Antiferromagnetic half-skyrmions and bimerons at room temperature
In the quest for post-CMOS (complementary metal–oxide–semiconductor) technologies, driven by the need for improved efficiency and performance, topologically protected ferromagnetic ‘whirls’ such as skyrmions 1 – 8 and their anti-particles have shown great promise as solitonic information carriers in...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2021-02, Vol.590 (7844), p.74-79 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 79 |
---|---|
container_issue | 7844 |
container_start_page | 74 |
container_title | Nature (London) |
container_volume | 590 |
creator | Jani, Hariom Lin, Jheng-Cyuan Chen, Jiahao Harrison, Jack Maccherozzi, Francesco Schad, Jonathon Prakash, Saurav Eom, Chang-Beom Ariando, A. Venkatesan, T. Radaelli, Paolo G. |
description | In the quest for post-CMOS (complementary metal–oxide–semiconductor) technologies, driven by the need for improved efficiency and performance, topologically protected ferromagnetic ‘whirls’ such as skyrmions
1
–
8
and their anti-particles have shown great promise as solitonic information carriers in racetrack memory-in-logic or neuromorphic devices
1
,
9
–
11
. However, the presence of dipolar fields in ferromagnets, which restricts the formation of ultrasmall topological textures
3
,
6
,
8
,
9
,
12
, and the deleterious skyrmion Hall effect, when skyrmions are driven by spin torques
9
,
10
,
12
, have thus far inhibited their practical implementation. Antiferromagnetic analogues, which are predicted to demonstrate relativistic dynamics, fast deflection-free motion and size scaling, have recently become the subject of intense focus
9
,
13
–
19
, but they have yet to be experimentally demonstrated in natural antiferromagnetic systems. Here we realize a family of topological antiferromagnetic spin textures in α-Fe
2
O
3
—an Earth-abundant oxide insulator—capped with a platinum overlayer. By exploiting a first-order analogue of the Kibble–Zurek mechanism
20
,
21
, we stabilize exotic merons and antimerons (half-skyrmions)
8
and their pairs (bimerons)
16
,
22
, which can be erased by magnetic fields and regenerated by temperature cycling. These structures have characteristic sizes of the order of 100 nanometres and can be chemically controlled via precise tuning of the exchange and anisotropy, with pathways through which further scaling may be achieved. Driven by current-based spin torques from the heavy-metal overlayer, some of these antiferromagnetic textures could emerge as prime candidates for low-energy antiferromagnetic spintronics at room temperature
1
,
9
–
11
,
23
.
A family of topological antiferromagnetic spin textures is realized at room temperature in α-Fe
2
O
3
, and their reversible and field-free stabilization using a Kibble–Zurek-like temperature cycling is demonstrated. |
doi_str_mv | 10.1038/s41586-021-03219-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2486466974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486869552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-6537c9580206b60c81691ee3241f490b11da57400d4daf20941f77dbc1cf789e3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EoqXwBxhQJBYWw_O3PVYVXxISC8yWkzglpU6KnQz994SmgMTAZNk-976ng9A5gWsCTN8kToSWGCjBwCgxWB6gKeFKYi61OkRTAKoxaCYn6CSlFQAIovgxmjAmmJSCTtF83nR15WNsg1s2vquL7M2tK5zetzHUbZMy15RZXgcfd5cui20bss6HjY-u66M_RUeVWyd_tj9n6PXu9mXxgJ-e7x8X8ydccE46LAVThREaKMhcQqGJNMR7RjmpuIGckNIJxQFKXrqKghnelSrzghSV0sazGboaezex_eh96myoU-HXa9f4tk-Wci25lEbxAb38g67aPjbDdjtKSyMEHSg6UkVsU4q-sptYBxe3loD9EmxHwXYQbHeCrRxCF_vqPg--_Il8Gx0ANgJp-GqWPv7O_qf2E902hMc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486869552</pqid></control><display><type>article</type><title>Antiferromagnetic half-skyrmions and bimerons at room temperature</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Jani, Hariom ; Lin, Jheng-Cyuan ; Chen, Jiahao ; Harrison, Jack ; Maccherozzi, Francesco ; Schad, Jonathon ; Prakash, Saurav ; Eom, Chang-Beom ; Ariando, A. ; Venkatesan, T. ; Radaelli, Paolo G.</creator><creatorcontrib>Jani, Hariom ; Lin, Jheng-Cyuan ; Chen, Jiahao ; Harrison, Jack ; Maccherozzi, Francesco ; Schad, Jonathon ; Prakash, Saurav ; Eom, Chang-Beom ; Ariando, A. ; Venkatesan, T. ; Radaelli, Paolo G.</creatorcontrib><description>In the quest for post-CMOS (complementary metal–oxide–semiconductor) technologies, driven by the need for improved efficiency and performance, topologically protected ferromagnetic ‘whirls’ such as skyrmions
1
–
8
and their anti-particles have shown great promise as solitonic information carriers in racetrack memory-in-logic or neuromorphic devices
1
,
9
–
11
. However, the presence of dipolar fields in ferromagnets, which restricts the formation of ultrasmall topological textures
3
,
6
,
8
,
9
,
12
, and the deleterious skyrmion Hall effect, when skyrmions are driven by spin torques
9
,
10
,
12
, have thus far inhibited their practical implementation. Antiferromagnetic analogues, which are predicted to demonstrate relativistic dynamics, fast deflection-free motion and size scaling, have recently become the subject of intense focus
