Theory of multicavity gyroklystron amplifier based on a Green's function approach
The paper presents an application of a self-consistent field theory for gyrotrons to a multicavity gyroklystron configuration. The coupled RF field equation and the Lorentz equations are solved in the slow-time-scale formulation using a Green's function technique to satisfy appropriate boundary...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 1985-01, Vol.13 (6), p.409-416 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 416 |
---|---|
container_issue | 6 |
container_start_page | 409 |
container_title | IEEE transactions on plasma science |
container_volume | 13 |
creator | GANGULY, A. K FLIFLET, A. W MCCURDY, A. H |
description | The paper presents an application of a self-consistent field theory for gyrotrons to a multicavity gyroklystron configuration. The coupled RF field equation and the Lorentz equations are solved in the slow-time-scale formulation using a Green's function technique to satisfy appropriate boundary conditions. An analytical expression for the small-signal gain is obtained by the method of successive approximation. The theory has ben developed for cylindrical TEmnl mode as well as rectangular TE101 mode. The theory is applied to calculate the small signal performance characteristics of a three-cavity configuration operating with rectangular TE101 mode. (Author) |
doi_str_mv | 10.1109/TPS.1985.4316454 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_24848684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24848684</sourcerecordid><originalsourceid>FETCH-LOGICAL-p244t-b9c605f601cc7d43c200901aedcbe5eab2eb93b4f31f1a75f3024de919d902e13</originalsourceid><addsrcrecordid>eNqNjk1LxDAURYMoOI7uXWYhuuqYl6SdZimDjsKAiuO6pOmLE00_TFqh_94Ozg9wdeFwuPcScglsAcDU7fblbQEqTxdSQCZTeURmoIRKlFimx2TGmBKJyEGckrMYPxkDmTI-I6_bHbZhpK2l9eB7Z_SP60f6MYb2y4-xD21Ddd15Zx0GWuqIFd0jug6IzU2kdmhM7_ao60Krze6cnFjtI14cck7eH-63q8dk87x-Wt1tko5L2SelMhlLbcbAmGUlheHTRQYaK1NiirrkWCpRSivAgl6mVjAuK1SgKsU4gpiT67_eafZ7wNgXtYsGvdcNtkMsuMxlnuXyfyJIMYlXB1FHo70NujEuFl1wtQ5jMVlC8Uz8Alhobjk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24848143</pqid></control><display><type>article</type><title>Theory of multicavity gyroklystron amplifier based on a Green's function approach</title><source>IEEE Electronic Library (IEL)</source><creator>GANGULY, A. K ; FLIFLET, A. W ; MCCURDY, A. H</creator><creatorcontrib>GANGULY, A. K ; FLIFLET, A. W ; MCCURDY, A. H</creatorcontrib><description>The paper presents an application of a self-consistent field theory for gyrotrons to a multicavity gyroklystron configuration. The coupled RF field equation and the Lorentz equations are solved in the slow-time-scale formulation using a Green's function technique to satisfy appropriate boundary conditions. An analytical expression for the small-signal gain is obtained by the method of successive approximation. The theory has ben developed for cylindrical TEmnl mode as well as rectangular TE101 mode. The theory is applied to calculate the small signal performance characteristics of a three-cavity configuration operating with rectangular TE101 mode. (Author)</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.1985.4316454</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York, NY: Institute of Electrical and Electronics Engineers</publisher><subject>Applied sciences ; Electronic tubes, masers ; Electronics ; Exact sciences and technology</subject><ispartof>IEEE transactions on plasma science, 1985-01, Vol.13 (6), p.409-416</ispartof><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8483926$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GANGULY, A. K</creatorcontrib><creatorcontrib>FLIFLET, A. W</creatorcontrib><creatorcontrib>MCCURDY, A. H</creatorcontrib><title>Theory of multicavity gyroklystron amplifier based on a Green's function approach</title><title>IEEE transactions on plasma science</title><description>The paper presents an application of a self-consistent field theory for gyrotrons to a multicavity gyroklystron configuration. The