Horseradish peroxidase-crosslinked calcium-containing silk fibroin hydrogels as artificial matrices for bone cancer research

"Online ahead of print" Hydrogels, being capable of mimicking the extracellular matrix composition of tissues, are greatly used as artificial matrices in tissue engineering applications. In this study, we report the generation of horseradish peroxidase (HRP)-crosslinked silk fibroin (SF) h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular bioscience 2021-04, Vol.21 (4), p.2000425(1)-2000425(7)
Hauptverfasser: Pierantoni, Lara, Ribeiro, Viviana Pinto, Costa, Lígia Francisca Rodrigues, Pina, Sandra Cristina Almeida, da Silva Morais, Alain, Silva-Correia, Joana, Kundu, Subhas C, Motta, Antonella, Reis, R. L., Oliveira, J. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2000425(7)
container_issue 4
container_start_page 2000425(1)
container_title Macromolecular bioscience
container_volume 21
creator Pierantoni, Lara
Ribeiro, Viviana Pinto
Costa, Lígia Francisca Rodrigues
Pina, Sandra Cristina Almeida
da Silva Morais, Alain
Silva-Correia, Joana
Kundu, Subhas C
Motta, Antonella
Reis, R. L.
Oliveira, J. M.
description "Online ahead of print" Hydrogels, being capable of mimicking the extracellular matrix composition of tissues, are greatly used as artificial matrices in tissue engineering applications. In this study, we report the generation of horseradish peroxidase (HRP)-crosslinked silk fibroin (SF) hydrogels, using calcium peroxide as oxidizer. The proposed fast forming calcium-containing SF hydrogels spontaneously undergo SF conformational changes from random coil to β-sheet during time, exhibiting ionic and pH stimuli responsiveness. In vitro response shows calcium-containing SF hydrogelsâ encapsulation properties and their ability to promote SaOs-2 tumor cells death after 10 days of culturing, upon complete β-sheet conformation transition. Calcium-containing SF hydrogelsâ angiogenic potential investigated in an in ovo chick chorioallantoic membrane (CAM) assay, show a high number of converging blood vessels as compared to the negative control, although no endothelial cells infiltration is observed. The in vivo response evaluated in subcutaneous implantation in CD1 and nude NCD1 mice shows that calcium-containing SF hydrogels are stable up to 6 weeks after implantation. However, an increased number of dead cells are also present in the surrounding tissue. The results suggest the potential of calcium-containing SF hydrogels to be used as novel in situ therapeutics for bone cancer treatment applications, particularly to osteosarcoma. L.P. thanks the International mobility program of the University of Trento, Italy. J.S.-C. and J.M.O. thank the Portuguese Foundation for Science and Technology (FCT) for the funds provided under the program Investigador FCT 2015 (IF/00115/2015 and IF/01285/2015, respectively). This research was funded by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) (NORTE-01-0145-FEDER-000023). The project BAMOS (H2020-MSCARISE-2016-734156) funded by the European Union under the Horizon 2020 program, and the EU Framework Programme for Research and Innovation H2020 on FoReCaST (Grant Agreement No.668983), are also greatly acknowledged. V.P.R. acknowledge for the Junior Researcher contract (POCI-01-0145-FEDER-031367) attributed by the Portuguese Foundation for Science and Technology to Fun4TE project (PTDC/EMD-EMD/31367/2017).
