Side-Chain Engineering of Diketopyrrolopyrrole-Based Hole-Transport Materials to Realize High-Efficiency Perovskite Solar Cells

The design and synthesis of a stable and efficient hole-transport material (HTM) for perovskite solar cells (PSCs) are one of the most demanding research areas. At present, 2,2′,7,7′-tetrakis­[N,N-di­(4-methoxyphenyl)­amino]-9,9′-spirobifluorene (spiro-MeOTAD) is a commonly used HTM in the fabricati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-02, Vol.13 (6), p.7405-7415
Hauptverfasser: Sharma, Amit, Singh, Ranbir, Kini, Gururaj P, Hyeon Kim, Ji, Parashar, Mritunjaya, Kim, Min, Kumar, Manish, Kim, Jong Seung, Lee, Jae-Joon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7415
container_issue 6
container_start_page 7405
container_title ACS applied materials & interfaces
container_volume 13
creator Sharma, Amit
Singh, Ranbir
Kini, Gururaj P
Hyeon Kim, Ji
Parashar, Mritunjaya
Kim, Min
Kumar, Manish
Kim, Jong Seung
Lee, Jae-Joon
description The design and synthesis of a stable and efficient hole-transport material (HTM) for perovskite solar cells (PSCs) are one of the most demanding research areas. At present, 2,2′,7,7′-tetrakis­[N,N-di­(4-methoxyphenyl)­amino]-9,9′-spirobifluorene (spiro-MeOTAD) is a commonly used HTM in the fabrication of high-efficiency PSCs; however, its complicated synthesis, addition of a dopant in order to realize the best efficiency, and high cost are major challenges for the further development of PSCs. Herein, various diketopyrrolopyrrole-based small molecules were synthesized with the same backbone but distinct alkyl side-chain substituents (i.e., 2-ethylhexyl-, n-hexyl-, ((methoxyethoxy)­ethoxy)­ethyl-, and (2-((2-methoxyethoxy)­ethoxy)­ethyl)­acetamide, designated as D-1, D-2, D-3, and D-4, respectively) as HTMs. The variation in the alkyl chain has shown obvious effects on the optical and electrochemical properties as well as on the molecular packing and film-forming ability. Consequently, the power conversion efficiency (PCE) of the PSC under one sun illumination (100 mW cm–2) is shown to increase in the order of D-1 (8.32%) < D-2 (11.12%) < D-3 (12.05%) < D-4 (17.64%). Various characterization techniques reveal that the superior performance of D-4 can be ascribed to the well-aligned highest occupied molecular orbital energy level with the counter electrode, the more compact π–π stacking with a higher coherence length, and the excellent hole mobility of 1.09 × 10–3 cm2 V–1 s–1, thus providing excellent energetics for effective charge transport with minimal charge-carrier recombination. Furthermore, the addition of the dopant Li-TFSI in D-4 is shown to deliver a remarkable PCE of 20.19%, along with a short-circuit current density (J SC), open-circuit voltage (V OC), and fill factor (FF) of 22.94 mA cm–2, 1.14 V, and 73.87%, respectively, and superior stability compared to that of other HTMs. These results demonstrate the effectiveness of side-chain engineering for tailoring the properties of HTMs, thus offering new design tactics to fabricate for the synthesis of highly efficient and stable HTMs for PSCs.
