Bio‐adhesive Nanoporous Module: Toward Autonomous Gating

Here we report a bio‐adhesive porous organic module (GlueCOF) composed of hexagonally packed 1D nanopores based on a covalent organic framework. The nanopores are densely decorated with guanidinium ion (Gu+) pendants capable of forming salt bridges with oxyanionic species. GlueCOF strongly adheres t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2021-04, Vol.60 (16), p.8932-8937
Hauptverfasser: Jo, Hyuna, Kitao, Takashi, Kimura, Ayumi, Itoh, Yoshimitsu, Aida, Takuzo, Okuro, Kou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8937
container_issue 16
container_start_page 8932
container_title Angewandte Chemie International Edition
container_volume 60
creator Jo, Hyuna
Kitao, Takashi
Kimura, Ayumi
Itoh, Yoshimitsu
Aida, Takuzo
Okuro, Kou
description Here we report a bio‐adhesive porous organic module (GlueCOF) composed of hexagonally packed 1D nanopores based on a covalent organic framework. The nanopores are densely decorated with guanidinium ion (Gu+) pendants capable of forming salt bridges with oxyanionic species. GlueCOF strongly adheres to biopolymers through multivalent salt‐bridging interactions with their ubiquitous oxyanionic species. By taking advantage of its strong bio‐adhesive nature, we succeeded in creating a gate that possibly opens the nanopores through a selective interaction with a reporter chemical and releases guest molecules. We chose calmodulin (CaM) as a gating component that can stably entrap a loaded guest, sulforhodamine B (SRB), within the nanopores (CaMCOF⊃SRB). CaM is known to change its conformation on binding with Ca2+ ions. We confirmed that mixing CaMCOF⊃SRB with Ca2+ resulted in the release of SRB from the nanopores, whereas the use of weakly binding Mg2+ ions resulted in a much slower release of SRB. A porous covalent organic framework (GlueCOF) carrying guanidinium ion pendants has been developed that can accommodate guests and bind to biopolymers. The strong bio‐adhesive nature of GlueCOF was used to noncovalently bind to calmodulin (CaM), which acted as a gating component for the guest‐loaded 1D nanopores (CaMCOF⊃guest). The conformational change of the CaM gate upon selective binding with Ca2+ enabled the release of guest molecules.
doi_str_mv 10.1002/anie.202017117
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2485515989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2485515989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4767-9a5ce4b8d05fa7073da8f965b5e8d82096854c5b650204fea2977018162986fc3</originalsourceid><addsrcrecordid>eNqFkE1PwkAQhjdGI4hePRoSL16K-9H94oYEkQTxgufNtt1qSdvFXSrh5k_wN_pLXAJi4sXTTDLPPJl5AbhEsIcgxLe6LkwPQwwRR4gfgTaiGEWEc3Ic-piQiAuKWuDM-0XghYDsFLQIoVhAQdqgf1fYr49Pnb0aX7yb7kzXdmmdbXz30WZNafrduV1rl3UHzcrWttpOxnpV1C_n4CTXpTcX-9oBz_ej-fAhmj6NJ8PBNEpjzngkNU1NnIgM0lxzyEmmRS4ZTagRmcBQMkHjlCaMhi_i3GgsOYdIIIalYHlKOuBm5106-9YYv1JV4VNTlro24RqFY0EpolLIgF7_QRe2cXW4TmEKJcaEQRSo3o5KnfXemVwtXVFpt1EIqm2qapuqOqQaFq722iapTHbAf2IMgNwB66I0m390ajCbjH7l33OCgiM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509223601</pqid></control><display><type>article</type><title>Bio‐adhesive Nanoporous Module: Toward Autonomous Gating</title><source>Wiley Online Library All Journals</source><creator>Jo, Hyuna ; Kitao, Takashi ; Kimura, Ayumi ; Itoh, Yoshimitsu ; Aida, Takuzo ; Okuro, Kou</creator><creatorcontrib>Jo, Hyuna ; Kitao, Takashi ; Kimura, Ayumi ; Itoh, Yoshimitsu ; Aida, Takuzo ; Okuro, Kou</creatorcontrib><description>Here we report a bio‐adhesive porous organic module (GlueCOF) composed of hexagonally packed 1D nanopores based on a covalent organic framework. The nanopores are densely decorated with guanidinium ion (Gu+) pendants capable of forming salt bridges with oxyanionic species. GlueCOF strongly adheres to biopolymers through multivalent salt‐bridging interactions with their ubiquitous oxyanionic species. By taking advantage of its strong bio‐adhesive nature, we succeeded in creating a gate that possibly opens the nanopores through a selective interaction with a reporter chemical and releases guest molecules. We chose calmodulin (CaM) as a gating component that can stably entrap a loaded guest, sulforhodamine B (SRB), within the nanopores (CaMCOF⊃SRB). CaM is known to change its conformation on binding with Ca2+ ions. We confirmed that mixing CaMCOF⊃SRB with Ca2+ resulted in the release of SRB from the nanopores, whereas the use of weakly binding Mg2+ ions resulted in a much slower release of SRB. A porous covalent organic framework (GlueCOF) carrying guanidinium ion pendants has been developed that can accommodate guests and bind to biopolymers. The strong bio‐adhesive nature of GlueCOF was used to noncovalently bind to calmodulin (CaM), which acted as a gating component for the guest‐loaded 1D nanopores (CaMCOF⊃guest). The conformational change of the CaM gate upon selective binding with Ca2+ enabled the release of guest molecules.