9
,
13
–
19
, but they have yet to be experimentally demonstrated in natural antiferromagnetic systems. Here we realize a family of topological antiferromagnetic spin textures in α-Fe
2
O
3
—an Earth-abundant oxide insulator—capped with a platinum overlayer. By exploiting a first-order analogue of the Kibble–Zurek mechanism
20
,
21
, we stabilize exotic merons and antimerons (half-skyrmions)
8
and their pairs (bimerons)
16
,
22
, which can be erased by magnetic fields and regenerated by temperature cycling. These structures have characteristic sizes of the order of 100 nanometres and can be chemically controlled via precise tuning of the exchange and anisotropy, with pathways through which further scaling may be achieved. Driven by current-based spin torques from the heavy-metal overlayer, some of these antiferromagnetic textures could emerge as prime candidates for low-energy antiferromagnetic spintronics at room temperature
1
,
9
–
11
,
23
.
A family of topological antiferromagnetic spin textures is realized at room temperature in α-Fe
2
O
3
, and their reversible and field-free stabilization using a Kibble–Zurek-like temperature cycling is demonstrated.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-03219-6</identifier><identifier>PMID: 33536652</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/544 ; 639/301/119/997 ; 639/766/119/1001 ; 639/766/119/2793 ; 639/766/119/2795 ; Anisotropy ; Antiferromagnetism ; Antiparticles ; CMOS ; Ferric oxide ; Ferromagnetism ; Hall effect ; Heavy metals ; Humanities and Social Sciences ; Hypothetical particles ; Magnetic fields ; multidisciplinary ; Particle theory ; Platinum ; Room temperature ; Science ; Science (multidisciplinary) ; Spintronics ; Temperature</subject><ispartof>Nature (London), 2021-02, Vol.590 (7844), p.74-79</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>Copyright Nature Publishing Group Feb 4, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-6537c9580206b60c81691ee3241f490b11da57400d4daf20941f77dbc1cf789e3</citedby><cites>FETCH-LOGICAL-c441t-6537c9580206b60c81691ee3241f490b11da57400d4daf20941f77dbc1cf789e3</cites><orcidid>0000-0002-8510-3919 ; 0000-0003-4787-1869 ; 0000-0002-6717-035X ; 0000-0001-9683-4584 ; 0000-0003-4902-5180 ; 0000-0002-1334-5767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-021-03219-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-021-03219-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33536652$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jani, Hariom</creatorcontrib><creatorcontrib>Lin, Jheng-Cyuan</creatorcontrib><creatorcontrib>Chen, Jiahao</creatorcontrib><creatorcontrib>Harrison, Jack</creatorcontrib><creatorcontrib>Maccherozzi, Francesco</creatorcontrib><creatorcontrib>Schad, Jonathon</creatorcontrib><creatorcontrib>Prakash, Saurav</creatorcontrib><creatorcontrib>Eom, Chang-Beom</creatorcontrib><creatorcontrib>Ariando, A.</creatorcontrib><creatorcontrib>Venkatesan, T.</creatorcontrib><creatorcontrib>Radaelli, Paolo G.</creatorcontrib><title>Antiferromagnetic half-skyrmions and bimerons at room temperature</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>In the quest for post-CMOS (complementary metal–oxide–semiconductor) technologies, driven by the need for improved efficiency and performance, topologically protected ferromagnetic ‘whirls’ such as skyrmions
1
–
8
and their anti-particles have shown great promise as solitonic information carriers in racetrack memory-in-logic or neuromorphic devices
1
,
9
–
11
. However, the presence of dipolar fields in ferromagnets, which restricts the formation of ultrasmall topological textures
3
,
6
,
8
,
9
,
12
, and the deleterious skyrmion Hall effect, when skyrmions are driven by spin torques
9
,
10
,
12
, have thus far inhibited their practical implementation. Antiferromagnetic analogues, which are predicted to demonstrate relativistic dynamics, fast deflection-free motion and size scaling, have recently become the subject of intense focus
9
,
13
–
19
, but they have yet to be experimentally demonstrated in natural antiferromagnetic systems. Here we realize a family of topological antiferromagnetic spin textures in α-Fe
2
O
3
—an Earth-abundant oxide insulator—capped with a platinum overlayer. By exploiting a first-order analogue of the Kibble–Zurek mechanism
20
,
21
, we stabilize exotic merons and antimerons (half-skyrmions)
8
and their pairs (bimerons)
16
,
22
, which can be erased by magnetic fields and regenerated by temperature cycling. These structures have characteristic sizes of the order of 100 nanometres and can be chemically controlled via precise tuning of the exchange and anisotropy, with pathways through which further scaling may be achieved. Driven by current-based spin torques from the heavy-metal overlayer, some of these antiferromagnetic textures could emerge as prime candidates for low-energy antiferromagnetic spintronics at room temperature
1
,
9
–
11
,
23
.