doi_str_mv 10.1021/acsami.0c17583
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2486464152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486464152</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-9da83e9b397dcc756eed3efc4b359f7757d839aa65683ff1e7c4ec608af3ba483</originalsourceid><addsrcrecordid>eNp1kM1PAjEUxBujEUSvHk2PxmSxu23346iIYoLRCJ43j-4rFJYttosJXvzXXQJy8zRz-M3kvSHkMmTdkEXhLSgPS9NlKkxkyo9IO8yECNJIRscHL0SLnHk_ZyzmEZOnpMW55EKKrE1-RqbAoDcDU9F-NTUVojPVlFpNH8wCa7vaOGfLvWBwDx4LOtjasYPKr6yr6QvUTQpKT2tL3xFK8410YKazoK-1UQYrtaFv6OyXX5ga6ciW4GgPy9KfkxPdBPFirx3y8dgf9wbB8PXpuXc3DIBzVgdZASnHbMKzpFAqkTFiwVErMeEy00kikyLlGUAs45RrHWKiBKqYpaD5BETKO-R617ty9nONvs6XxqvmAqjQrn0eiTQWsQhl1KDdHaqc9d6hzlfOLMFt8pDl29Hz3ej5fvQmcLXvXk-WWBzwv5Ub4GYHNMF8bteual79r-0XDzmPLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486464152</pqid></control><display><type>article</type><title>Side-Chain Engineering of Diketopyrrolopyrrole-Based Hole-Transport Materials to Realize High-Efficiency Perovskite Solar Cells</title><source>American Chemical Society Journals</source><creator>Sharma, Amit ; Singh, Ranbir ; Kini, Gururaj P ; Hyeon Kim, Ji ; Parashar, Mritunjaya ; Kim, Min ; Kumar, Manish ; Kim, Jong Seung ; Lee, Jae-Joon</creator><creatorcontrib>Sharma, Amit ; Singh, Ranbir ; Kini, Gururaj P ; Hyeon Kim, Ji ; Parashar, Mritunjaya ; Kim, Min ; Kumar, Manish ; Kim, Jong Seung ; Lee, Jae-Joon</creatorcontrib><description>The design and synthesis of a stable and efficient hole-transport material (HTM) for perovskite solar cells (PSCs) are one of the most demanding research areas. At present, 2,2′,7,7′-tetrakis­[N,N-di­(4-methoxyphenyl)­amino]-9,9′-spirobifluorene (spiro-MeOTAD) is a commonly used HTM in the fabrication of high-efficiency PSCs; however, its complicated synthesis, addition of a dopant in order to realize the best efficiency, and high cost are major challenges for the further development of PSCs. Herein, various diketopyrrolopyrrole-based small molecules were synthesized with the same backbone but distinct alkyl side-chain substituents (i.e., 2-ethylhexyl-, n-hexyl-, ((methoxyethoxy)­ethoxy)­ethyl-, and (2-((2-methoxyethoxy)­ethoxy)­ethyl)­acetamide, designated as D-1, D-2, D-3, and D-4, respectively) as HTMs. The variation in the alkyl chain has shown obvious effects on the optical and electrochemical properties as well as on the molecular packing and film-forming ability. Consequently, the power conversion efficiency (PCE) of the PSC under one sun illumination (100 mW cm–2) is shown to increase in the order of D-1 (8.32%) &lt; D-2 (11.12%) &lt; D-3 (12.05%) &lt; D-4 (17.64%). Various characterization techniques reveal that the superior performance of D-4 can be ascribed to the well-aligned highest occupied molecular orbital energy level with the counter electrode, the more compact π–π stacking with a higher coherence length, and the excellent hole mobility of 1.09 × 10–3 cm2 V–1 s–1, thus providing excellent energetics for effective charge transport with minimal charge-carrier recombination. Furthermore, the addition of the dopant Li-TFSI in D-4 is shown to deliver a remarkable PCE of 20.19%, along with a short-circuit current density (J SC), open-circuit voltage (V OC), and fill factor (FF) of 22.94 mA cm–2, 1.14 V, and 73.87%, respectively, and superior stability compared to that of other HTMs. These results demonstrate the effectiveness of side-chain engineering for tailoring the properties of HTMs, thus offering new design tactics to fabricate for the synthesis of highly efficient and stable HTMs for PSCs.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c17583</identifier><identifier>PMID: 33534549</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Functional Inorganic Materials and Devices</subject><ispartof>ACS applied materials &amp; interfaces, 2021-02, Vol.13 (6), p.7405-7415</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-9da83e9b397dcc756eed3efc4b359f7757d839aa65683ff1e7c4ec608af3ba483</citedby><cites>FETCH-LOGICAL-a330t-9da83e9b397dcc756eed3efc4b359f7757d839aa65683ff1e7c4ec608af3ba483</cites><orcidid>0000-0003-3216-8986 ; 0000-0003-2815-8208 ; 0000-0001-9374-919X ; 0000-0003-3477-1172 ; 0000-0001-8966-0336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c17583$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c17583$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27077,27925,27926,56739,56789</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33534549$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Amit</creatorcontrib><creatorcontrib>Singh, Ranbir</creatorcontrib><creatorcontrib>Kini, Gururaj