Tolerance Bounds for Log Gamma Regression Models

Finding lower confidence bounds for the quantiles of Weibull populations has received much attention in recent literature. An accurate procedure (based on solving a quadratic equation) is presented in (1.17). It is, in fact, more accurate than the currently available Monte Carlo tables. It extends t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Technometrics 1985-05, Vol.27 (2), p.109-118
Hauptverfasser: Jones, Robert A., Scholz, F. W., Ossiander, Mina, Shorack, Galen R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 118
container_issue 2
container_start_page 109
container_title Technometrics
container_volume 27
creator Jones, Robert A.
Scholz, F. W.
Ossiander, Mina
Shorack, Galen R.
description Finding lower confidence bounds for the quantiles of Weibull populations has received much attention in recent literature. An accurate procedure (based on solving a quadratic equation) is presented in (1.17). It is, in fact, more accurate than the currently available Monte Carlo tables. It extends to any location-scale family; this article shows that it is accurate for all members of the log gamma (K) family with ½ ≤ K ≤ ∞. The procedure is shown to work well for censored data. It also extends naturally to regression data. An even more accurate procedure (an approximation to the Lawless conditional procedure, in which the "configurations" are replaced by an approximation of their expected values) is presented in (3.1). It involves numerical integration, but the tables are independent of the data. It extends easily to the censored case.
doi_str_mv 10.1080/00401706.1985.10488028
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_24849060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1268759</jstor_id><sourcerecordid>1268759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-d1411be5b3bcd38e8e501a9c9e129a3863d41c95ebdb6cbdb3c5d88104d5d9933</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-A5EexFvXSdKmyVHFL1gRRM8hTbJSaRvNdBH_val11ZuXDIRn3nd4CDmisKAg4RSgAFqBWFAly_RVSAlMbpEZLXmVs4rxbTIboXykdske4gsA5UxWMwKPofXR9NZn52HdO8xWIWbL8Jxdm64z2YN_jh6xCX12F5xvcZ_srEyL_uB7zsnT1eXjxU2-vL--vThb5pZzMeSOFpTWvqx5bR2XXvoSqFFWecqU4VJwV1CrSl-7Wtj0cFs6KdP1rnRKcT4nJ1Puawxva4-D7hq0vm1N78MaNStkoUBAAsUE2hgQo1_p19h0Jn5oCnoUpDeC9ChIbwSlxePvBoPWtKvRQoM_24oBL0SRsMMJ6w0a3Q8Rv3IABBNU_Ka84BDi327GodKUCVmVKmFnE9b0SXBn3kNsnR7MRxvippn_c_AnbrSMIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24849060</pqid></control><display><type>article</type><title>Tolerance Bounds for Log Gamma Regression Models</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>NASA Technical Reports Server</source><creator>Jones, Robert A. ; Scholz, F. W. ; Ossiander, Mina ; Shorack, Galen R.</creator><creatorcontrib>Jones, Robert A. ; Scholz, F. W. ; Ossiander, Mina ; Shorack, Galen R.</creatorcontrib><description>Finding lower confidence bounds for the quantiles of Weibull populations has received much attention in recent literature. An accurate procedure (based on solving a quadratic equation) is presented in (1.17). It is, in fact, more accurate than the currently available Monte Carlo tables. It extends to any location-scale family; this article shows that it is accurate for all members of the log gamma (K) family with ½ ≤ K ≤ ∞. The procedure is shown to work well for censored data. It also extends naturally to regression data. An even more accurate procedure (an approximation to the Lawless conditional procedure, in which the "configurations" are replaced by an approximation of their expected values) is presented in (3.1). It involves numerical integration, but the tables are independent of the data. It extends easily to the censored case.