doi_str_mv 10.1002/mabi.202000425
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2484155779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512323132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5415-24f03ff916f8a1c10da0d5c75bdc0c5ce54dbf4322b01fd84543eae0d4f503793</originalsourceid><addsrcrecordid>eNqFkUFv1DAQRi0EomXhyhFZ4sIly9iON8mxVEArFXGBs-XY465bJ17GCbASP560W1aIC5JH9uHNG2s-xl4KWAsA-XawfVxLkABQS_2InYqN2FRadPrx8d02J-xZKTcAomk7-ZSdKKWlhE6fsl8XmQqS9bFs-Q4p_4zeFqwc5VJSHG_Rc2eTi_NQuTxONo5xvOYlplseYk85jny795SvMRVul0NTDNFFm_hgJ4oOCw-ZeJ9HXEyjQ-KEBS257XP2JNhU8MXDvWJfP7z_cn5RXX3-eHl-dlU5XQtdyTqACqETm9Ba4QR4C167RvfegdMOde37UCspexDBt7WuFVoEXwcNqunUir05eHeUv81YJjPE4jAlO2Kei5F1u8zRzT36-h_0Js80Lr8zUguppBJLrdj6QN2viTCYHcXB0t4IMHe5mLtczDGXpeHVg3buB_RH_E8QC9AdgB8x4f4_OvPp7N3l33J-6CVn7c4Qfo9lssWIVkrTALRK_QYJL6Zc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512323132</pqid></control><display><type>article</type><title>Horseradish peroxidase-crosslinked calcium-containing silk fibroin hydrogels as artificial matrices for bone cancer research</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pierantoni, Lara ; Ribeiro, Viviana Pinto ; Costa, Lígia Francisca Rodrigues ; Pina, Sandra Cristina Almeida ; da Silva Morais, Alain ; Silva-Correia, Joana ; Kundu, Subhas C ; Motta, Antonella ; Reis, R. L. ; Oliveira, J. M.</creator><creatorcontrib>Pierantoni, Lara ; Ribeiro, Viviana Pinto ; Costa, Lígia Francisca Rodrigues ; Pina, Sandra Cristina Almeida ; da Silva Morais, Alain ; Silva-Correia, Joana ; Kundu, Subhas C ; Motta, Antonella ; Reis, R. L. ; Oliveira, J. M.</creatorcontrib><description>"Online ahead of print" Hydrogels, being capable of mimicking the extracellular matrix composition of tissues, are greatly used as artificial matrices in tissue engineering applications. In this study, we report the generation of horseradish peroxidase (HRP)-crosslinked silk fibroin (SF) hydrogels, using calcium peroxide as oxidizer. The proposed fast forming calcium-containing SF hydrogels spontaneously undergo SF conformational changes from random coil to β-sheet during time, exhibiting ionic and pH stimuli responsiveness. In vitro response shows calcium-containing SF hydrogelsâ encapsulation properties and their ability to promote SaOs-2 tumor cells death after 10 days of culturing, upon complete β-sheet conformation transition. Calcium-containing SF hydrogelsâ angiogenic potential investigated in an in ovo chick chorioallantoic membrane (CAM) assay, show a high number of converging blood vessels as compared to the negative control, although no endothelial cells infiltration is observed. The in vivo response evaluated in subcutaneous implantation in CD1 and nude NCD1 mice shows that calcium-containing SF hydrogels are stable up to 6 weeks after implantation. However, an increased number of dead cells are also present in the surrounding tissue. The results suggest the potential of calcium-containing SF hydrogels to be used as novel in situ therapeutics for bone cancer treatment applications, particularly to osteosarcoma. L.P. thanks the International mobility program of the University of Trento, Italy. J.S.-C. and J.M.O. thank the Portuguese Foundation for Science and Technology (FCT) for the funds provided under the program Investigador FCT 2015 (IF/00115/2015 and IF/01285/2015, respectively). This research was funded by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) (NORTE-01-0145-FEDER-000023). The project BAMOS (H2020-MSCARISE-2016-734156) funded by the European Union under the Horizon 2020 program, and the EU Framework Programme for Research and Innovation H2020 on FoReCaST (Grant Agreement No.668983), are also greatly acknowledged. V.P.R. acknowledge for the Junior Researcher contract (POCI-01-0145-FEDER-031367) attributed by the Portuguese Foundation for Science and Technology to Fun4TE project (PTDC/EMD-EMD/31367/2017).