Electron dynamics in plasmons

The Particle-in-Cell (PIC) method for plasmons provides a mechanical, single-particle picture of plasmon resonances by tracking in time the movement of all the individual conduction electrons. By applying it to gold nanorods, we demonstrate the usefulness of PIC for extracting time-domain informatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2021-02, Vol.13 (5), p.281-281
Hauptverfasser: Do, Hue Thi Bich, Wen Jun, Ding, Mahfoud, Zackaria, Lin, Wu, Bosman, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 281
container_issue 5
container_start_page 281
container_title Nanoscale
container_volume 13
creator Do, Hue Thi Bich
Wen Jun, Ding
Mahfoud, Zackaria
Lin, Wu
Bosman, Michel
description The Particle-in-Cell (PIC) method for plasmons provides a mechanical, single-particle picture of plasmon resonances by tracking in time the movement of all the individual conduction electrons. By applying it to gold nanorods, we demonstrate the usefulness of PIC for extracting time-domain information of plasmons such as plasmon decay times, the relative contribution of each plasmon damping channel, detailed electron movement, as well as radiation and hot electron-emission during damping. An analysis of the time-resolved velocity distribution of the conduction electrons shows that only a small offset in this distribution in each cycle constitutes the plasmon oscillation. We show how PIC can be used to separately analyse Landau damping and Drude damping, and how their decay times can be calculated. Electron-electron scattering and surface scattering are both shown to gradually increase the overall kinetic energy of the electrons and decrease their coherence. The Particle-in-Cell (PIC) method for plasmons provides a mechanical, single-particle picture of plasmon resonances by tracking in time the movement of all the individual conduction electrons.
doi_str_mv 10.1039/d0nr07025d
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2484149083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488203092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-3bf76480bf00bcab71c84061e37e7ffe9f09964102eebfd77c466a2bede579083</originalsourceid><addsrcrecordid>eNpd0E1Lw0AQBuBFFFurF--VghcRorMf2c0epa0fUBREzyG7mYWUZFN3m0P_vamtFTzNwDzMDC8hlxTuKHB9X4IPoICl5REZMhCQcK7Y8aGXYkDOYlwCSM0lPyUDzlPGUp4NyXheo12H1k_KjS-aysZJ5SeruohN6-M5OXFFHfFiX0fk83H-MX1OFm9PL9OHRWL7S-uEG6ekyMA4AGMLo6jNBEiKXKFyDrUDraWgwBCNK5WyQsqCGSwxVRoyPiI3u72r0H51GNd5U0WLdV14bLuYM5EJKrayp9f_6LLtgu-_26qMAQfNenW7Uza0MQZ0-SpUTRE2OYV8G1o-g9f3n9BmPb7ar-xMg-WB_qbUg_EOhGgP07_U-TdOcW6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488203092</pqid></control><display><type>article</type><title>Electron dynamics in plasmons</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Do, Hue Thi Bich ; Wen Jun, Ding ; Mahfoud, Zackaria ; Lin, Wu ; Bosman, Michel</creator><creatorcontrib>Do, Hue Thi Bich ; Wen Jun, Ding ; Mahfoud, Zackaria ; Lin, Wu ; Bosman, Michel</creatorcontrib><description>The Particle-in-Cell (PIC) method for plasmons provides a mechanical, single-particle picture of plasmon resonances by tracking in time the movement of all the individual conduction electrons. By applying it to gold nanorods, we demonstrate the usefulness of PIC for extracting time-domain information of plasmons such as plasmon decay times, the relative contribution of each plasmon damping channel, detailed electron movement, as well as radiation and hot electron-emission during damping. An analysis of the time-resolved velocity distribution of the conduction electrons shows that only a small offset in this distribution in each cycle constitutes the plasmon oscillation. We show how PIC can be used to separately analyse Landau damping and Drude damping, and how their decay times can be calculated. Electron-electron scattering and surface scattering are both shown to gradually increase the overall kinetic energy of the electrons and decrease their coherence. The Particle-in-Cell (PIC) method for plasmons provides a mechanical, single-particle picture of plasmon resonances by tracking in time the movement of all the individual conduction electrons.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d0nr07025d</identifier><identifier>PMID: 33522538</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Conduction electrons ; Decay ; Emission analysis ; Hot electrons ; Kinetic energy ; Landau damping ; Nanorods ; Particle in cell technique ; Plasmons ; Scattering ; Velocity distribution</subject><ispartof>Nanoscale, 2021-02, Vol.13 (5), p.281-281</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-3bf76480bf00bcab71c84061e37e7ffe9f09964102eebfd77c466a2bede579083</citedby><cites>FETCH-LOGICAL-c337t-3bf76480bf00bcab71c84061e37e7ffe9f09964102eebfd77c466a2bede579083</cites><orcidid>0000-0002-8499-4609 ; 0000-0002-3188-0640 ; 0000-0001-9272-0870 ; 0000-0002-8717-7655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33522538$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Do, Hue Thi Bich</creatorcontrib><creatorcontrib>Wen Jun, Ding</creatorcontrib><creatorcontrib>Mahfoud, Zackaria</creatorcontrib><creatorcontrib>Lin, Wu</creatorcontrib><creatorcontrib>Bosman, Michel</creatorcontrib><title>Electron dynamics in plasmons</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>The Particle-in-Cell (PIC) method for plasmons provides a mechanical, single-particle picture of plasmon resonances by tracking in time the movement of all the individual conduction electrons. By applying it to gold nanorods, we demonstrate the usefulness of PIC for extracting time-domain information of plasmons such as plasmon decay times, the relative contribution of each plasmon damping channel, detailed electron movement, as well as radiation and hot electron-emission during damping. An analysis of the time-resolved velocity distribution of the conduction electrons shows that only a small offset in this distribution in each cycle constitutes the plasmon oscillation. We show how PIC can be used to separately analyse Landau damping and Drude damping, and how their decay times can be calculated. Electron-electron scattering and surface scattering are both shown to gradually increase the overall kinetic energy of the electrons and decrease their coherence. The Particle-in-Cell (PIC) method for plasmons provides a mechanical, single-particle picture of plasmon resonances by tracking in time the movement of all the individual conduction electrons.