</description><identifier>ISSN: 0040-1706</identifier><identifier>EISSN: 1537-2723</identifier><identifier>DOI: 10.1080/00401706.1985.10488028</identifier><identifier>CODEN: TCMTA2</identifier><language>eng</language><publisher>Legacy CDMS: Taylor &amp; Francis Group</publisher><subject>Applied sciences ; Approximation ; Bar stock ; Censored data ; Censoring ; Censorship ; Closed form approximation ; Covariance matrices ; Exact sciences and technology ; Linear regression ; Log gamma distribution ; Maximum likelihood estimation ; Operational research and scientific management ; Operational research. Management science ; Regression analysis ; Reliability theory. Replacement problems ; Sample size ; Standard deviation ; Statistics And Probability ; Tables for approximate conditional approximation ; Tolerance bounds</subject><ispartof>Technometrics, 1985-05, Vol.27 (2), p.109-118</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1985</rights><rights>Copyright 1985 The American Statistical Association and the American Society for Quality Control</rights><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-d1411be5b3bcd38e8e501a9c9e129a3863d41c95ebdb6cbdb3c5d88104d5d9933</citedby><cites>FETCH-LOGICAL-c336t-d1411be5b3bcd38e8e501a9c9e129a3863d41c95ebdb6cbdb3c5d88104d5d9933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1268759$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1268759$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9203464$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jones, Robert A.</creatorcontrib><creatorcontrib>Scholz, F. W.</creatorcontrib><creatorcontrib>Ossiander, Mina</creatorcontrib><creatorcontrib>Shorack, Galen R.</creatorcontrib><title>Tolerance Bounds for Log Gamma Regression Models</title><title>Technometrics</title><description>Finding lower confidence bounds for the quantiles of Weibull populations has received much attention in recent literature. An accurate procedure (based on solving a quadratic equation) is presented in (1.17). It is, in fact, more accurate than the currently available Monte Carlo tables. It extends to any location-scale family; this article shows that it is accurate for all members of the log gamma (K) family with ½ ≤ K ≤ ∞. The procedure is shown to work well for censored data. It also extends naturally to regression data. An even more accurate procedure (an approximation to the Lawless conditional procedure, in which the "configurations" are replaced by an approximation of their expected values) is presented in (3.1). It involves numerical integration, but the tables are independent of the data. It extends easily to the censored case.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Bar stock</subject><subject>Censored data</subject><subject>Censoring</subject><subject>Censorship</subject><subject>Closed form approximation</subject><subject>Covariance matrices</subject><subject>Exact sciences and technology</subject><subject>Linear regression</subject><subject>Log gamma distribution</subject><subject>Maximum likelihood estimation</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Regression analysis</subject><subject>Reliability theory. Replacement problems</subject><subject>Sample size</subject><subject>Standard deviation</subject><subject>Statistics And Probability</subject><subject>Tables for approximate conditional approximation</subject><subject>Tolerance bounds</subject><issn>0040-1706</issn><issn>1537-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNqFkE1LxDAQhoMouK7-A5EexFvXSdKmyVHFL1gRRM8hTbJSaRvNdBH_val11ZuXDIRn3nd4CDmisKAg4RSgAFqBWFAly_RVSAlMbpEZLXmVs4rxbTIboXykdske4gsA5UxWMwKPofXR9NZn52HdO8xWIWbL8Jxdm64z2YN_jh6xCX12F5xvcZ_srEyL_uB7zsnT1eXjxU2-vL--vThb5pZzMeSOFpTWvqx5bR2XXvoSqFFWecqU4VJwV1CrSl-7Wtj0cFs6KdP1rnRKcT4nJ1Puawxva4-D7hq0vm1N78MaNStkoUBAAsUE2hgQo1_p19h0Jn5oCnoUpDeC9ChIbwSlxePvBoPWtKvRQoM_24oBL0SRsMMJ6w0a3Q8Rv3IABBNU_Ka84BDi327GodKUCVmVKmFnE9b0SXBn3kNsnR7MRxvippn_c_AnbrSMIw</recordid><startdate>19850501</startdate><enddate>19850501</enddate><creator>Jones, Robert A.</creator><creator>Scholz, F. W.</creator><creator>Ossiander, Mina</creator><creator>Shorack, Galen R.