A family of topological antiferromagnetic spin textures is realized at room temperature in α-Fe
2
O
3
, and their reversible and field-free stabilization using a Kibble–Zurek-like temperature cycling is demonstrated.</description><subject>639/301/119/544</subject><subject>639/301/119/997</subject><subject>639/766/119/1001</subject><subject>639/766/119/2793</subject><subject>639/766/119/2795</subject><subject>Anisotropy</subject><subject>Antiferromagnetism</subject><subject>Antiparticles</subject><subject>CMOS</subject><subject>Ferric oxide</subject><subject>Ferromagnetism</subject><subject>Hall effect</subject><subject>Heavy metals</subject><subject>Humanities and Social Sciences</subject><subject>Hypothetical particles</subject><subject>Magnetic fields</subject><subject>multidisciplinary</subject><subject>Particle theory</subject><subject>Platinum</subject><subject>Room temperature</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spintronics</subject><subject>Temperature</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kD1PwzAURS0EoqXwBxhQJBYWw_O3PVYVXxISC8yWkzglpU6KnQz994SmgMTAZNk-976ng9A5gWsCTN8kToSWGCjBwCgxWB6gKeFKYi61OkRTAKoxaCYn6CSlFQAIovgxmjAmmJSCTtF83nR15WNsg1s2vquL7M2tK5zetzHUbZMy15RZXgcfd5cui20bss6HjY-u66M_RUeVWyd_tj9n6PXu9mXxgJ-e7x8X8ydccE46LAVThREaKMhcQqGJNMR7RjmpuIGckNIJxQFKXrqKghnelSrzghSV0sazGboaezex_eh96myoU-HXa9f4tk-Wci25lEbxAb38g67aPjbDdjtKSyMEHSg6UkVsU4q-sptYBxe3loD9EmxHwXYQbHeCrRxCF_vqPg--_Il8Gx0ANgJp-GqWPv7O_qf2E902hMc</recordid><startdate>20210204</startdate><enddate>20210204</enddate><creator>Jani, Hariom</creator><creator>Lin, Jheng-Cyuan</creator><creator>Chen, Jiahao</creator><creator>Harrison, Jack</creator><creator>Maccherozzi, Francesco</creator><creator>Schad, Jonathon</creator><creator>Prakash, Saurav</creator><creator>Eom, Chang-Beom</creator><creator>Ariando, A.</creator><creator>Venkatesan, T.</creator><creator>Radaelli, Paolo G.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8510-3919</orcidid><orcidid>https://orcid.org/0000-0003-4787-1869</orcidid><orcidid>https://orcid.org/0000-0002-6717-035X</orcidid><orcidid>https://orcid.org/0000-0001-9683-4584</orcidid><orcidid>https://orcid.org/0000-0003-4902-5180</orcidid><orcidid>https://orcid.org/0000-0002-1334-5767</orcidid></search><sort><creationdate>20210204</creationdate><title>Antiferromagnetic half-skyrmions and bimerons at room temperature</title><author>Jani, Hariom ; Lin, Jheng-Cyuan ; Chen, Jiahao ; Harrison, Jack ; Maccherozzi, Francesco ; Schad, Jonathon ; Prakash, Saurav ; Eom, Chang-Beom ; Ariando, A. ; Venkatesan, T. ; Radaelli, Paolo G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-6537c9580206b60c81691ee3241f490b11da57400d4daf20941f77dbc1cf789e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301/119/544</topic><topic>639/301/119/997</topic><topic>639/766/119/1001</topic><topic>639/766/119/2793</topic><topic>639/766/119/2795</topic><topic>Anisotropy</topic><topic>Antiferromagnetism</topic><topic>Antiparticles</topic><topic>CMOS</topic><topic>Ferric oxide</topic><topic>Ferromagnetism</topic><topic>Hall effect</topic><topic>Heavy metals</topic><topic>Humanities and Social Sciences</topic><topic>Hypothetical particles</topic><topic>Magnetic fields</topic><topic>multidisciplinary</topic><topic>Particle theory</topic><topic>Platinum</topic><topic>Room temperature</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spintronics</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jani, Hariom</creatorcontrib><creatorcontrib>Lin, Jheng-Cyuan</creatorcontrib><creatorcontrib>Chen, Jiahao</creatorcontrib><creatorcontrib>Harrison, Jack</creatorcontrib><creatorcontrib>Maccherozzi, Francesco</creatorcontrib><creatorcontrib>Schad, Jonathon</creatorcontrib><creatorcontrib>Prakash, Saurav</creatorcontrib><creatorcontrib>Eom, Chang-Beom</creatorcontrib><creatorcontrib>Ariando, A.</creatorcontrib><creatorcontrib>Venkatesan, T.</creatorcontrib><creatorcontrib>Radaelli, Paolo G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jani, Hariom</au><au>Lin, Jheng-Cyuan</au><au>Chen, Jiahao</au><au>Harrison, Jack</au><au>Maccherozzi, Francesco</au><au>Schad, Jonathon</au><au>Prakash, Saurav</au><au>Eom, Chang-Beom</au><au>Ariando, A.