Theoretical prediction by DFT and experimental observation of heterocation-doping effects on hydrogen adsorption and migration over the CeO2(111) surface

Hydrogen (H) atom adsorption and migration over the CeO2-based materials surface are of great importance because of its wide applications to catalytic reactions and electrochemical devices. Therefore, comprehensive knowledge for controlling the H atom adsorption and migration over CeO2-based materia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2021-01, Vol.23 (8), p.4509-4516
Hauptverfasser: Murakami, Kota, Mizutani, Yuta, Sampei, Hiroshi, Ishikawa, Atsushi, Tanaka, Yuta, Hayashi, Sasuga, Doi, Sae, Higo, Takuma, Tsuneki, Hideaki, Nakai, Hiromi, Sekine, Yasushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4516
container_issue 8
container_start_page 4509
container_title Physical chemistry chemical physics : PCCP
container_volume 23
creator Murakami, Kota
Mizutani, Yuta
Sampei, Hiroshi
Ishikawa, Atsushi
Tanaka, Yuta
Hayashi, Sasuga
Doi, Sae
Higo, Takuma
Tsuneki, Hideaki
Nakai, Hiromi
Sekine, Yasushi
description Hydrogen (H) atom adsorption and migration over the CeO2-based materials surface are of great importance because of its wide applications to catalytic reactions and electrochemical devices. Therefore, comprehensive knowledge for controlling the H atom adsorption and migration over CeO2-based materials is crucially important. For controlling H atom adsorption and migration, we investigated irreducible divalent, trivalent, and quadrivalent heterocation-doping effects on H atom adsorption and migration over the CeO2(111) surface using density functional theory (DFT) calculations. Results revealed that the electron-deficient lattice oxygen (Olat) and the flexible CeO2 matrix played key roles in strong adsorption of H atoms. Heterocations with smaller valence and smaller ionic radius induced the electron-deficient Olat. In addition, smaller cation doping enhanced the CeO2 matrix flexibility. Moreover, we confirmed the influence of H atom adsorption controlled by doping on surface proton migration (i.e. surface protonics) and catalytic reaction involving surface protonics (NH3 synthesis in an electric field). Results confirmed clear correlation between H atom adsorption energy and surface protonics.
doi_str_mv 10.1039/d0cp05752e
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2484152597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484152597</sourcerecordid><originalsourceid>FETCH-LOGICAL-g399t-480e0c84a3bd9f09e1451da8af1d5e0eec2a44a1b1d74bab231c7fee299cb89a3</originalsourceid><addsrcrecordid>eNpd0M1OwzAMB_AIgcT4uPAEkbiMQyFu0rU5osEAadIu4zylidN22pqSpBN7FN6WMiYOnGxLP_9lmZAbYPfAuHwwTHcsy7MUT8gIxIQnkhXi9K_PJ-fkIoQ1Ywwy4CPytazReYyNVhvaeTSNjo1rabmnT7MlVa2h-Nmhb7bYxoG4MqDfqYNxltYY0Tt9mBPjuqatKFqLOgY6iHpvvKuwpcoE57vD1k_ktqn8MWOHnsYa6RQX6RgA7mjovVUar8iZVZuA18d6Sd5nz8vpazJfvLxNH-dJxaWMiSgYMl0IxUsjLZMIIgOjCmXBZMgQdaqEUFCCyUWpypSDzi1iKqUuC6n4JRn_5nbeffQY4mrbBI2bjWrR9WGVikJAlmYyH-jtP7p2vW-H6wYlJ1CI4dv8G5Efeis</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2496184908</pqid></control><display><type>article</type><title>Theoretical prediction by DFT and experimental observation of heterocation-doping effects on hydrogen adsorption and migration over the CeO2(111) surface</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Murakami, Kota ; Mizutani, Yuta ; Sampei, Hiroshi ; Ishikawa, Atsushi ; Tanaka, Yuta ; Hayashi, Sasuga ; Doi, Sae ; Higo, Takuma ; Tsuneki, Hideaki ; Nakai, Hiromi ; Sekine, Yasushi</creator><creatorcontrib>Murakami, Kota ; Mizutani, Yuta ; Sampei, Hiroshi ; Ishikawa, Atsushi ; Tanaka, Yuta ; Hayashi, Sasuga ; Doi, Sae ; Higo, Takuma ; Tsuneki, Hideaki ; Nakai, Hiromi ; Sekine, Yasushi</creatorcontrib><description>Hydrogen (H) atom adsorption and migration over the CeO2-based materials surface are of great importance because of its wide applications to catalytic reactions and electrochemical devices. Therefore, comprehensive knowledge for controlling the H atom adsorption and migration over CeO2-based materials is crucially important. For controlling H atom adsorption and migration, we investigated irreducible divalent, trivalent, and quadrivalent heterocation-doping effects on H atom adsorption and migration over the CeO2(111) surface