</description><identifier>ISSN: 1616-5187</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.202000425</identifier><identifier>PMID: 33522095</identifier><language>eng</language><publisher>Germany: Wiley</publisher><subject>Angiogenesis ; Animals ; Biomedical materials ; Blood vessels ; Bone ; Bone and Bones - metabolism ; Bone cancer ; Bone composition ; Bone Neoplasms - metabolism ; Bone Neoplasms - pathology ; Calcium ; Cancer ; Cancer research ; Cell death ; Cell Line, Tumor ; Chorioallantoic membrane ; Chorioallantoic Membrane - metabolism ; Coils ; Conformation ; Crosslinking ; Endothelial cells ; Extracellular matrix ; Fibroins - chemistry ; Horseradish peroxidase ; Horseradish Peroxidase - chemistry ; Humans ; Hydrogels ; Hydrogels - chemistry ; Hydrogen-Ion Concentration ; Implantation ; Metastases ; Mice ; Mimicry ; Neovascularization, Pathologic ; Osteosarcoma ; Oxidizing agents ; Peroxidase ; Peroxide ; Protein Conformation ; Random coil ; Science &amp; Technology ; Silk ; Silk - metabolism ; Silk Fibroin ; Surgical implants ; Tissue Engineering ; Tumor cells</subject><ispartof>Macromolecular bioscience, 2021-04, Vol.21 (4), p.2000425(1)-2000425(7)</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5415-24f03ff916f8a1c10da0d5c75bdc0c5ce54dbf4322b01fd84543eae0d4f503793</citedby><cites>FETCH-LOGICAL-c5415-24f03ff916f8a1c10da0d5c75bdc0c5ce54dbf4322b01fd84543eae0d4f503793</cites><orcidid>0000-0002-4361-1253 ; 0000-0003-1312-3109 ; 0000-0003-4893-6863 ; 0000-0002-7170-2291 ; 0000-0001-5057-0819 ; 0000-0001-8618-7889 ; 0000-0001-7052-8837 ; 0000-0002-3679-0759 ; 0000-0002-4295-6129</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmabi.202000425$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmabi.202000425$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33522095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pierantoni, Lara</creatorcontrib><creatorcontrib>Ribeiro, Viviana Pinto</creatorcontrib><creatorcontrib>Costa, Lígia Francisca Rodrigues</creatorcontrib><creatorcontrib>Pina, Sandra Cristina Almeida</creatorcontrib><creatorcontrib>da Silva Morais, Alain</creatorcontrib><creatorcontrib>Silva-Correia, Joana</creatorcontrib><creatorcontrib>Kundu, Subhas C</creatorcontrib><creatorcontrib>Motta, Antonella</creatorcontrib><creatorcontrib>Reis, R. L.</creatorcontrib><creatorcontrib>Oliveira, J. M.</creatorcontrib><title>Horseradish peroxidase-crosslinked calcium-containing silk fibroin hydrogels as artificial matrices for bone cancer research</title><title>Macromolecular bioscience</title><addtitle>Macromol Biosci</addtitle><description>"Online ahead of print" Hydrogels, being capable of mimicking the extracellular matrix composition of tissues, are greatly used as artificial matrices in tissue engineering applications. In this study, we report the generation of horseradish peroxidase (HRP)-crosslinked silk fibroin (SF) hydrogels, using calcium peroxide as oxidizer. The proposed fast forming calcium-containing SF hydrogels spontaneously undergo SF conformational changes from random coil to β-sheet during time, exhibiting ionic and pH stimuli responsiveness. In vitro response shows calcium-containing SF hydrogelsâ encapsulation properties and their ability to promote SaOs-2 tumor cells death after 10 days of culturing, upon complete β-sheet conformation transition. Calcium-containing SF hydrogelsâ angiogenic potential investigated in an in ovo chick chorioallantoic membrane (CAM) assay, show a high number of converging blood vessels as compared to the negative control, although no endothelial cells infiltration is observed. The in vivo response evaluated in subcutaneous implantation in CD1 and nude NCD1 mice shows that calcium-containing SF hydrogels are stable up to 6 weeks after implantation. However, an increased number of dead cells are also present in the surrounding tissue. The results suggest the potential of calcium-containing SF hydrogels to be used as novel in situ therapeutics for bone cancer treatment applications, particularly to osteosarcoma. L.P. thanks the International mobility program of the University of Trento, Italy. J.S.