</au><au>Venkatesan, T.</au><au>Radaelli, Paolo G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antiferromagnetic half-skyrmions and bimerons at room temperature</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-02-04</date><risdate>2021</risdate><volume>590</volume><issue>7844</issue><spage>74</spage><epage>79</epage><pages>74-79</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>In the quest for post-CMOS (complementary metal–oxide–semiconductor) technologies, driven by the need for improved efficiency and performance, topologically protected ferromagnetic ‘whirls’ such as skyrmions
1
–
8
and their anti-particles have shown great promise as solitonic information carriers in racetrack memory-in-logic or neuromorphic devices
1
,
9
–
11
. However, the presence of dipolar fields in ferromagnets, which restricts the formation of ultrasmall topological textures
3
,
6
,
8
,
9
,
12
, and the deleterious skyrmion Hall effect, when skyrmions are driven by spin torques
9
,
10
,
12
, have thus far inhibited their practical implementation. Antiferromagnetic analogues, which are predicted to demonstrate relativistic dynamics, fast deflection-free motion and size scaling, have recently become the subject of intense focus
9
,
13
–
19
, but they have yet to be experimentally demonstrated in natural antiferromagnetic systems. Here we realize a family of topological antiferromagnetic spin textures in α-Fe
2
O
3
—an Earth-abundant oxide insulator—capped with a platinum overlayer. By exploiting a first-order analogue of the Kibble–Zurek mechanism
20
,
21
, we stabilize exotic merons and antimerons (half-skyrmions)
8
and their pairs (bimerons)
16
,
22
, which can be erased by magnetic fields and regenerated by temperature cycling. These structures have characteristic sizes of the order of 100 nanometres and can be chemically controlled via precise tuning of the exchange and anisotropy, with pathways through which further scaling may be achieved. Driven by current-based spin torques from the heavy-metal overlayer, some of these antiferromagnetic textures could emerge as prime candidates for low-energy antiferromagnetic spintronics at room temperature
1
,
9
–
11
,
23
.
A family of topological antiferromagnetic spin textures is realized at room temperature in α-Fe
2
O
3
, and their reversible and field-free stabilization using a Kibble–Zurek-like temperature cycling is demonstrated.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33536652</pmid><doi>10.1038/s41586-021-03219-6</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8510-3919</orcidid><orcidid>https://orcid.org/0000-0003-4787-1869</orcidid><orcidid>https://orcid.org/0000-0002-6717-035X</orcidid><orcidid>https://orcid.org/0000-0001-9683-4584</orcidid><orcidid>https://orcid.org/0000-0003-4902-5180</orcidid><orcidid>https://orcid.org/0000-0002-1334-5767</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2021-02, Vol.590 (7844), p.74-79 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2486466974 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 639/301/119/544 639/301/119/997 639/766/119/1001 639/766/119/2793 639/766/119/2795 Anisotropy Antiferromagnetism Antiparticles CMOS Ferric oxide Ferromagnetism Hall effect Heavy metals Humanities and Social Sciences Hypothetical particles Magnetic fields multidisciplinary Particle theory Platinum Room temperature Science Science (multidisciplinary) Spintronics Temperature |
title | Antiferromagnetic half-skyrmions and bimerons at room temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A15%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antiferromagnetic%20half-skyrmions%20and%20bimerons%20at%20room%20temperature&rft.jtitle=Nature%20(London)&rft.au=Jani,%20Hariom&rft.date=2021-02-04&rft.volume=590&rft.issue=7844&rft.spage=74&rft.epage=79&rft.pages=74-79&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-03219-6&rft_dat=%3Cproquest_cross%3E2486869552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486869552&rft_id=info:pmid/33536652&rfr_iscdi=true |