using density functional theory (DFT) calculations. Results revealed that the electron-deficient lattice oxygen (Olat) and the flexible CeO2 matrix played key roles in strong adsorption of H atoms. Heterocations with smaller valence and smaller ionic radius induced the electron-deficient Olat. In addition, smaller cation doping enhanced the CeO2 matrix flexibility. Moreover, we confirmed the influence of H atom adsorption controlled by doping on surface proton migration (i.e. surface protonics) and catalytic reaction involving surface protonics (NH3 synthesis in an electric field). Results confirmed clear correlation between H atom adsorption energy and surface protonics.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d0cp05752e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorption ; Ammonia ; Atomic radius ; Cerium oxides ; Chemical reactions ; Density functional theory ; Doping ; Electric fields ; Surface chemistry</subject><ispartof>Physical chemistry chemical physics : PCCP, 2021-01, Vol.23 (8), p.4509-4516</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Murakami, Kota</creatorcontrib><creatorcontrib>Mizutani, Yuta</creatorcontrib><creatorcontrib>Sampei, Hiroshi</creatorcontrib><creatorcontrib>Ishikawa, Atsushi</creatorcontrib><creatorcontrib>Tanaka, Yuta</creatorcontrib><creatorcontrib>Hayashi, Sasuga</creatorcontrib><creatorcontrib>Doi, Sae</creatorcontrib><creatorcontrib>Higo, Takuma</creatorcontrib><creatorcontrib>Tsuneki, Hideaki</creatorcontrib><creatorcontrib>Nakai, Hiromi</creatorcontrib><creatorcontrib>Sekine, Yasushi</creatorcontrib><title>Theoretical prediction by DFT and experimental observation of heterocation-doping effects on hydrogen adsorption and migration over the CeO2(111) surface</title><title>Physical chemistry chemical physics : PCCP</title><description>Hydrogen (H) atom adsorption and migration over the CeO2-based materials surface are of great importance because of its wide applications to catalytic reactions and electrochemical devices. Therefore, comprehensive knowledge for controlling the H atom adsorption and migration over CeO2-based materials is crucially important. For controlling H atom adsorption and migration, we investigated irreducible divalent, trivalent, and quadrivalent heterocation-doping effects on H atom adsorption and migration over the CeO2(111) surface using density functional theory (DFT) calculations. Results revealed that the electron-deficient lattice oxygen (Olat) and the flexible CeO2 matrix played key roles in strong adsorption of H atoms. Heterocations with smaller valence and smaller ionic radius induced the electron-deficient Olat. In addition, smaller cation doping enhanced the CeO2 matrix flexibility. Moreover, we confirmed the influence of H atom adsorption controlled by doping on surface proton migration (i.e. surface protonics) and catalytic reaction involving surface protonics (NH3 synthesis in an electric field). Results confirmed clear correlation between H atom adsorption energy and surface protonics.</description><subject>Adsorption</subject><subject>Ammonia</subject><subject>Atomic radius</subject><subject>Cerium oxides</subject><subject>Chemical reactions</subject><subject>Density functional theory</subject><subject>Doping</subject><subject>Electric fields</subject><subject>Surface chemistry</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0M1OwzAMB_AIgcT4uPAEkbiMQyFu0rU5osEAadIu4zylidN22pqSpBN7FN6WMiYOnGxLP_9lmZAbYPfAuHwwTHcsy7MUT8gIxIQnkhXi9K_PJ-fkIoQ1Ywwy4CPytazReYyNVhvaeTSNjo1rabmnT7MlVa2h-Nmhb7bYxoG4MqDfqYNxltYY0Tt9mBPjuqatKFqLOgY6iHpvvKuwpcoE57vD1k_ktqn8MWOHnsYa6RQX6RgA7mjovVUar8iZVZuA18d6Sd5nz8vpazJfvLxNH-dJxaWMiSgYMl0IxUsjLZMIIgOjCmXBZMgQdaqEUFCCyUWpypSDzi1iKqUuC6n4JRn_5nbeffQY4mrbBI2bjWrR9WGVikJAlmYyH-jtP7p2vW-H6wYlJ1CI4dv8G5Efeis</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Murakami, Kota</creator><creator>Mizutani, Yuta</creator><creator>Sampei, Hiroshi</creator><creator>Ishikawa, Atsushi</creator><creator>Tanaka, Yuta</creator><creator>Hayashi, Sasuga</creator><creator>Doi, Sae</creator><creator>Higo, Takuma</creator><creator>Tsuneki, Hideaki</creator><creator>Nakai, Hiromi</creator><creator>Sekine, Yasushi</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20210101</creationdate><title>Theoretical