Liraglutide Increases the Catabolism of Apolipoprotein B100-Containing Lipoproteins in Patients With Type 2 Diabetes and Reduces Proprotein Convertase Subtilisin/Kexin Type 9 Expression

Dyslipidemia observed in type 2 diabetes (T2D) is atherogenic. Important features of diabetic dyslipidemia are increased levels of triglyceride-rich lipoproteins and small dense LDL particles, which all have apolipoprotein B100 (apoB100) as a major apolipoprotein. This prompted us to study the effec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes care 2021-04, Vol.44 (4), p.1027-1037
Hauptverfasser: Vergès, Bruno, Duvillard, Laurence, Pais de Barros, Jean Paul, Bouillet, Benjamin, Baillot-Rudoni, Sabine, Rouland, Alexia, Petit, Jean Michel, Degrace, Pascal, Demizieux, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1037
container_issue 4
container_start_page 1027
container_title Diabetes care
container_volume 44
creator Vergès, Bruno
Duvillard, Laurence
Pais de Barros, Jean Paul
Bouillet, Benjamin
Baillot-Rudoni, Sabine
Rouland, Alexia
Petit, Jean Michel
Degrace, Pascal
Demizieux, Laurent
description Dyslipidemia observed in type 2 diabetes (T2D) is atherogenic. Important features of diabetic dyslipidemia are increased levels of triglyceride-rich lipoproteins and small dense LDL particles, which all have apolipoprotein B100 (apoB100) as a major apolipoprotein. This prompted us to study the effect of the GLP-1 agonist liraglutide on the metabolism of apoB100-containing lipoproteins. We performed an in vivo kinetic study with stable isotopes (L-[1- C]leucine) in 10 patients with T2D before and after 6 months of treatment with liraglutide (1.2 mg/day). We also evaluated in mice the effect of liraglutide on the expression of genes involved in apoB100-containing lipoprotein clearance. In patients with T2D, liraglutide treatment significantly reduced plasma apoB100 (0.93 ± 0.13 vs. 1.09 ± 0.11 g/L, = 0.011) and fasting triglycerides (1.76 ± 0.37 vs. 2.48 ± 0.69 mmol/L, = 0.005). The kinetic study showed a significant increase in indirect catabolism of VLDL -apoB100 (4.11 ± 1.91 vs. 2.96 ± 1.61 pools/day, = 0.005), VLDL -apoB100 (5.17 ± 2.53 vs. 2.84 ± 1.65 pools/day, = 0.008), and IDL-apoB100 (5.27 ± 2.77 vs. 3.74 ± 1.85 pools/day, = 0.017) and in catabolism of LDL-apoB100 (0.72 ± 0.22 vs. 0.56 ± 0.22 pools/day, = 0.005). In mice, liraglutide increased lipoprotein lipase (LPL) gene expression and reduced proprotein convertase subtilisin/kexin type 9 (PCSK9), retinol-binding protein 4 (RBP4), and tumor necrosis factor-α (TNF-α) gene expression in adipose tissue and decreased PCSK9 mRNA and increased LDL receptor protein expression in liver. In vitro, liraglutide directly reduced the expression of in the liver. Treatment with liraglutide induces a significant acceleration of the catabolism of triglyceride-rich lipoproteins (VLDL , VLDL , IDL) and LDL. Liraglutide modifies the expression of genes involved in apoB100-containing lipoprotein catabolism. These positive effects on lipoprotein metabolism may reduce cardiovascular risk in T2D.
