Epigenomic features revealed by ATAC‐seq impact transgene expression in CHO cells

Different regions of a mammalian genome have different accessibilities to transcriptional machinery. The integration site of a transgene affects how actively it is transcribed. Highly accessible genomic regions called super‐enhancers have been recently described as strong regulatory elements that sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2021-05, Vol.118 (5), p.1851-1861
Hauptverfasser: Lee, Zion, Raabe, Marina, Hu, Wei‐Shou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1861
container_issue 5
container_start_page 1851
container_title Biotechnology and bioengineering
container_volume 118
creator Lee, Zion
Raabe, Marina
Hu, Wei‐Shou
description Different regions of a mammalian genome have different accessibilities to transcriptional machinery. The integration site of a transgene affects how actively it is transcribed. Highly accessible genomic regions called super‐enhancers have been recently described as strong regulatory elements that shape cell identity. Super‐enhancers have been identified in Chinese hamster ovary (CHO) cells using the Assay for Transposase‐Accessible Chromatin Sequencing (ATAC‐seq). Genes near super‐enhancer regions had high transcript levels and were enriched for oncogenic signaling and proliferation functions, consistent with an immortalized phenotype. Inaccessible regions in the genome with low ATAC signal also had low transcriptional activity. Genes in inaccessible regions were enriched for remote tissue functions such as taste, smell, and neuronal activation. A lentiviral reporter integration assay showed integration into super‐enhancer regions conferred higher reporter expression than insertion into inaccessible regions. Targeted integration of an IgG vector into the Plec super‐enhancer region yielded clones that expressed the immunoglobulin light chain gene mostly in the top 20% of all transcripts with the majority in the top 5%. The results suggest the epigenomic landscape of CHO cells can guide the selection of integration sites in the development of cell lines for therapeutic protein production. The epigenetic context of the integration site of a transgene affects its transcription level. In this study the authors use ATAC‐seq to identify two features, super‐enhancers and inaccessible regions, which respectively enhance and inhibit transgene expression in CHO cells. CRISPR/Cas9 was used to generate single‐copy IgG‐producing clones near a super‐enhancer to demonstrate the utility of these genomic regions for bioprocess applications.
doi_str_mv 10.1002/bit.27701
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2484154996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484154996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3901-a0e35be852f91764787d9a904d4705eee40c61b169b9c0ea9ef597fb88da63453</originalsourceid><addsrcrecordid>eNp10M9O3DAQBnCroipb6IEXQJa4tIcsYye24-N2tXSRkPbQ5Ww5yaQyyj_sBLq3PgLPyJPg7QKHSj2NRvrNp9FHyBmDOQPgl4Ub51wpYB_IjIFWCXANR2QGADJJhebH5HMId3FVuZSfyHGaCs40z2fk52pwv7DrW1fSGu04eQzU4wPaBita7Ohiu1g-_3kKeE9dO9hypKO3XYg3SPH3EHlwfUddR5frDS2xacIp-VjbJuCX13lCbq9W2-U6udn8uF4ubpIy1cASC5iKAnPBa82UzFSuKm01ZFWmQCBiBqVkBZO60CWg1VgLreoizysr00ykJ-TrIXfw_f2EYTStC_sPbIf9FAzP8oyJTGsZ6cU_9K6ffBe_M1wwziUHnkf17aBK34fgsTaDd631O8PA7Js2sWnzt-loz18Tp6LF6l2-VRvB5QE8ugZ3_08y36-3h8gXw52G4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512262028</pqid></control><display><type>article</type><title>Epigenomic features revealed by ATAC‐seq impact transgene expression in CHO cells</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Lee, Zion ; Raabe, Marina ; Hu, Wei‐Shou</creator><creatorcontrib>Lee, Zion ; Raabe, Marina ; Hu, Wei‐Shou</creatorcontrib><description>Different regions of a mammalian genome have different accessibilities to transcriptional machinery. The integration site of a transgene affects how actively it is transcribed. Highly accessible genomic regions called super‐enhancers have been recently described as strong regulatory elements that shape cell identity. Super‐enhancers have been identified in Chinese hamster ovary (CHO) cells using the Assay for Transposase‐Accessible Chromatin Sequencing (ATAC‐seq). Genes near super‐enhancer regions had high transcript levels and were enriched for oncogenic signaling and proliferation functions, consistent with an immortalized phenotype. Inaccessible regions in the genome with low ATAC signal also had low transcriptional activity. Genes in inaccessible regions were enriched for remote tissue functions such as taste, smell, and neuronal activation. A lentiviral reporter integration assay showed integration into super‐enhancer regions conferred higher reporter expression than insertion into inaccessible regions. Targeted integration of an IgG vector into the Plec super‐enhancer region yielded clones that expressed the immunoglobulin light chain gene mostly in the top 20% of all transcripts with the majority in the top 5%. The results suggest the epigenomic landscape of CHO cells can guide the selection of integration sites in the development of cell lines for therapeutic protein production. The epigenetic context of the integration site of a transgene affects its transcription level. In this study the authors use ATAC‐seq to identify two features, super‐enhancers and inaccessible regions, which respectively enhance and inhibit transgene expression in CHO cells. CRISPR/Cas9 was used to generate single‐copy IgG‐producing clones near a super‐enhancer to demonstrate the utility of these genomic regions for bioprocess applications.