-C. and J.M.O. thank the Portuguese Foundation for Science and Technology (FCT) for the funds provided under the program Investigador FCT 2015 (IF/00115/2015 and IF/01285/2015, respectively). This research was funded by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) (NORTE-01-0145-FEDER-000023). The project BAMOS (H2020-MSCARISE-2016-734156) funded by the European Union under the Horizon 2020 program, and the EU Framework Programme for Research and Innovation H2020 on FoReCaST (Grant Agreement No.668983), are also greatly acknowledged. V.P.R. acknowledge for the Junior Researcher contract (POCI-01-0145-FEDER-031367) attributed by the Portuguese Foundation for Science and Technology to Fun4TE project (PTDC/EMD-EMD/31367/2017).</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Biomedical materials</subject><subject>Blood vessels</subject><subject>Bone</subject><subject>Bone and Bones - metabolism</subject><subject>Bone cancer</subject><subject>Bone composition</subject><subject>Bone Neoplasms - metabolism</subject><subject>Bone Neoplasms - pathology</subject><subject>Calcium</subject><subject>Cancer</subject><subject>Cancer research</subject><subject>Cell death</subject><subject>Cell Line, Tumor</subject><subject>Chorioallantoic membrane</subject><subject>Chorioallantoic Membrane - metabolism</subject><subject>Coils</subject><subject>Conformation</subject><subject>Crosslinking</subject><subject>Endothelial cells</subject><subject>Extracellular matrix</subject><subject>Fibroins - chemistry</subject><subject>Horseradish peroxidase</subject><subject>Horseradish Peroxidase - chemistry</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Implantation</subject><subject>Metastases</subject><subject>Mice</subject><subject>Mimicry</subject><subject>Neovascularization, Pathologic</subject><subject>Osteosarcoma</subject><subject>Oxidizing agents</subject><subject>Peroxidase</subject><subject>Peroxide</subject><subject>Protein Conformation</subject><subject>Random coil</subject><subject>Science &amp; Technology</subject><subject>Silk</subject><subject>Silk - metabolism</subject><subject>Silk Fibroin</subject><subject>Surgical implants</subject><subject>Tissue Engineering</subject><subject>Tumor cells</subject><issn>1616-5187</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQRi0EomXhyhFZ4sIly9iON8mxVEArFXGBs-XY465bJ17GCbASP560W1aIC5JH9uHNG2s-xl4KWAsA-XawfVxLkABQS_2InYqN2FRadPrx8d02J-xZKTcAomk7-ZSdKKWlhE6fsl8XmQqS9bFs-Q4p_4zeFqwc5VJSHG_Rc2eTi_NQuTxONo5xvOYlplseYk85jny795SvMRVul0NTDNFFm_hgJ4oOCw-ZeJ9HXEyjQ-KEBS257XP2JNhU8MXDvWJfP7z_cn5RXX3-eHl-dlU5XQtdyTqACqETm9Ba4QR4C167RvfegdMOde37UCspexDBt7WuFVoEXwcNqunUir05eHeUv81YJjPE4jAlO2Kei5F1u8zRzT36-h_0Js80Lr8zUguppBJLrdj6QN2viTCYHcXB0t4IMHe5mLtczDGXpeHVg3buB_RH_E8QC9AdgB8x4f4_OvPp7N3l33J-6CVn7c4Qfo9lssWIVkrTALRK_QYJL6Zc</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Pierantoni, Lara</creator><creator>Ribeiro, Viviana Pinto</creator><creator>Costa, Lígia Francisca Rodrigues</creator><creator>Pina, Sandra Cristina Almeida</creator><creator>da Silva Morais, Alain</creator><creator>Silva-Correia, Joana</creator><creator>Kundu, Subhas C</creator><creator>Motta, Antonella</creator><creator>Reis, R. L.</creator><creator>Oliveira, J. M.</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>RCLKO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4361-1253</orcidid><orcidid>https://orcid.org/0000-0003-1312-3109</orcidid><orcidid>https://orcid.org/0000-0003-4893-6863</orcidid><orcidid>https://orcid.org/0000-0002-7170-2291</orcidid><orcidid>https://orcid.org/0000-0001-5057-0819</orcidid><orcidid>https://orcid.org/0000-0001-8618-7889</orcidid><orcidid>https://orcid.org/0000-0001-7052-8837</orcidid><orcidid>https://orcid.org/0000-0002-3679-0759</orcidid><orcidid>https://orcid.org/0000-0002-4295-6129</orcidid></search><sort><creationdate>202104</creationdate><title>Horseradish