prediction by DFT and experimental observation of heterocation-doping effects on hydrogen adsorption and migration over the CeO2(111) surface</title><author>Murakami, Kota ; Mizutani, Yuta ; Sampei, Hiroshi ; Ishikawa, Atsushi ; Tanaka, Yuta ; Hayashi, Sasuga ; Doi, Sae ; Higo, Takuma ; Tsuneki, Hideaki ; Nakai, Hiromi ; Sekine, Yasushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g399t-480e0c84a3bd9f09e1451da8af1d5e0eec2a44a1b1d74bab231c7fee299cb89a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorption</topic><topic>Ammonia</topic><topic>Atomic radius</topic><topic>Cerium oxides</topic><topic>Chemical reactions</topic><topic>Density functional theory</topic><topic>Doping</topic><topic>Electric fields</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murakami, Kota</creatorcontrib><creatorcontrib>Mizutani, Yuta</creatorcontrib><creatorcontrib>Sampei, Hiroshi</creatorcontrib><creatorcontrib>Ishikawa, Atsushi</creatorcontrib><creatorcontrib>Tanaka, Yuta</creatorcontrib><creatorcontrib>Hayashi, Sasuga</creatorcontrib><creatorcontrib>Doi, Sae</creatorcontrib><creatorcontrib>Higo, Takuma</creatorcontrib><creatorcontrib>Tsuneki, Hideaki</creatorcontrib><creatorcontrib>Nakai, Hiromi</creatorcontrib><creatorcontrib>Sekine, Yasushi</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murakami, Kota</au><au>Mizutani, Yuta</au><au>Sampei, Hiroshi</au><au>Ishikawa, Atsushi</au><au>Tanaka, Yuta</au><au>Hayashi, Sasuga</au><au>Doi, Sae</au><au>Higo, Takuma</au><au>Tsuneki, Hideaki</au><au>Nakai, Hiromi</au><au>Sekine, Yasushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical prediction by DFT and experimental observation of heterocation-doping effects on hydrogen adsorption and migration over the CeO2(111) surface</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>23</volume><issue>8</issue><spage>4509</spage><epage>4516</epage><pages>4509-4516</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Hydrogen (H) atom adsorption and migration over the CeO2-based materials surface are of great importance because of its wide applications to catalytic reactions and electrochemical devices. Therefore, comprehensive knowledge for controlling the H atom adsorption and migration over CeO2-based materials is crucially important. For controlling H atom adsorption and migration, we investigated irreducible divalent, trivalent, and quadrivalent heterocation-doping effects on H atom adsorption and migration over the CeO2(111) surface using density functional theory (DFT) calculations. Results revealed that the electron-deficient lattice oxygen (Olat) and the flexible CeO2 matrix played key roles in strong adsorption of H atoms. Heterocations with smaller valence and smaller ionic radius induced the electron-deficient Olat. In addition, smaller cation doping enhanced the CeO2 matrix flexibility. Moreover, we confirmed the influence of H atom adsorption controlled by doping on surface proton migration (i.e. surface protonics) and catalytic reaction involving surface protonics (NH3 synthesis in an electric field). Results confirmed clear correlation between H atom adsorption energy and surface protonics.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0cp05752e</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2021-01, Vol.23 (8), p.4509-4516
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2484152597
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Adsorption
Ammonia
Atomic radius
Cerium oxides
Chemical reactions
Density functional theory
Doping
Electric fields
Surface chemistry
title Theoretical prediction by DFT and experimental observation of heterocation-doping effects on hydrogen adsorption and migration over the CeO2(111) surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20prediction%20by%20DFT%20and%20experimental%20observation%20of%20heterocation-doping%20effects%20on%20hydrogen%20adsorption%20and%20migration%20over%20the%20CeO2(111)%20surface&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Murakami,%20Kota&rft.date=2021-01-01&rft.volume=23&rft.issue=8&rft.spage=4509&rft.epage=4516&rft.pages=4509-4516&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d0cp05752e&rft_dat=%3Cproquest%3E2484152597%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2496184908&rft_id=info:pmid/&rfr_iscdi=true