doi_str_mv 10.2337/DC20-1843
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2486140075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486140075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-d49a158ef734f072d988d419fbeeb1a7480d4217a6f6f5adc00f46a76c9bc5cf3</originalsourceid><addsrcrecordid>eNpdkc1qFTEYhoMo9lhdeAMScKOLsfmdSZZ1WrV4wKIVl0Mm-dKmzMlMk4y0l-bdmdpawVU-eB-evPAi9JKSd4zz7uCoZ6ShSvBHaEM1l42UQj1GG0KFbqTWbA89y_mSECKEUk_RHueSU0HVBv3ahmTOp7UEB_gk2gQmQ8blAnBvihnnKeQdnj0-XOq5zEuaC4SI31NCmn6OxYQY4jne_ssyrvmpKQFiyfhHKBf47GYBzPBRMCOUqjfR4a_gVlvv0_Qgrb6fkEptgL-tYwn17xAPPsN1zf4oND6-XhLkHOb4HD3xZsrw4v7dR98_HJ_1n5rtl48n_eG2sVyo0jihDZUKfMeFJx1zWiknqPYjwEhNJxRxgtHOtL710jhLiBet6VqrRyut5_vozZ23trxaIZdhF7KFaTIR5jUPTKiWCkI6WdHX_6GX85pibTcwSTraEa5Upd7eUTbNOSfww5LCzqSbgZLhds_BWUaG2z0r--reuI47cA_k3wH5bz6wnXo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507170388</pqid></control><display><type>article</type><title>Liraglutide Increases the Catabolism of Apolipoprotein B100-Containing Lipoproteins in Patients With Type 2 Diabetes and Reduces Proprotein Convertase Subtilisin/Kexin Type 9 Expression</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Vergès, Bruno ; Duvillard, Laurence ; Pais de Barros, Jean Paul ; Bouillet, Benjamin ; Baillot-Rudoni, Sabine ; Rouland, Alexia ; Petit, Jean Michel ; Degrace, Pascal ; Demizieux, Laurent</creator><creatorcontrib>Vergès, Bruno ; Duvillard, Laurence ; Pais de Barros, Jean Paul ; Bouillet, Benjamin ; Baillot-Rudoni, Sabine ; Rouland, Alexia ; Petit, Jean Michel ; Degrace, Pascal ; Demizieux, Laurent</creatorcontrib><description>Dyslipidemia observed in type 2 diabetes (T2D) is atherogenic. Important features of diabetic dyslipidemia are increased levels of triglyceride-rich lipoproteins and small dense LDL particles, which all have apolipoprotein B100 (apoB100) as a major apolipoprotein. This prompted us to study the effect of the GLP-1 agonist liraglutide on the metabolism of apoB100-containing lipoproteins. We performed an in vivo kinetic study with stable isotopes (L-[1- C]leucine) in 10 patients with T2D before and after 6 months of treatment with liraglutide (1.2 mg/day). We also evaluated in mice the effect of liraglutide on the expression of genes involved in apoB100-containing lipoprotein clearance. In patients with T2D, liraglutide treatment significantly reduced plasma apoB100 (0.93 ± 0.13 vs. 1.09 ± 0.11 g/L, = 0.011) and fasting triglycerides (1.76 ± 0.37 vs. 2.48 ± 0.69 mmol/L, = 0.005). The kinetic study showed a significant increase in indirect catabolism of VLDL -apoB100 (4.11 ± 1.91 vs. 2.96 ± 1.61 pools/day, = 0.005), VLDL -apoB100 (5.17 ± 2.53 vs. 2.84 ± 1.65 pools/day, = 0.008), and IDL-apoB100 (5.27 ± 2.77 vs. 3.74 ± 1.85 pools/day, = 0.017) and in catabolism of LDL-apoB100 (0.72 ± 0.22 vs. 0.56 ± 0.22 pools/day, = 0.005). In mice, liraglutide increased lipoprotein lipase (LPL) gene expression and reduced proprotein convertase subtilisin/kexin type 9 (PCSK9), retinol-binding protein 4 (RBP4), and tumor necrosis factor-α (TNF-α) gene expression in adipose tissue and decreased PCSK9 mRNA and increased LDL receptor protein expression in liver. In vitro, liraglutide directly reduced the expression of in the liver. Treatment with liraglutide induces a significant acceleration of the catabolism of triglyceride-rich lipoproteins (VLDL , VLDL , IDL) and LDL. Liraglutide modifies the expression of genes involved in apoB100-containing lipoprotein catabolism. These positive effects on lipoprotein metabolism may reduce cardiovascular risk in T2D.