</creator><general>Taylor &amp; Francis Group</general><general>The American Society for Quality Control and The American Statistical Association</general><general>American Society for Quality Control</general><general>American Statistical Association</general><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19850501</creationdate><title>Tolerance Bounds for Log Gamma Regression Models</title><author>Jones, Robert A. ; Scholz, F. W. ; Ossiander, Mina ; Shorack, Galen R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-d1411be5b3bcd38e8e501a9c9e129a3863d41c95ebdb6cbdb3c5d88104d5d9933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Bar stock</topic><topic>Censored data</topic><topic>Censoring</topic><topic>Censorship</topic><topic>Closed form approximation</topic><topic>Covariance matrices</topic><topic>Exact sciences and technology</topic><topic>Linear regression</topic><topic>Log gamma distribution</topic><topic>Maximum likelihood estimation</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Regression analysis</topic><topic>Reliability theory. Replacement problems</topic><topic>Sample size</topic><topic>Standard deviation</topic><topic>Statistics And Probability</topic><topic>Tables for approximate conditional approximation</topic><topic>Tolerance bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, Robert A.</creatorcontrib><creatorcontrib>Scholz, F. W.</creatorcontrib><creatorcontrib>Ossiander, Mina</creatorcontrib><creatorcontrib>Shorack, Galen R.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Technometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Robert A.</au><au>Scholz, F. W.</au><au>Ossiander, Mina</au><au>Shorack, Galen R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tolerance Bounds for Log Gamma Regression Models</atitle><jtitle>Technometrics</jtitle><date>1985-05-01</date><risdate>1985</risdate><volume>27</volume><issue>2</issue><spage>109</spage><epage>118</epage><pages>109-118</pages><issn>0040-1706</issn><eissn>1537-2723</eissn><coden>TCMTA2</coden><abstract>Finding lower confidence bounds for the quantiles of Weibull populations has received much attention in recent literature. An accurate procedure (based on solving a quadratic equation) is presented in (1.17). It is, in fact, more accurate than the currently available Monte Carlo tables. It extends to any location-scale family; this article shows that it is accurate for all members of the log gamma (K) family with ½ ≤ K ≤ ∞. The procedure is shown to work well for censored data. It also extends naturally to regression data. An even more accurate procedure (an approximation to the Lawless conditional procedure, in which the "configurations" are replaced by an approximation of their expected values) is presented in (3.1). It involves numerical integration, but the tables are independent of the data. It extends easily to the censored case.</abstract><cop>Legacy CDMS</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00401706.1985.10488028</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-1706
ispartof Technometrics, 1985-05, Vol.27 (2), p.109-118
issn 0040-1706
1537-2723
language eng
recordid cdi_proquest_miscellaneous_24849060
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; NASA Technical Reports Server
subjects Applied sciences
Approximation
Bar stock
Censored data
Censoring
Censorship
Closed form approximation
Covariance matrices
Exact sciences and technology
Linear regression
Log gamma distribution
Maximum likelihood estimation
Operational research and scientific management
Operational research. Management science
Regression analysis
Reliability theory. Replacement problems
Sample size
Standard deviation
Statistics And Probability
Tables for approximate conditional approximation
Tolerance bounds
title Tolerance Bounds for Log Gamma Regression Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tolerance%20Bounds%20for%20Log%20Gamma%20Regression%20Models&rft.jtitle=Technometrics&rft.au=Jones,%20Robert%20A.&rft.date=1985-05-01&rft.volume=27&rft.issue=2&rft.spage=109&rft.epage=118&rft.pages=109-118&rft.issn=0040-1706&rft.eissn=1537-2723&rft.coden=TCMTA2&rft_id=info:doi/10.1080/00401706.1985.10488028&rft_dat=%3Cjstor_proqu%3E1268759%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24849060&rft_id=info:pmid/&rft_jstor_id=1268759&rfr_iscdi=true