</description><subject>Conduction electrons</subject><subject>Decay</subject><subject>Emission analysis</subject><subject>Hot electrons</subject><subject>Kinetic energy</subject><subject>Landau damping</subject><subject>Nanorods</subject><subject>Particle in cell technique</subject><subject>Plasmons</subject><subject>Scattering</subject><subject>Velocity distribution</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0E1Lw0AQBuBFFFurF--VghcRorMf2c0epa0fUBREzyG7mYWUZFN3m0P_vamtFTzNwDzMDC8hlxTuKHB9X4IPoICl5REZMhCQcK7Y8aGXYkDOYlwCSM0lPyUDzlPGUp4NyXheo12H1k_KjS-aysZJ5SeruohN6-M5OXFFHfFiX0fk83H-MX1OFm9PL9OHRWL7S-uEG6ekyMA4AGMLo6jNBEiKXKFyDrUDraWgwBCNK5WyQsqCGSwxVRoyPiI3u72r0H51GNd5U0WLdV14bLuYM5EJKrayp9f_6LLtgu-_26qMAQfNenW7Uza0MQZ0-SpUTRE2OYV8G1o-g9f3n9BmPb7ar-xMg-WB_qbUg_EOhGgP07_U-TdOcW6A</recordid><startdate>20210207</startdate><enddate>20210207</enddate><creator>Do, Hue Thi Bich</creator><creator>Wen Jun, Ding</creator><creator>Mahfoud, Zackaria</creator><creator>Lin, Wu</creator><creator>Bosman, Michel</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8499-4609</orcidid><orcidid>https://orcid.org/0000-0002-3188-0640</orcidid><orcidid>https://orcid.org/0000-0001-9272-0870</orcidid><orcidid>https://orcid.org/0000-0002-8717-7655</orcidid></search><sort><creationdate>20210207</creationdate><title>Electron dynamics in plasmons</title><author>Do, Hue Thi Bich ; Wen Jun, Ding ; Mahfoud, Zackaria ; Lin, Wu ; Bosman, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-3bf76480bf00bcab71c84061e37e7ffe9f09964102eebfd77c466a2bede579083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Conduction electrons</topic><topic>Decay</topic><topic>Emission analysis</topic><topic>Hot electrons</topic><topic>Kinetic energy</topic><topic>Landau damping</topic><topic>Nanorods</topic><topic>Particle in cell technique</topic><topic>Plasmons</topic><topic>Scattering</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Do, Hue Thi Bich</creatorcontrib><creatorcontrib>Wen Jun, Ding</creatorcontrib><creatorcontrib>Mahfoud, Zackaria</creatorcontrib><creatorcontrib>Lin, Wu</creatorcontrib><creatorcontrib>Bosman, Michel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Do, Hue Thi Bich</au><au>Wen Jun, Ding</au><au>Mahfoud, Zackaria</au><au>Lin, Wu</au><au>Bosman, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron dynamics in plasmons</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2021-02-07</date><risdate>2021</risdate><volume>13</volume><issue>5</issue><spage>281</spage><epage>281</epage><pages>281-281</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The Particle-in-Cell (PIC) method for plasmons provides a mechanical, single-particle picture of plasmon resonances by tracking in time the movement of all the individual conduction electrons. By applying it to gold nanorods, we demonstrate the usefulness of PIC for extracting time-domain information of plasmons such as plasmon decay times, the relative contribution of each plasmon damping channel, detailed electron movement, as well as radiation and hot electron-emission during damping. An analysis of the time-resolved velocity distribution of the conduction electrons shows that only a small offset in this distribution in each cycle constitutes the plasmon oscillation. We show how PIC can be used to separately analyse Landau damping and Drude damping, and how their decay times can be calculated. Electron-electron scattering and surface scattering are both shown to gradually increase the overall kinetic energy of the electrons and decrease their coherence. The Particle-in-Cell (PIC) method for plasmons provides a mechanical, single-particle picture of plasmon resonances by tracking in time the movement of all the individual conduction electrons.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33522538</pmid><doi>10.1039/d0nr07025d</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8499-4609</orcidid><orcidid>https://orcid.org/0000-0002-3188-0640</orcidid><orcidid>https://orcid.org/0000-0001-9272-0870</orcidid><orcidid>https://orcid.org/0000-0002-8717-7655</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2021-02, Vol.13 (5), p.281-281
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2484149083
source Royal Society Of Chemistry Journals 2008-
subjects Conduction electrons
Decay
Emission analysis
Hot electrons
Kinetic energy
Landau damping
Nanorods
Particle in cell technique
Plasmons
Scattering
Velocity distribution
title Electron dynamics in plasmons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A26%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20dynamics%20in%20plasmons&rft.jtitle=Nanoscale&rft.au=Do,%20Hue%20Thi%20Bich&rft.date=2021-02-07&rft.volume=13&rft.issue=5&rft.spage=281&rft.epage=281&rft.pages=281-281&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d0nr07025d&rft_dat=%3Cproquest_pubme%3E2488203092%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488203092&rft_id=info:pmid/33522538&rfr_iscdi=true