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.27701</identifier><identifier>PMID: 33521928</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Accessibility ; Animals ; ATAC‐seq ; Cell lines ; CHO ; CHO Cells ; Chromatin ; Chromatin Immunoprecipitation Sequencing - methods ; Cricetinae ; Cricetulus ; CRISPR-Cas Systems - genetics ; CRISPR/Cas9 ; Enhancer Elements, Genetic - genetics ; Enhancers ; Epigenesis, Genetic - genetics ; Gene sequencing ; Genes ; Genomes ; Immunoglobulin G ; Integration ; Olfaction ; Phenotypes ; Regulatory sequences ; Smell ; super‐enhancers ; Transcription ; Transgenes ; Transgenes - genetics ; Transposase</subject><ispartof>Biotechnology and bioengineering, 2021-05, Vol.118 (5), p.1851-1861</ispartof><rights>2021 Wiley Periodicals LLC</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3901-a0e35be852f91764787d9a904d4705eee40c61b169b9c0ea9ef597fb88da63453</citedby><cites>FETCH-LOGICAL-c3901-a0e35be852f91764787d9a904d4705eee40c61b169b9c0ea9ef597fb88da63453</cites><orcidid>0000-0002-6869-4198 ; 0000-0002-5964-2900 ; 0000-0002-1120-643X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.27701$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.27701$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33521928$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Zion</creatorcontrib><creatorcontrib>Raabe, Marina</creatorcontrib><creatorcontrib>Hu, Wei‐Shou</creatorcontrib><title>Epigenomic features revealed by ATAC‐seq impact transgene expression in CHO cells</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>Different regions of a mammalian genome have different accessibilities to transcriptional machinery. The integration site of a transgene affects how actively it is transcribed. Highly accessible genomic regions called super‐enhancers have been recently described as strong regulatory elements that shape cell identity. Super‐enhancers have been identified in Chinese hamster ovary (CHO) cells using the Assay for Transposase‐Accessible Chromatin Sequencing (ATAC‐seq). Genes near super‐enhancer regions had high transcript levels and were enriched for oncogenic signaling and proliferation functions, consistent with an immortalized phenotype. Inaccessible regions in the genome with low ATAC signal also had low transcriptional activity. Genes in inaccessible regions were enriched for remote tissue functions such as taste, smell, and neuronal activation. A lentiviral reporter integration assay showed integration into super‐enhancer regions conferred higher reporter expression than insertion into inaccessible regions. Targeted integration of an IgG vector into the Plec super‐enhancer region yielded clones that expressed the immunoglobulin light chain gene mostly in the top 20% of all transcripts with the majority in the top 5%. The results suggest the epigenomic landscape of CHO cells can guide the selection of integration sites in the development of cell lines for therapeutic protein production. The epigenetic context of the integration site of a transgene affects its transcription level. In this study the authors use ATAC‐seq to identify two features, super‐enhancers and inaccessible regions, which respectively enhance and inhibit transgene expression in CHO cells. CRISPR/Cas9 was used to generate single‐copy IgG‐producing clones near a super‐enhancer to demonstrate the utility of these genomic regions for bioprocess applications.</description><subject>Accessibility</subject><subject>Animals</subject><subject>ATAC‐seq</subject><subject>Cell lines</subject><subject>CHO</subject><subject>CHO Cells</subject><subject>Chromatin</subject><subject>Chromatin Immunoprecipitation Sequencing - methods</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>CRISPR/Cas9</subject><subject>Enhancer Elements, Genetic - genetics</subject><subject>Enhancers</subject><subject>Epigenesis, Genetic - genetics</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genomes</subject><subject>Immunoglobulin G</subject><subject>Integration</subject><subject>Olfaction</subject><subject>Phenotypes</subject><subject>Regulatory sequences</subject><subject>Smell</subject><subject>super‐enhancers</subject><subject>Transcription</subject><subject>Transgenes</subject><subject>Transgenes - genetics</subject><subject>Transposase</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10M9O3DAQBnCroipb6IEXQJa4tIcsYye24-N2tXSRkPbQ5Ww5yaQyyj_sBLq3PgLPyJPg7QKHSj2NRvrNp9FHyBmDOQPgl4Ub51wpYB_IjIFWCXANR2QGADJJhebH5HMId3FVuZSfyHGaCs40z2fk52pwv7DrW1fSGu04eQzU4wPaBita7Ohiu1g-_3kKeE9dO9hypKO3XYg3SPH3EHlwfUddR5frDS2xacIp-VjbJuCX13lCbq9W2-U6udn8uF4ubpIy1cASC5iKAnPBa82UzFSuKm01ZFWmQCBiBqVkBZO60CWg1VgLreoizysr00ykJ-TrIXfw_f2EYTStC_sPbIf9FAzP8oyJTGsZ6cU_9K6ffBe_M1wwziUHnkf17aBK34fgsTaDd631O8PA7Js2sWnzt-loz18Tp6LF6l2-VRvB5QE8ugZ3_08y36-3h8gXw52G4w</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Lee, Zion</creator><creator>Raabe, Marina</creator><creator>Hu, Wei‐Shou</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6869-4198</orcidid><orcidid>https://orcid.org/0000-0002-5964-2900</orcidid><orcidid>https://orcid.org/0000-0002-1120-643X</orcidid></search><sort><creationdate>202105</creationdate><title>Epigenomic