Triangulations (tilings) and certain block triangular matrices
For a convex polygon P with n sides, a "partitioning" of P into n-2 nonoverlapping triangles each of whose vertices is a vertex of P is called a triangulation or tiling, and each triangle is a tile. Each tile has a given cost associated with it which may differ one from another. This paper...
Gespeichert in:
Veröffentlicht in: | Mathematical programming 1985-01, Vol.31 (1), p.1-14 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Mathematical programming |
container_volume | 31 |
creator | Dantzig, G. B. Hoffman, A. J. Hu, T. C. |
description | For a convex polygon P with n sides, a "partitioning" of P into n-2 nonoverlapping triangles each of whose vertices is a vertex of P is called a triangulation or tiling, and each triangle is a tile. Each tile has a given cost associated with it which may differ one from another. This paper considers the problem of finding a tiling of P such that the sum of the costs of the tiles used is a minimum, and explores the curiosity that (an abstract formulation of) it can be cast as a linear program. Further the special structure of the linear program permits a recursive O(n super(3)) algorithm. |
doi_str_mv | 10.1007/BF02591857 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_24858477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24858477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-9e6532394d89eb75adf1b3102cfce5ef19a30d73a604a94cb21ec13ed0c01f1a3</originalsourceid><addsrcrecordid>eNpFkMtKxEAQRRtRMI5u_IKsRIVoVfqRZCPo4Kgw4GZch0qnMrTmMXYnC__eyCiuLvdyuIsjxDnCDQJktw8rSHWBuc4ORIRKmkQZZQ5FBPOeaINwLE5CeAcAlHkeibuNd9Rvp5ZGN_Qhvhxd6_ptuIqpr2PLfiTXx1U72I94_EN93NFcLIdTcdRQG_jsNxfibfW4WT4n69enl-X9OrGpgTEp2GiZykLVecFVpqlusJIIqW0sa26wIAl1JsmAokLZKkW2KLkGC9ggyYW42P_u_PA5cRjLzgXLbUs9D1MoU5XrXGXZDF7vQeuHEDw35c67jvxXiVD-KCr_FclvpvlYxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24858477</pqid></control><display><type>article</type><title>Triangulations (tilings) and certain block triangular matrices</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dantzig, G. B. ; Hoffman, A. J. ; Hu, T. C.</creator><creatorcontrib>Dantzig, G. B. ; Hoffman, A. J. ; Hu, T. C.</creatorcontrib><description>For a convex polygon P with n sides, a "partitioning" of P into n-2 nonoverlapping triangles each of whose vertices is a vertex of P is called a triangulation or tiling, and each triangle is a tile. Each tile has a given cost associated with it which may differ one from another. This paper considers the problem of finding a tiling of P such that the sum of the costs of the tiles used is a minimum, and explores the curiosity that (an abstract formulation of) it can be cast as a linear program. Further the special structure of the linear program permits a recursive O(n super(3)) algorithm.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/BF02591857</identifier><language>eng</language><ispartof>Mathematical programming, 1985-01, Vol.31 (1), p.1-14</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c260t-9e6532394d89eb75adf1b3102cfce5ef19a30d73a604a94cb21ec13ed0c01f1a3</citedby><cites>FETCH-LOGICAL-c260t-9e6532394d89eb75adf1b3102cfce5ef19a30d73a604a94cb21ec13ed0c01f1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dantzig, G. B.</creatorcontrib><creatorcontrib>Hoffman, A. J.</creatorcontrib><creatorcontrib>Hu, T. C.</creatorcontrib><title>Triangulations (tilings) and certain block triangular matrices</title><title>Mathematical programming</title><description>For a convex polygon P with n sides, a "partitioning" of P into n-2 nonoverlapping triangles each of whose vertices is a vertex of P is called a triangulation or tiling, and each triangle is a tile. Each tile has a given cost associated with it which may differ one from another. This paper considers the problem of finding a tiling of P such that the sum of the costs of the tiles used is a minimum, and explores the curiosity that (an abstract formulation of) it can be cast as a linear program. Further the special structure of the linear program permits a recursive O(n super(3)) algorithm.</description><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNpFkMtKxEAQRRtRMI5u_IKsRIVoVfqRZCPo4Kgw4GZch0qnMrTmMXYnC__eyCiuLvdyuIsjxDnCDQJktw8rSHWBuc4ORIRKmkQZZQ5FBPOeaINwLE5CeAcAlHkeibuNd9Rvp5ZGN_Qhvhxd6_ptuIqpr2PLfiTXx1U72I94_EN93NFcLIdTcdRQG_jsNxfibfW4WT4n69enl-X9OrGpgTEp2GiZykLVecFVpqlusJIIqW0sa26wIAl1JsmAokLZKkW2KLkGC9ggyYW42P_u_PA5cRjLzgXLbUs9D1MoU5XrXGXZDF7vQeuHEDw35c67jvxXiVD-KCr_FclvpvlYxw</recordid><startdate>198501</startdate><enddate>198501</enddate><creator>Dantzig, G. B.</creator><creator>Hoffman, A. J.</creator><creator>Hu, T. C.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>198501</creationdate><title>Triangulations (tilings) and certain block triangular matrices</title><author>Dantzig, G. B. ; Hoffman, A. J. ; Hu, T. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-9e6532394d89eb75adf1b3102cfce5ef19a30d73a604a94cb21ec13ed0c01f1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dantzig, G. B.</creatorcontrib><creatorcontrib>Hoffman, A. J.</creatorcontrib><creatorcontrib>Hu, T. C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dantzig, G. B.</au><au>Hoffman, A. J.</au><au>Hu, T. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triangulations (tilings) and certain block triangular matrices</atitle><jtitle>Mathematical programming</jtitle><date>1985-01</date><risdate>1985</risdate><volume>31</volume><issue>1</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><abstract>For a convex polygon P with n sides, a "partitioning" of P into n-2 nonoverlapping triangles each of whose vertices is a vertex of P is called a triangulation or tiling, and each triangle is a tile. Each tile has a given cost associated with it which may differ one from another. This paper considers the problem of finding a tiling of P such that the sum of the costs of the tiles used is a minimum, and explores the curiosity that (an abstract formulation of) it can be cast as a linear program. Further the special structure of the linear program permits a recursive O(n super(3)) algorithm.</abstract><doi>10.1007/BF02591857</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5610 |
ispartof | Mathematical programming, 1985-01, Vol.31 (1), p.1-14 |
issn | 0025-5610 1436-4646 |
language | eng |
recordid | cdi_proquest_miscellaneous_24858477 |
source | SpringerLink Journals - AutoHoldings |
title | Triangulations (tilings) and certain block triangular matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A40%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triangulations%20(tilings)%20and%20certain%20block%20triangular%20matrices&rft.jtitle=Mathematical%20programming&rft.au=Dantzig,%20G.%20B.&rft.date=1985-01&rft.volume=31&rft.issue=1&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0025-5610&rft.eissn=1436-4646&rft_id=info:doi/10.1007/BF02591857&rft_dat=%3Cproquest_cross%3E24858477%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24858477&rft_id=info:pmid/&rfr_iscdi=true |