</description><identifier>ISSN: 0149-5992</identifier><identifier>EISSN: 1935-5548</identifier><identifier>DOI: 10.2337/DC20-1843</identifier><identifier>PMID: 33531418</identifier><language>eng</language><publisher>United States: American Diabetes Association</publisher><subject>Adipose tissue ; Antidiabetics ; Apolipoproteins ; Cardiovascular diseases ; Catabolism ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (non-insulin dependent) ; Dyslipidemia ; Gene expression ; Genes ; GLP-1 receptor agonists ; Health risks ; In vivo methods and tests ; Isotopes ; Kexin ; Leucine ; Lipid metabolism ; Lipoprotein lipase ; Lipoproteins ; Liver ; Low density lipoprotein ; Metabolic disorders ; Metabolism ; Pools ; Proteins ; Research design ; Retinol-binding protein ; Stable isotopes ; Subtilisin ; Triglycerides ; Tumor necrosis factor-TNF ; Tumor necrosis factor-α ; Vitamin A</subject><ispartof>Diabetes care, 2021-04, Vol.44 (4), p.1027-1037</ispartof><rights>2021 by the American Diabetes Association.</rights><rights>Copyright American Diabetes Association Apr 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-d49a158ef734f072d988d419fbeeb1a7480d4217a6f6f5adc00f46a76c9bc5cf3</citedby><cites>FETCH-LOGICAL-c348t-d49a158ef734f072d988d419fbeeb1a7480d4217a6f6f5adc00f46a76c9bc5cf3</cites><orcidid>0000-0001-8957-629X ; 0000-0002-4317-6714 ; 0000-0002-1809-2455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33531418$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vergès, Bruno</creatorcontrib><creatorcontrib>Duvillard, Laurence</creatorcontrib><creatorcontrib>Pais de Barros, Jean Paul</creatorcontrib><creatorcontrib>Bouillet, Benjamin</creatorcontrib><creatorcontrib>Baillot-Rudoni, Sabine</creatorcontrib><creatorcontrib>Rouland, Alexia</creatorcontrib><creatorcontrib>Petit, Jean Michel</creatorcontrib><creatorcontrib>Degrace, Pascal</creatorcontrib><creatorcontrib>Demizieux, Laurent</creatorcontrib><title>Liraglutide Increases the Catabolism of Apolipoprotein B100-Containing Lipoproteins in Patients With Type 2 Diabetes and Reduces Proprotein Convertase Subtilisin/Kexin Type 9 Expression</title><title>Diabetes care</title><addtitle>Diabetes Care</addtitle><description>Dyslipidemia observed in type 2 diabetes (T2D) is atherogenic. Important features of diabetic dyslipidemia are increased levels of triglyceride-rich lipoproteins and small dense LDL particles, which all have apolipoprotein B100 (apoB100) as a major apolipoprotein. This prompted us to study the effect of the GLP-1 agonist liraglutide on the metabolism of apoB100-containing lipoproteins. We performed an in vivo kinetic study with stable isotopes (L-[1- C]leucine) in 10 patients with T2D before and after 6 months of treatment with liraglutide (1.2 mg/day). We also evaluated in mice the effect of liraglutide on the expression of genes involved in apoB100-containing lipoprotein clearance. In patients with T2D, liraglutide treatment significantly reduced plasma apoB100 (0.93 ± 0.13 vs. 1.09 ± 0.11 g/L, = 0.011) and fasting triglycerides (1.76 ± 0.37 vs. 2.48 ± 0.69 mmol/L, = 0.005). The kinetic study showed a significant increase in indirect