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202017117</identifier><identifier>PMID: 33528083</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>adhesive materials ; Adhesive strength ; Adhesives ; Binding ; Biopolymers ; Calcium ions ; Calcium-binding protein ; Calmodulin ; Conformation ; Gating ; gating phenomena ; host–guest chemistry ; Ions ; Magnesium ; Modules ; Porosity ; porous materials ; Sulforhodamine</subject><ispartof>Angewandte Chemie International Edition, 2021-04, Vol.60 (16), p.8932-8937</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4767-9a5ce4b8d05fa7073da8f965b5e8d82096854c5b650204fea2977018162986fc3</citedby><cites>FETCH-LOGICAL-c4767-9a5ce4b8d05fa7073da8f965b5e8d82096854c5b650204fea2977018162986fc3</cites><orcidid>0000-0002-9397-4319 ; 0000-0002-0611-3191 ; 0000-0002-0002-8017 ; 0000-0002-8356-7605 ; 0000-0003-0445-6358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202017117$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202017117$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33528083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jo, Hyuna</creatorcontrib><creatorcontrib>Kitao, Takashi</creatorcontrib><creatorcontrib>Kimura, Ayumi</creatorcontrib><creatorcontrib>Itoh, Yoshimitsu</creatorcontrib><creatorcontrib>Aida, Takuzo</creatorcontrib><creatorcontrib>Okuro, Kou</creatorcontrib><title>Bio‐adhesive Nanoporous Module: Toward Autonomous Gating</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Here we report a bio‐adhesive porous organic module (GlueCOF) composed of hexagonally packed 1D nanopores based on a covalent organic framework. The nanopores are densely decorated with guanidinium ion (Gu+) pendants capable of forming salt bridges with oxyanionic species. GlueCOF strongly adheres to biopolymers through multivalent salt‐bridging interactions with their ubiquitous oxyanionic species. By taking advantage of its strong bio‐adhesive nature, we succeeded in creating a gate that possibly opens the nanopores through a selective interaction with a reporter chemical and releases guest molecules. We chose calmodulin (CaM) as a gating component that can stably entrap a loaded guest, sulforhodamine B (SRB), within the nanopores (CaMCOF⊃SRB). CaM is known to change its conformation on binding with Ca2+ ions. We confirmed that mixing CaMCOF⊃SRB with Ca2+ resulted in the release of SRB from the nanopores, whereas the use of weakly binding Mg2+ ions resulted in a much slower release of SRB. A porous covalent organic framework (GlueCOF) carrying guanidinium ion pendants has been developed that can accommodate guests and bind to biopolymers. The strong bio‐adhesive nature of GlueCOF was used to noncovalently bind to calmodulin (CaM), which acted as a gating component for the guest‐loaded 1D nanopores (CaMCOF⊃guest). The conformational change of the CaM gate upon selective binding with Ca2+ enabled the release of guest molecules.</description><subject>adhesive materials</subject><subject>Adhesive strength</subject><subject>Adhesives</subject><subject>Binding</subject><subject>Biopolymers</subject><subject>Calcium ions</subject><subject>Calcium-binding protein</subject><subject>Calmodulin</subject><subject>Conformation</subject><subject>Gating</subject><subject>gating phenomena</subject><subject>host–guest chemistry</subject><subject>Ions</subject><subject>Magnesium</subject><subject>Modules</subject><subject>Porosity</subject><subject>porous materials</subject><subject>Sulforhodamine</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwkAQhjdGI4hePRoSL16K-9H94oYEkQTxgufNtt1qSdvFXSrh5k_wN_pLXAJi4sXTTDLPPJl5AbhEsIcgxLe6LkwPQwwRR4gfgTaiGEWEc3Ic-piQiAuKWuDM-0XghYDsFLQIoVhAQdqgf1fYr49Pnb0aX7yb7kzXdmmdbXz30WZNafrduV1rl3UHzcrWttpOxnpV1C_n4CTXpTcX-9oBz_ej-fAhmj6NJ8PBNEpjzngkNU1NnIgM0lxzyEmmRS4ZTagRmcBQMkHjlCaMhi_i3GgsOYdIIIalYHlKOuBm5106-9YYv1JV4VNTlro24RqFY0EpolLIgF7_QRe2cXW4TmEKJcaEQRSo3o5KnfXemVwtXVFpt1EIqm2qapuqOqQaFq722iapTHbAf2IMgNwB66I0m390ajCbjH7l33OCgiM</recordid><startdate>20210412</startdate><enddate>20210412</enddate><creator>Jo, Hyuna</creator><creator>Kitao, Takashi</creator><creator>Kimura, Ayumi</creator><creator>Itoh, Yoshimitsu</creator><creator>Aida, Takuzo</creator><creator>Okuro, Kou</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9397-4319</orcidid><orcidid>https://orcid.org/0000-0002-0611-3191</orcidid><orcidid>https://orcid.org/0000-0002-0002-8017</orcidid><orcidid>https://orcid.org/0000-0002-8356-7605</orcidid><orcidid>https://orcid.org/0000-0003-0445-6358</orcidid></search><sort><creationdate>20210412</creationdate><title>Bio‐adhesive