer, some of these antiferromagnetic textures could emerge as prime candidates for low-energy antiferromagnetic spintronics at room temperature 1 , 9 – 11 , 23 . A family of topological antiferromagnetic spin textures is realized at room temperature in α-Fe 2 O 3 , and their reversible and field-free stabilization using a Kibble–Zurek-like temperature cycling is demonstrated.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33536652</pmid><doi>10.1038/s41586-021-03219-6</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8510-3919</orcidid><orcidid>https://orcid.org/0000-0003-4787-1869</orcidid><orcidid>https://orcid.org/0000-0002-6717-035X</orcidid><orcidid>https://orcid.org/0000-0001-9683-4584</orcidid><orcidid>https://orcid.org/0000-0003-4902-5180</orcidid><orcidid>https://orcid.org/0000-0002-1334-5767</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2021-02, Vol.590 (7844), p.74-79
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2486466974
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 639/301/119/544
639/301/119/997
639/766/119/1001
639/766/119/2793
639/766/119/2795
Anisotropy
Antiferromagnetism
Antiparticles
CMOS
Ferric oxide
Ferromagnetism
Hall effect
Heavy metals
Humanities and Social Sciences
Hypothetical particles
Magnetic fields
multidisciplinary
Particle theory
Platinum
Room temperature
Science
Science (multidisciplinary)
Spintronics
Temperature
title Antiferromagnetic half-skyrmions and bimerons at room temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A15%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antiferromagnetic%20half-skyrmions%20and%20bimerons%20at%20room%20temperature&rft.jtitle=Nature%20(London)&rft.au=Jani,%20Hariom&rft.date=2021-02-04&rft.volume=590&rft.issue=7844&rft.spage=74&rft.epage=79&rft.pages=74-79&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-03219-6&rft_dat=%3Cproquest_cross%3E2486869552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486869552&rft_id=info:pmid/33536652&rfr_iscdi=true