catabolism of VLDL -apoB100 (4.11 ± 1.91 vs. 2.96 ± 1.61 pools/day, = 0.005), VLDL -apoB100 (5.17 ± 2.53 vs. 2.84 ± 1.65 pools/day, = 0.008), and IDL-apoB100 (5.27 ± 2.77 vs. 3.74 ± 1.85 pools/day, = 0.017) and in catabolism of LDL-apoB100 (0.72 ± 0.22 vs. 0.56 ± 0.22 pools/day, = 0.005). In mice, liraglutide increased lipoprotein lipase (LPL) gene expression and reduced proprotein convertase subtilisin/kexin type 9 (PCSK9), retinol-binding protein 4 (RBP4), and tumor necrosis factor-α (TNF-α) gene expression in adipose tissue and decreased PCSK9 mRNA and increased LDL receptor protein expression in liver. In vitro, liraglutide directly reduced the expression of in the liver. Treatment with liraglutide induces a significant acceleration of the catabolism of triglyceride-rich lipoproteins (VLDL , VLDL , IDL) and LDL. Liraglutide modifies the expression of genes involved in apoB100-containing lipoprotein catabolism. These positive effects on lipoprotein metabolism may reduce cardiovascular risk in T2D.</description><subject>Adipose tissue</subject><subject>Antidiabetics</subject><subject>Apolipoproteins</subject><subject>Cardiovascular diseases</subject><subject>Catabolism</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Dyslipidemia</subject><subject>Gene expression</subject><subject>Genes</subject><subject>GLP-1 receptor agonists</subject><subject>Health risks</subject><subject>In vivo methods and tests</subject><subject>Isotopes</subject><subject>Kexin</subject><subject>Leucine</subject><subject>Lipid metabolism</subject><subject>Lipoprotein lipase</subject><subject>Lipoproteins</subject><subject>Liver</subject><subject>Low density lipoprotein</subject><subject>Metabolic disorders</subject><subject>Metabolism</subject><subject>Pools</subject><subject>Proteins</subject><subject>Research design</subject><subject>Retinol-binding protein</subject><subject>Stable isotopes</subject><subject>Subtilisin</subject><subject>Triglycerides</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumor necrosis factor-α</subject><subject>Vitamin A</subject><issn>0149-5992</issn><issn>1935-5548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkc1qFTEYhoMo9lhdeAMScKOLsfmdSZZ1WrV4wKIVl0Mm-dKmzMlMk4y0l-bdmdpawVU-eB-evPAi9JKSd4zz7uCoZ6ShSvBHaEM1l42UQj1GG0KFbqTWbA89y_mSECKEUk_RHueSU0HVBv3ahmTOp7UEB_gk2gQmQ8blAnBvihnnKeQdnj0-XOq5zEuaC4SI31NCmn6OxYQY4jne_ssyrvmpKQFiyfhHKBf47GYBzPBRMCOUqjfR4a_gVlvv0_Qgrb6fkEptgL-tYwn17xAPPsN1zf4oND6-XhLkHOb4HD3xZsrw4v7dR98_HJ_1n5rtl48n_eG2sVyo0jihDZUKfMeFJx1zWiknqPYjwEhNJxRxgtHOtL710jhLiBet6VqrRyut5_vozZ23trxaIZdhF7KFaTIR5jUPTKiWCkI6WdHX_6GX85pibTcwSTraEa5Upd7eUTbNOSfww5LCzqSbgZLhds_BWUaG2z0r--reuI47cA_k3wH5bz6wnXo</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Vergès, Bruno</creator><creator>Duvillard, Laurence</creator><creator>Pais de Barros, Jean Paul</creator><creator>Bouillet, Benjamin</creator><creator>Baillot-Rudoni, Sabine</creator><creator>Rouland, Alexia</creator><creator>Petit, Jean Michel</creator><creator>Degrace, Pascal</creator><creator>Demizieux, Laurent</creator><general>American Diabetes Association</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8957-629X</orcidid><orcidid>https://orcid.org/0000-0002-4317-6714</orcidid><orcidid>https://orcid.org/0000-0002-1809-2455</orcidid></search><sort><creationdate>202104</creationdate><title>Liraglutide Increases the