peroxidase-crosslinked calcium-containing silk fibroin hydrogels as artificial matrices for bone cancer research</title><author>Pierantoni, Lara ; Ribeiro, Viviana Pinto ; Costa, Lígia Francisca Rodrigues ; Pina, Sandra Cristina Almeida ; da Silva Morais, Alain ; Silva-Correia, Joana ; Kundu, Subhas C ; Motta, Antonella ; Reis, R. L. ; Oliveira, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5415-24f03ff916f8a1c10da0d5c75bdc0c5ce54dbf4322b01fd84543eae0d4f503793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Biomedical materials</topic><topic>Blood vessels</topic><topic>Bone</topic><topic>Bone and Bones - metabolism</topic><topic>Bone cancer</topic><topic>Bone composition</topic><topic>Bone Neoplasms - metabolism</topic><topic>Bone Neoplasms - pathology</topic><topic>Calcium</topic><topic>Cancer</topic><topic>Cancer research</topic><topic>Cell death</topic><topic>Cell Line, Tumor</topic><topic>Chorioallantoic membrane</topic><topic>Chorioallantoic Membrane - metabolism</topic><topic>Coils</topic><topic>Conformation</topic><topic>Crosslinking</topic><topic>Endothelial cells</topic><topic>Extracellular matrix</topic><topic>Fibroins - chemistry</topic><topic>Horseradish peroxidase</topic><topic>Horseradish Peroxidase - chemistry</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Implantation</topic><topic>Metastases</topic><topic>Mice</topic><topic>Mimicry</topic><topic>Neovascularization, Pathologic</topic><topic>Osteosarcoma</topic><topic>Oxidizing agents</topic><topic>Peroxidase</topic><topic>Peroxide</topic><topic>Protein Conformation</topic><topic>Random coil</topic><topic>Science &amp; Technology</topic><topic>Silk</topic><topic>Silk - metabolism</topic><topic>Silk Fibroin</topic><topic>Surgical implants</topic><topic>Tissue Engineering</topic><topic>Tumor cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pierantoni, Lara</creatorcontrib><creatorcontrib>Ribeiro, Viviana Pinto</creatorcontrib><creatorcontrib>Costa, Lígia Francisca Rodrigues</creatorcontrib><creatorcontrib>Pina, Sandra Cristina Almeida</creatorcontrib><creatorcontrib>da Silva Morais, Alain</creatorcontrib><creatorcontrib>Silva-Correia, Joana</creatorcontrib><creatorcontrib>Kundu, Subhas C</creatorcontrib><creatorcontrib>Motta, Antonella</creatorcontrib><creatorcontrib>Reis, R. L.</creatorcontrib><creatorcontrib>Oliveira, J. M.</creatorcontrib><collection>RCAAP open access repository</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pierantoni, Lara</au><au>Ribeiro, Viviana Pinto</au><au>Costa, Lígia Francisca Rodrigues</au><au>Pina, Sandra Cristina Almeida</au><au>da Silva Morais, Alain</au><au>Silva-Correia, Joana</au><au>Kundu, Subhas C</au><au>Motta, Antonella</au><au>Reis, R. L.</au><au>Oliveira, J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Horseradish peroxidase-crosslinked calcium-containing silk fibroin hydrogels as artificial matrices for bone cancer research</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol Biosci</addtitle><date>2021-04</date><risdate>2021</risdate><volume>21</volume><issue>4</issue><spage>2000425(1)</spage><epage>2000425(7)</epage><pages>2000425(1)-2000425(7)</pages><issn>1616-5187</issn><eissn>1616-5195</eissn><abstract>"Online ahead of print" Hydrogels, being capable of mimicking the extracellular matrix composition of tissues, are greatly used as artificial matrices in tissue engineering applications. In this study, we report the generation of horseradish peroxidase (HRP)-crosslinked silk fibroin (SF) hydrogels, using calcium peroxide as oxidizer. The proposed fast forming calcium-containing SF hydrogels spontaneously undergo SF conformational changes from random coil to β-sheet during time, exhibiting ionic and pH stimuli responsiveness. In vitro response shows calcium-containing SF hydrogelsâ encapsulation properties and their ability to promote SaOs-2 tumor cells death after 10 days of culturing, upon complete β-sheet conformation