features revealed by ATAC‐seq impact transgene expression in CHO cells</title><author>Lee, Zion ; Raabe, Marina ; Hu, Wei‐Shou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3901-a0e35be852f91764787d9a904d4705eee40c61b169b9c0ea9ef597fb88da63453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accessibility</topic><topic>Animals</topic><topic>ATAC‐seq</topic><topic>Cell lines</topic><topic>CHO</topic><topic>CHO Cells</topic><topic>Chromatin</topic><topic>Chromatin Immunoprecipitation Sequencing - methods</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>CRISPR/Cas9</topic><topic>Enhancer Elements, Genetic - genetics</topic><topic>Enhancers</topic><topic>Epigenesis, Genetic - genetics</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genomes</topic><topic>Immunoglobulin G</topic><topic>Integration</topic><topic>Olfaction</topic><topic>Phenotypes</topic><topic>Regulatory sequences</topic><topic>Smell</topic><topic>super‐enhancers</topic><topic>Transcription</topic><topic>Transgenes</topic><topic>Transgenes - genetics</topic><topic>Transposase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Zion</creatorcontrib><creatorcontrib>Raabe, Marina</creatorcontrib><creatorcontrib>Hu, Wei‐Shou</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Zion</au><au>Raabe, Marina</au><au>Hu, Wei‐Shou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epigenomic features revealed by ATAC‐seq impact transgene expression in CHO cells</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2021-05</date><risdate>2021</risdate><volume>118</volume><issue>5</issue><spage>1851</spage><epage>1861</epage><pages>1851-1861</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>Different regions of a mammalian genome have different accessibilities to transcriptional machinery. The integration site of a transgene affects how actively it is transcribed. Highly accessible genomic regions called super‐enhancers have been recently described as strong regulatory elements that shape cell identity. Super‐enhancers have been identified in Chinese hamster ovary (CHO) cells using the Assay for Transposase‐Accessible Chromatin Sequencing (ATAC‐seq). Genes near super‐enhancer regions had high transcript levels and were enriched for oncogenic signaling and proliferation functions, consistent with an immortalized phenotype. Inaccessible regions in the genome with low ATAC signal also had low transcriptional activity. Genes in inaccessible regions were enriched for remote tissue functions such as taste, smell, and neuronal activation. A lentiviral reporter integration assay showed integration into super‐enhancer regions conferred higher reporter expression than insertion into inaccessible regions. Targeted integration of an IgG vector into the Plec super‐enhancer region yielded clones that expressed the immunoglobulin light chain gene mostly in the top 20% of all transcripts with the majority in the top 5%. The results suggest the epigenomic landscape of CHO cells can guide the selection of integration sites in the development of cell lines for therapeutic protein production. The epigenetic context of the integration site of a transgene affects its transcription level. In this study the authors use ATAC‐seq to identify two features, super‐enhancers and inaccessible regions, which respectively enhance and inhibit transgene expression in CHO cells. CRISPR/Cas9 was used to generate single‐copy IgG‐producing clones near a super‐enhancer to demonstrate the utility of these genomic regions for bioprocess applications.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33521928</pmid><doi>10.1002/bit.27701</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6869-4198</orcidid><orcidid>https://orcid.org/0000-0002-5964-2900</orcidid><orcidid>https://orcid.org/0000-0002-1120-643X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2021-05, Vol.118 (5), p.1851-1861
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_2484154996
source MEDLINE; Wiley Journals
subjects Accessibility
Animals
ATAC‐seq
Cell lines
CHO
CHO Cells
Chromatin
Chromatin Immunoprecipitation Sequencing - methods
Cricetinae
Cricetulus
CRISPR-Cas Systems - genetics
CRISPR/Cas9
Enhancer Elements, Genetic - genetics
Enhancers
Epigenesis, Genetic - genetics
Gene sequencing
Genes
Genomes
Immunoglobulin G
Integration
Olfaction
Phenotypes
Regulatory sequences
Smell
super‐enhancers
Transcription
Transgenes
Transgenes - genetics
Transposase
title Epigenomic features revealed by ATAC‐seq impact transgene expression in CHO cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A09%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epigenomic%20features%20revealed%20by%20ATAC%E2%80%90seq%20impact%20transgene%20expression%20in%20CHO%20cells&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Lee,%20Zion&rft.date=2021-05&rft.volume=118&rft.issue=5&rft.spage=1851&rft.epage=1861&rft.pages=1851-1861&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.27701&rft_dat=%3Cproquest_cross%3E2484154996%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512262028&rft_id=info:pmid/33521928&rfr_iscdi=true