Catabolism of Apolipoprotein B100-Containing Lipoproteins in Patients With Type 2 Diabetes and Reduces Proprotein Convertase Subtilisin/Kexin Type 9 Expression</title><author>Vergès, Bruno ; Duvillard, Laurence ; Pais de Barros, Jean Paul ; Bouillet, Benjamin ; Baillot-Rudoni, Sabine ; Rouland, Alexia ; Petit, Jean Michel ; Degrace, Pascal ; Demizieux, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-d49a158ef734f072d988d419fbeeb1a7480d4217a6f6f5adc00f46a76c9bc5cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adipose tissue</topic><topic>Antidiabetics</topic><topic>Apolipoproteins</topic><topic>Cardiovascular diseases</topic><topic>Catabolism</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Dyslipidemia</topic><topic>Gene expression</topic><topic>Genes</topic><topic>GLP-1 receptor agonists</topic><topic>Health risks</topic><topic>In vivo methods and tests</topic><topic>Isotopes</topic><topic>Kexin</topic><topic>Leucine</topic><topic>Lipid metabolism</topic><topic>Lipoprotein lipase</topic><topic>Lipoproteins</topic><topic>Liver</topic><topic>Low density lipoprotein</topic><topic>Metabolic disorders</topic><topic>Metabolism</topic><topic>Pools</topic><topic>Proteins</topic><topic>Research design</topic><topic>Retinol-binding protein</topic><topic>Stable isotopes</topic><topic>Subtilisin</topic><topic>Triglycerides</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumor necrosis factor-α</topic><topic>Vitamin A</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vergès, Bruno</creatorcontrib><creatorcontrib>Duvillard, Laurence</creatorcontrib><creatorcontrib>Pais de Barros, Jean Paul</creatorcontrib><creatorcontrib>Bouillet, Benjamin</creatorcontrib><creatorcontrib>Baillot-Rudoni, Sabine</creatorcontrib><creatorcontrib>Rouland, Alexia</creatorcontrib><creatorcontrib>Petit, Jean Michel</creatorcontrib><creatorcontrib>Degrace, Pascal</creatorcontrib><creatorcontrib>Demizieux, Laurent</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Diabetes care</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vergès, Bruno</au><au>Duvillard, Laurence</au><au>Pais de Barros, Jean Paul</au><au>Bouillet, Benjamin</au><au>Baillot-Rudoni, Sabine</au><au>Rouland, Alexia</au><au>Petit, Jean Michel</au><au>Degrace, Pascal</au><au>Demizieux, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liraglutide Increases the Catabolism of Apolipoprotein B100-Containing Lipoproteins in Patients With Type 2 Diabetes and Reduces Proprotein Convertase Subtilisin/Kexin Type 9 Expression</atitle><jtitle>Diabetes care</jtitle><addtitle>Diabetes Care</addtitle><date>2021-04</date><risdate>2021</risdate><volume>44</volume><issue>4</issue><spage>1027</spage><epage>1037</epage><pages>1027-1037</pages><issn>0149-5992</issn><eissn>1935-5548</eissn><abstract>Dyslipidemia observed in type 2 diabetes (T2D) is atherogenic. Important features of diabetic dyslipidemia are increased levels of triglyceride-rich lipoproteins and small dense LDL particles, which all have apolipoprotein B100 (apoB100) as a major apolipoprotein. This prompted us to study the effect of the GLP-1 agonist liraglutide on the metabolism of apoB100-containing lipoproteins. We performed an in vivo kinetic study with stable isotopes (L-[1- C]leucine) in 10 patients with T2D before and after 6 months of treatment with liraglutide (1.2 mg/day). We also evaluated in