transition. Calcium-containing SF hydrogelsâ angiogenic potential investigated in an in ovo chick chorioallantoic membrane (CAM) assay, show a high number of converging blood vessels as compared to the negative control, although no endothelial cells infiltration is observed. The in vivo response evaluated in subcutaneous implantation in CD1 and nude NCD1 mice shows that calcium-containing SF hydrogels are stable up to 6 weeks after implantation. However, an increased number of dead cells are also present in the surrounding tissue. The results suggest the potential of calcium-containing SF hydrogels to be used as novel in situ therapeutics for bone cancer treatment applications, particularly to osteosarcoma. L.P. thanks the International mobility program of the University of Trento, Italy. J.S.-C. and J.M.O. thank the Portuguese Foundation for Science and Technology (FCT) for the funds provided under the program Investigador FCT 2015 (IF/00115/2015 and IF/01285/2015, respectively). This research was funded by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) (NORTE-01-0145-FEDER-000023). The project BAMOS (H2020-MSCARISE-2016-734156) funded by the European Union under the Horizon 2020 program, and the EU Framework Programme for Research and Innovation H2020 on FoReCaST (Grant Agreement No.668983), are also greatly acknowledged. V.P.R. acknowledge for the Junior Researcher contract (POCI-01-0145-FEDER-031367) attributed by the Portuguese Foundation for Science and Technology to Fun4TE project (PTDC/EMD-EMD/31367/2017).</abstract><cop>Germany</cop><pub>Wiley</pub><pmid>33522095</pmid><doi>10.1002/mabi.202000425</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4361-1253</orcidid><orcidid>https://orcid.org/0000-0003-1312-3109</orcidid><orcidid>https://orcid.org/0000-0003-4893-6863</orcidid><orcidid>https://orcid.org/0000-0002-7170-2291</orcidid><orcidid>https://orcid.org/0000-0001-5057-0819</orcidid><orcidid>https://orcid.org/0000-0001-8618-7889</orcidid><orcidid>https://orcid.org/0000-0001-7052-8837</orcidid><orcidid>https://orcid.org/0000-0002-3679-0759</orcidid><orcidid>https://orcid.org/0000-0002-4295-6129</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-5187
ispartof Macromolecular bioscience, 2021-04, Vol.21 (4), p.2000425(1)-2000425(7)
issn 1616-5187
1616-5195
language eng
recordid cdi_proquest_miscellaneous_2484155779
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Angiogenesis
Animals
Biomedical materials
Blood vessels
Bone
Bone and Bones - metabolism
Bone cancer
Bone composition
Bone Neoplasms - metabolism
Bone Neoplasms - pathology
Calcium
Cancer
Cancer research
Cell death
Cell Line, Tumor
Chorioallantoic membrane
Chorioallantoic Membrane - metabolism
Coils
Conformation
Crosslinking
Endothelial cells
Extracellular matrix
Fibroins - chemistry
Horseradish peroxidase
Horseradish Peroxidase - chemistry
Humans
Hydrogels
Hydrogels - chemistry
Hydrogen-Ion Concentration
Implantation
Metastases
Mice
Mimicry
Neovascularization, Pathologic
Osteosarcoma
Oxidizing agents
Peroxidase
Peroxide
Protein Conformation
Random coil
Science & Technology
Silk
Silk - metabolism
Silk Fibroin
Surgical implants
Tissue Engineering
Tumor cells
title Horseradish peroxidase-crosslinked calcium-containing silk fibroin hydrogels as artificial matrices for bone cancer research
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A32%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Horseradish%20peroxidase-crosslinked%20calcium-containing%20silk%20fibroin%20hydrogels%20as%20artificial%20matrices%20for%20bone%20cancer%20research&rft.jtitle=Macromolecular%20bioscience&rft.au=Pierantoni,%20Lara&rft.date=2021-04&rft.volume=21&rft.issue=4&rft.spage=2000425(1)&rft.epage=2000425(7)&rft.pages=2000425(1)-2000425(7)&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.202000425&rft_dat=%3Cproquest_cross%3E2512323132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512323132&rft_id=info:pmid/33522095&rfr_iscdi=true