P</creatorcontrib><creatorcontrib>Hyeon Kim, Ji</creatorcontrib><creatorcontrib>Parashar, Mritunjaya</creatorcontrib><creatorcontrib>Kim, Min</creatorcontrib><creatorcontrib>Kumar, Manish</creatorcontrib><creatorcontrib>Kim, Jong Seung</creatorcontrib><creatorcontrib>Lee, Jae-Joon</creatorcontrib><title>Side-Chain Engineering of Diketopyrrolopyrrole-Based Hole-Transport Materials to Realize High-Efficiency Perovskite Solar Cells</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The design and synthesis of a stable and efficient hole-transport material (HTM) for perovskite solar cells (PSCs) are one of the most demanding research areas. At present, 2,2′,7,7′-tetrakis­[N,N-di­(4-methoxyphenyl)­amino]-9,9′-spirobifluorene (spiro-MeOTAD) is a commonly used HTM in the fabrication of high-efficiency PSCs; however, its complicated synthesis, addition of a dopant in order to realize the best efficiency, and high cost are major challenges for the further development of PSCs. Herein, various diketopyrrolopyrrole-based small molecules were synthesized with the same backbone but distinct alkyl side-chain substituents (i.e., 2-ethylhexyl-, n-hexyl-, ((methoxyethoxy)­ethoxy)­ethyl-, and (2-((2-methoxyethoxy)­ethoxy)­ethyl)­acetamide, designated as D-1, D-2, D-3, and D-4, respectively) as HTMs. The variation in the alkyl chain has shown obvious effects on the optical and electrochemical properties as well as on the molecular packing and film-forming ability. Consequently, the power conversion efficiency (PCE) of the PSC under one sun illumination (100 mW cm–2) is shown to increase in the order of D-1 (8.32%) &lt; D-2 (11.12%) &lt; D-3 (12.05%) &lt; D-4 (17.64%). Various characterization techniques reveal that the superior performance of D-4 can be ascribed to the well-aligned highest occupied molecular orbital energy level with the counter electrode, the more compact π–π stacking with a higher coherence length, and the excellent hole mobility of 1.09 × 10–3 cm2 V–1 s–1, thus providing excellent energetics for effective charge transport with minimal charge-carrier recombination. Furthermore, the addition of the dopant Li-TFSI in D-4 is shown to deliver a remarkable PCE of 20.19%, along with a short-circuit current density (J SC), open-circuit voltage (V OC), and fill factor (FF) of 22.94 mA cm–2, 1.14 V, and 73.87%, respectively, and superior stability compared to that of other HTMs. These results demonstrate the effectiveness of side-chain engineering for tailoring the properties of HTMs, thus offering new design tactics to fabricate for the synthesis of highly efficient and stable HTMs for PSCs.</description><subject>Functional Inorganic Materials and Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM1PAjEUxBujEUSvHk2PxmSxu23346iIYoLRCJ43j-4rFJYttosJXvzXXQJy8zRz-M3kvSHkMmTdkEXhLSgPS9NlKkxkyo9IO8yECNJIRscHL0SLnHk_ZyzmEZOnpMW55EKKrE1-RqbAoDcDU9F-NTUVojPVlFpNH8wCa7vaOGfLvWBwDx4LOtjasYPKr6yr6QvUTQpKT2tL3xFK8410YKazoK-1UQYrtaFv6OyXX5ga6ciW4GgPy9KfkxPdBPFirx3y8dgf9wbB8PXpuXc3DIBzVgdZASnHbMKzpFAqkTFiwVErMeEy00kikyLlGUAs45RrHWKiBKqYpaD5BETKO-R617ty9nONvs6XxqvmAqjQrn0eiTQWsQhl1KDdHaqc9d6hzlfOLMFt8pDl29Hz3ej5fvQmcLXvXk-WWBzwv5Ub4GYHNMF8bteual79r-0XDzmPLA</recordid><startdate>20210217</startdate><enddate>20210217</enddate><creator>Sharma, Amit</creator><creator>Singh, Ranbir</creator><creator>Kini, Gururaj P</creator><creator>Hyeon Kim, Ji</creator><creator>Parashar, Mritunjaya</creator><creator>Kim, Min</creator><creator>Kumar, Manish</creator><creator>Kim, Jong Seung</creator><creator>Lee, Jae-Joon</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3216-8986</orcidid><orcidid>https://orcid.org/0000-0003-2815-8208</orcidid><orcidid>https://orcid.org/0000-0001-9374-919X</orcidid><orcidid>https://orcid.org/0000-0003-3477-1172</orcidid><orcidid>https://orcid.org/0000-0001-8966-0336</orcidid></search><sort><creationdate>20210217</creationdate><title>Side-Chain Engineering of Diketopyrrolopyrrole-Based Hole-Transport Materials to Realize High-Efficiency Perovskite Solar Cells</title><author>Sharma, Amit ; Singh, Ranbir ; Kini, Gururaj P ; Hyeon Kim, Ji ; Parashar, Mritunjaya ; Kim, Min ; Kumar, Manish ; Kim, Jong Seung ; Lee, Jae-Joon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-9da83e9b397dcc756eed3efc4b359f7757d839aa65683ff1e7c4ec608af3ba483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Functional Inorganic Materials and Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Amit</creatorcontrib><creatorcontrib>Singh, Ranbir</creatorcontrib><creatorcontrib>Kini, Gururaj P</creatorcontrib><creatorcontrib>Hyeon Kim, Ji</creatorcontrib><creatorcontrib>Parashar, Mritunjaya</creatorcontrib><creatorcontrib>Kim, Min</creatorcontrib><creatorcontrib>Kumar, Manish</creatorcontrib><creatorcontrib>Kim, Jong Seung</creatorcontrib><creatorcontrib>Lee, Jae-Joon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Amit</au><au>Singh, Ranbir</au><au>Kini, Gururaj P</au><au>Hyeon Kim, Ji</au><au>Parashar, Mritunjaya</au><au>Kim, Min</au><au>Kumar, Manish</au><au>Kim, Jong Seung</au><au>Lee, Jae-Joon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Side-Chain Engineering of Diketopyrrolopyrrole-Based Hole-Transport Materials to Realize High-Efficiency Perovskite Solar Cells</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-02-17</date><risdate>2021</risdate><volume>13</volume><issue>6</issue><spage>7405</spage><epage>7415</epage><pages>7405-7415</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The design and synthesis of a stable and efficient hole-transport material (HTM) for perovskite solar cells (PSCs) are one of the most demanding research areas. At present, 2,2′,7,7′-tetrakis­[N,N-di­(4-methoxyphenyl)­amino]-9,9′-spirobifluorene (spiro-MeOTAD) is a commonly used HTM in the fabrication of high-efficiency PSCs; however, its complicated synthesis, addition of a dopant in order to realize the best efficiency, and high cost are major challenges for the further development of PSCs. Herein, various diketopyrrolopyrrole-based small molecules were synthesized with the same backbone but distinct alkyl side-chain substituents (i.e., 2-ethylhexyl-, n-hexyl-, ((methoxyethoxy)­ethoxy)­ethyl-, and (2-((2-methoxyethoxy)­ethoxy)­ethyl)­acetamide, designated as D-1, D-2, D-3, and D-4, respectively) as HTMs. The variation in the alkyl chain has shown obvious effects on the optical and electrochemical properties as well as on the molecular packing and film-forming ability. Consequently, the power conversion efficiency (PCE) of the PSC under one sun illumination (100 mW cm–2) is shown to increase in the order of D-1 (8.32%) &lt; D-2 (11.12%) &lt; D-3 (12.05%) &lt; D-4 (17.64%). Various characterization techniques reveal that the superior performance of D-4 can be ascribed to the well-aligned highest occupied molecular orbital energy level with the counter electrode, the more compact π–π stacking with a higher coherence length, and the excellent hole mobility of 1.09 × 10–3 cm2 V–1 s–1, thus providing excellent energetics for effective charge transport with minimal charge-carrier recombination. Furthermore, the addition of the dopant Li-TFSI in D-4 is shown to deliver a remarkable PCE of 20.19%, along with a short-circuit current density (J SC), open-circuit voltage (V OC), and fill factor (FF) of 22.94 mA cm–2, 1.14 V, and 73.87%, respectively, and superior stability compared to that of other HTMs. These results demonstrate the effectiveness of side-chain engineering for tailoring the properties of HTMs, thus offering new design tactics to fabricate for the synthesis of highly efficient and stable HTMs for PSCs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33534549</pmid><doi>10.1021/acsami.0c17583</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3216-8986</orcidid><orcidid>https://orcid.org/0000-0003-2815-8208</orcidid><orcidid>https://orcid.org/0000-0001-9374-919X</orcidid><orcidid>https://orcid.org/0000-0003-3477-1172</orcidid><orcidid>https://orcid.org/0000-0001-8966-0336</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-02, Vol.13 (6), p.7405-7415
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2486464152
source American Chemical Society Journals
subjects Functional Inorganic Materials and Devices
title Side-Chain Engineering of Diketopyrrolopyrrole-Based Hole-Transport Materials to Realize High-Efficiency Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A48%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Side-Chain%20Engineering%20of%20Diketopyrrolopyrrole-Based%20Hole-Transport%20Materials%20to%20Realize%20High-Efficiency%20Perovskite%20Solar%20Cells&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Sharma,%20Amit&rft.date=2021-02-17&rft.volume=13&rft.issue=6&rft.spage=7405&rft.epage=7415&rft.pages=7405-7415&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c17583&rft_dat=%3Cproquest_cross%3E2486464152%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486464152&rft_id=info:pmid/33534549&rfr_iscdi=true