coupled RF field equation and the Lorentz equations are solved in the slow-time-scale formulation using a Green's function technique to satisfy appropriate boundary conditions. An analytical expression for the small-signal gain is obtained by the method of successive approximation. The theory has ben developed for cylindrical TEmnl mode as well as rectangular TE101 mode. The theory is applied to calculate the small signal performance characteristics of a three-cavity configuration operating with rectangular TE101 mode. (Author)</description><subject>Applied sciences</subject><subject>Electronic tubes, masers</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNqNjk1LxDAURYMoOI7uXWYhuuqYl6SdZimDjsKAiuO6pOmLE00_TFqh_94Ozg9wdeFwuPcScglsAcDU7fblbQEqTxdSQCZTeURmoIRKlFimx2TGmBKJyEGckrMYPxkDmTI-I6_bHbZhpK2l9eB7Z_SP60f6MYb2y4-xD21Ddd15Zx0GWuqIFd0jug6IzU2kdmhM7_ao60Krze6cnFjtI14cck7eH-63q8dk87x-Wt1tko5L2SelMhlLbcbAmGUlheHTRQYaK1NiirrkWCpRSivAgl6mVjAuK1SgKsU4gpiT67_eafZ7wNgXtYsGvdcNtkMsuMxlnuXyfyJIMYlXB1FHo70NujEuFl1wtQ5jMVlC8Uz8Alhobjk</recordid><startdate>19850101</startdate><enddate>19850101</enddate><creator>GANGULY, A. K</creator><creator>FLIFLET, A. W</creator><creator>MCCURDY, A. H</creator><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope></search><sort><creationdate>19850101</creationdate><title>Theory of multicavity gyroklystron amplifier based on a Green's function approach</title><author>GANGULY, A. K ; FLIFLET, A. W ; MCCURDY, A. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p244t-b9c605f601cc7d43c200901aedcbe5eab2eb93b4f31f1a75f3024de919d902e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Applied sciences</topic><topic>Electronic tubes, masers</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GANGULY, A. K</creatorcontrib><creatorcontrib>FLIFLET, A. W</creatorcontrib><creatorcontrib>MCCURDY, A. H</creatorcontrib><collection>Pascal-Francis</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GANGULY, A. K</au><au>FLIFLET, A. W</au><au>MCCURDY, A. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of multicavity gyroklystron amplifier based on a Green's function approach</atitle><jtitle>IEEE transactions on plasma science</jtitle><date>1985-01-01</date><risdate>1985</risdate><volume>13</volume><issue>6</issue><spage>409</spage><epage>416</epage><pages>409-416</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>The paper presents an application of a self-consistent field theory for gyrotrons to a multicavity gyroklystron configuration. The coupled RF field equation and the Lorentz equations are solved in the slow-time-scale formulation using a Green's function technique to satisfy appropriate boundary conditions. An analytical expression for the small-signal gain is obtained by the method of successive approximation. The theory has ben developed for cylindrical TEmnl mode as well as rectangular TE101 mode. The theory is applied to calculate the small signal performance characteristics of a three-cavity configuration operating with rectangular TE101 mode. (Author)</abstract><cop>New York, NY</cop><pub>Institute of Electrical and Electronics Engineers</pub><doi>10.1109/TPS.1985.4316454</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 1985-01, Vol.13 (6), p.409-416 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_proquest_miscellaneous_24848684 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Electronic tubes, masers Electronics Exact sciences and technology |
title | Theory of multicavity gyroklystron amplifier based on a Green's function approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20multicavity%20gyroklystron%20amplifier%20based%20on%20a%20Green's%20function%20approach&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=GANGULY,%20A.%20K&rft.date=1985-01-01&rft.volume=13&rft.issue=6&rft.spage=409&rft.epage=416&rft.pages=409-416&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.1985.4316454&rft_dat=%3Cproquest_pasca%3E24848684%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24848143&rft_id=info:pmid/&rfr_iscdi=true |