mice the effect of liraglutide on the expression of genes involved in apoB100-containing lipoprotein clearance. In patients with T2D, liraglutide treatment significantly reduced plasma apoB100 (0.93 ± 0.13 vs. 1.09 ± 0.11 g/L, = 0.011) and fasting triglycerides (1.76 ± 0.37 vs. 2.48 ± 0.69 mmol/L, = 0.005). The kinetic study showed a significant increase in indirect catabolism of VLDL -apoB100 (4.11 ± 1.91 vs. 2.96 ± 1.61 pools/day, = 0.005), VLDL -apoB100 (5.17 ± 2.53 vs. 2.84 ± 1.65 pools/day, = 0.008), and IDL-apoB100 (5.27 ± 2.77 vs. 3.74 ± 1.85 pools/day, = 0.017) and in catabolism of LDL-apoB100 (0.72 ± 0.22 vs. 0.56 ± 0.22 pools/day, = 0.005). In mice, liraglutide increased lipoprotein lipase (LPL) gene expression and reduced proprotein convertase subtilisin/kexin type 9 (PCSK9), retinol-binding protein 4 (RBP4), and tumor necrosis factor-α (TNF-α) gene expression in adipose tissue and decreased PCSK9 mRNA and increased LDL receptor protein expression in liver. In vitro, liraglutide directly reduced the expression of in the liver. Treatment with liraglutide induces a significant acceleration of the catabolism of triglyceride-rich lipoproteins (VLDL , VLDL , IDL) and LDL. Liraglutide modifies the expression of genes involved in apoB100-containing lipoprotein catabolism. These positive effects on lipoprotein metabolism may reduce cardiovascular risk in T2D.</abstract><cop>United States</cop><pub>American Diabetes Association</pub><pmid>33531418</pmid><doi>10.2337/DC20-1843</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8957-629X</orcidid><orcidid>https://orcid.org/0000-0002-4317-6714</orcidid><orcidid>https://orcid.org/0000-0002-1809-2455</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0149-5992
ispartof Diabetes care, 2021-04, Vol.44 (4), p.1027-1037
issn 0149-5992
1935-5548
language eng
recordid cdi_proquest_miscellaneous_2486140075
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adipose tissue
Antidiabetics
Apolipoproteins
Cardiovascular diseases
Catabolism
Diabetes
Diabetes mellitus
Diabetes mellitus (non-insulin dependent)
Dyslipidemia
Gene expression
Genes
GLP-1 receptor agonists
Health risks
In vivo methods and tests
Isotopes
Kexin
Leucine
Lipid metabolism
Lipoprotein lipase
Lipoproteins
Liver
Low density lipoprotein
Metabolic disorders
Metabolism
Pools
Proteins
Research design
Retinol-binding protein
Stable isotopes
Subtilisin
Triglycerides
Tumor necrosis factor-TNF
Tumor necrosis factor-α
Vitamin A
title Liraglutide Increases the Catabolism of Apolipoprotein B100-Containing Lipoproteins in Patients With Type 2 Diabetes and Reduces Proprotein Convertase Subtilisin/Kexin Type 9 Expression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A32%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liraglutide%20Increases%20the%20Catabolism%20of%20Apolipoprotein%20B100-Containing%20Lipoproteins%20in%20Patients%20With%20Type%202%20Diabetes%20and%20Reduces%20Proprotein%20Convertase%20Subtilisin/Kexin%20Type%209%20Expression&rft.jtitle=Diabetes%20care&rft.au=Verg%C3%A8s,%20Bruno&rft.date=2021-04&rft.volume=44&rft.issue=4&rft.spage=1027&rft.epage=1037&rft.pages=1027-1037&rft.issn=0149-5992&rft.eissn=1935-5548&rft_id=info:doi/10.2337/DC20-1843&rft_dat=%3Cproquest_cross%3E2486140075%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2507170388&rft_id=info:pmid/33531418&rfr_iscdi=true