Master equation approach to propagation in nonlinear fibers
In this Letter, we revisit the quantum theory of propagation in nonlinear fibers. Unlike previous works, we present an effective propagation equation for the reduced density matrix of the complex envelope of the electric field. This original proposal is shown to be in agreement with the theory of qu...
Gespeichert in:
Veröffentlicht in: | Optics letters 2021-02, Vol.46 (3), p.665-668 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 668 |
---|---|
container_issue | 3 |
container_start_page | 665 |
container_title | Optics letters |
container_volume | 46 |
creator | Bonetti, J Hernandez, S M Grosz, D F |
description | In this Letter, we revisit the quantum theory of propagation in nonlinear fibers. Unlike previous works, we present an effective propagation equation for the reduced density matrix of the complex envelope of the electric field. This original proposal is shown to be in agreement with the theory of quantum noise in fibers and puts forth a powerful tool for the study of fiber-based quantum devices. To underscore its applicability, we analyze the performance of a heralded single-photon scheme in terms of probabilities, an approach that conveniently lends itself to the optimization of such sources. |
doi_str_mv | 10.1364/OL.417975 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2485516568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2485516568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-baee6dfe3d443f31022243feb24d7e06fbb92e3a4dd30508eff2abcf71117d213</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhQdRbK0u_AMScKOL1Jm580hwVYoviHSj6zBJ7mhKmqQzycJ_70iqC1f3cPk4HD5CLhldMlDibpMtBdOplkdkziSksdCpOCZzyoSKU5nyGTnzfkspVRrglMwAJE8EyDm5fzV-QBfhfjRD3bWR6XvXmfIzGroopN58TP-6jdqubeoWjYtsXaDz5-TEmsbjxeEuyPvjw9v6Oc42Ty_rVRaXwGCIC4OoKotQCQEWGOWch4AFF5VGqmxRpBzBiKoCKmmC1nJTlFYzxnTFGSzIzdQb9uxH9EO-q32JTWNa7Eafc5FIyZRUSUCv_6HbbnRtWBeoVIFkMuGBup2o0nXeO7R57-qdcV85o_mP0XyT5ZPRwF4dGsdih9Uf-asQvgFeXW_V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2496351582</pqid></control><display><type>article</type><title>Master equation approach to propagation in nonlinear fibers</title><source>Optica Publishing Group Journals</source><creator>Bonetti, J ; Hernandez, S M ; Grosz, D F</creator><creatorcontrib>Bonetti, J ; Hernandez, S M ; Grosz, D F</creatorcontrib><description>In this Letter, we revisit the quantum theory of propagation in nonlinear fibers. Unlike previous works, we present an effective propagation equation for the reduced density matrix of the complex envelope of the electric field. This original proposal is shown to be in agreement with the theory of quantum noise in fibers and puts forth a powerful tool for the study of fiber-based quantum devices. To underscore its applicability, we analyze the performance of a heralded single-photon scheme in terms of probabilities, an approach that conveniently lends itself to the optimization of such sources.</description><identifier>ISSN: 0146-9592</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.417975</identifier><identifier>PMID: 33528435</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Electric fields ; Fibers ; Optimization ; Propagation ; Quantum theory</subject><ispartof>Optics letters, 2021-02, Vol.46 (3), p.665-668</ispartof><rights>Copyright Optical Society of America Feb 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-baee6dfe3d443f31022243feb24d7e06fbb92e3a4dd30508eff2abcf71117d213</citedby><cites>FETCH-LOGICAL-c313t-baee6dfe3d443f31022243feb24d7e06fbb92e3a4dd30508eff2abcf71117d213</cites><orcidid>0000-0002-5265-620X ; 0000-0002-9416-1651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3244,27902,27903</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33528435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonetti, J</creatorcontrib><creatorcontrib>Hernandez, S M</creatorcontrib><creatorcontrib>Grosz, D F</creatorcontrib><title>Master equation approach to propagation in nonlinear fibers</title><title>Optics letters</title><addtitle>Opt Lett</addtitle><description>In this Letter, we revisit the quantum theory of propagation in nonlinear fibers. Unlike previous works, we present an effective propagation equation for the reduced density matrix of the complex envelope of the electric field. This original proposal is shown to be in agreement with the theory of quantum noise in fibers and puts forth a powerful tool for the study of fiber-based quantum devices. To underscore its applicability, we analyze the performance of a heralded single-photon scheme in terms of probabilities, an approach that conveniently lends itself to the optimization of such sources.