Nanoporous Module: Toward Autonomous Gating</title><author>Jo, Hyuna ; Kitao, Takashi ; Kimura, Ayumi ; Itoh, Yoshimitsu ; Aida, Takuzo ; Okuro, Kou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4767-9a5ce4b8d05fa7073da8f965b5e8d82096854c5b650204fea2977018162986fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>adhesive materials</topic><topic>Adhesive strength</topic><topic>Adhesives</topic><topic>Binding</topic><topic>Biopolymers</topic><topic>Calcium ions</topic><topic>Calcium-binding protein</topic><topic>Calmodulin</topic><topic>Conformation</topic><topic>Gating</topic><topic>gating phenomena</topic><topic>host–guest chemistry</topic><topic>Ions</topic><topic>Magnesium</topic><topic>Modules</topic><topic>Porosity</topic><topic>porous materials</topic><topic>Sulforhodamine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jo, Hyuna</creatorcontrib><creatorcontrib>Kitao, Takashi</creatorcontrib><creatorcontrib>Kimura, Ayumi</creatorcontrib><creatorcontrib>Itoh, Yoshimitsu</creatorcontrib><creatorcontrib>Aida, Takuzo</creatorcontrib><creatorcontrib>Okuro, Kou</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jo, Hyuna</au><au>Kitao, Takashi</au><au>Kimura, Ayumi</au><au>Itoh, Yoshimitsu</au><au>Aida, Takuzo</au><au>Okuro, Kou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio‐adhesive Nanoporous Module: Toward Autonomous Gating</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2021-04-12</date><risdate>2021</risdate><volume>60</volume><issue>16</issue><spage>8932</spage><epage>8937</epage><pages>8932-8937</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Here we report a bio‐adhesive porous organic module (GlueCOF) composed of hexagonally packed 1D nanopores based on a covalent organic framework. The nanopores are densely decorated with guanidinium ion (Gu+) pendants capable of forming salt bridges with oxyanionic species. GlueCOF strongly adheres to biopolymers through multivalent salt‐bridging interactions with their ubiquitous oxyanionic species. By taking advantage of its strong bio‐adhesive nature, we succeeded in creating a gate that possibly opens the nanopores through a selective interaction with a reporter chemical and releases guest molecules. We chose calmodulin (CaM) as a gating component that can stably entrap a loaded guest, sulforhodamine B (SRB), within the nanopores (CaMCOF⊃SRB). CaM is known to change its conformation on binding with Ca2+ ions. We confirmed that mixing CaMCOF⊃SRB with Ca2+ resulted in the release of SRB from the nanopores, whereas the use of weakly binding Mg2+ ions resulted in a much slower release of SRB. A porous covalent organic framework (GlueCOF) carrying guanidinium ion pendants has been developed that can accommodate guests and bind to biopolymers. The strong bio‐adhesive nature of GlueCOF was used to noncovalently bind to calmodulin (CaM), which acted as a gating component for the guest‐loaded 1D nanopores (CaMCOF⊃guest). The conformational change of the CaM gate upon selective binding with Ca2+ enabled the release of guest molecules.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33528083</pmid><doi>10.1002/anie.202017117</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-9397-4319</orcidid><orcidid>https://orcid.org/0000-0002-0611-3191</orcidid><orcidid>https://orcid.org/0000-0002-0002-8017</orcidid><orcidid>https://orcid.org/0000-0002-8356-7605</orcidid><orcidid>https://orcid.org/0000-0003-0445-6358</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2021-04, Vol.60 (16), p.8932-8937
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2485515989
source Wiley Online Library All Journals
subjects adhesive materials
Adhesive strength
Adhesives
Binding
Biopolymers
Calcium ions
Calcium-binding protein
Calmodulin
Conformation
Gating
gating phenomena
host–guest chemistry
Ions
Magnesium
Modules
Porosity
porous materials
Sulforhodamine
title Bio‐adhesive Nanoporous Module: Toward Autonomous Gating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio%E2%80%90adhesive%20Nanoporous%20Module:%20Toward%20Autonomous%20Gating&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Jo,%20Hyuna&rft.date=2021-04-12&rft.volume=60&rft.issue=16&rft.spage=8932&rft.epage=8937&rft.pages=8932-8937&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202017117&rft_dat=%3Cproquest_cross%3E2485515989%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509223601&rft_id=info:pmid/33528083&rfr_iscdi=true