</description><subject>Electric fields</subject><subject>Fibers</subject><subject>Optimization</subject><subject>Propagation</subject><subject>Quantum theory</subject><issn>0146-9592</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLw0AUhQdRbK0u_AMScKOL1Jm580hwVYoviHSj6zBJ7mhKmqQzycJ_70iqC1f3cPk4HD5CLhldMlDibpMtBdOplkdkziSksdCpOCZzyoSKU5nyGTnzfkspVRrglMwAJE8EyDm5fzV-QBfhfjRD3bWR6XvXmfIzGroopN58TP-6jdqubeoWjYtsXaDz5-TEmsbjxeEuyPvjw9v6Oc42Ty_rVRaXwGCIC4OoKotQCQEWGOWch4AFF5VGqmxRpBzBiKoCKmmC1nJTlFYzxnTFGSzIzdQb9uxH9EO-q32JTWNa7Eafc5FIyZRUSUCv_6HbbnRtWBeoVIFkMuGBup2o0nXeO7R57-qdcV85o_mP0XyT5ZPRwF4dGsdih9Uf-asQvgFeXW_V</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Bonetti, J</creator><creator>Hernandez, S M</creator><creator>Grosz, D F</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5265-620X</orcidid><orcidid>https://orcid.org/0000-0002-9416-1651</orcidid></search><sort><creationdate>20210201</creationdate><title>Master equation approach to propagation in nonlinear fibers</title><author>Bonetti, J ; Hernandez, S M ; Grosz, D F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-baee6dfe3d443f31022243feb24d7e06fbb92e3a4dd30508eff2abcf71117d213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Electric fields</topic><topic>Fibers</topic><topic>Optimization</topic><topic>Propagation</topic><topic>Quantum theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonetti, J</creatorcontrib><creatorcontrib>Hernandez, S M</creatorcontrib><creatorcontrib>Grosz, D F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonetti, J</au><au>Hernandez, S M</au><au>Grosz, D F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Master equation approach to propagation in nonlinear fibers</atitle><jtitle>Optics letters</jtitle><addtitle>Opt Lett</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>46</volume><issue>3</issue><spage>665</spage><epage>668</epage><pages>665-668</pages><issn>0146-9592</issn><eissn>1539-4794</eissn><abstract>In this Letter, we revisit the quantum theory of propagation in nonlinear fibers. Unlike previous works, we present an effective propagation equation for the reduced density matrix of the complex envelope of the electric field. This original proposal is shown to be in agreement with the theory of quantum noise in fibers and puts forth a powerful tool for the study of fiber-based quantum devices. To underscore its applicability, we analyze the performance of a heralded single-photon scheme in terms of probabilities, an approach that conveniently lends itself to the optimization of such sources.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>33528435</pmid><doi>10.1364/OL.417975</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-5265-620X</orcidid><orcidid>https://orcid.org/0000-0002-9416-1651</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-9592 |
ispartof | Optics letters, 2021-02, Vol.46 (3), p.665-668 |
issn | 0146-9592 1539-4794 |
language | eng |
recordid | cdi_proquest_miscellaneous_2485516568 |
source | Optica Publishing Group Journals |
subjects | Electric fields Fibers Optimization Propagation Quantum theory |
title | Master equation approach to propagation in nonlinear fibers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A28%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Master%20equation%20approach%20to%20propagation%20in%20nonlinear%20fibers&rft.jtitle=Optics%20letters&rft.au=Bonetti,%20J&rft.date=2021-02-01&rft.volume=46&rft.issue=3&rft.spage=665&rft.epage=668&rft.pages=665-668&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.417975&rft_dat=%3Cproquest_cross%3E2485516568%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2496351582&rft_id=info:pmid/33528435&rfr_iscdi=true |