Electron dynamics in plasmons
The Particle-in-Cell (PIC) method for plasmons provides a mechanical, single-particle picture of plasmon resonances by tracking in time the movement of all the individual conduction electrons. By applying it to gold nanorods, we demonstrate the usefulness of PIC for extracting time-domain informatio...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2021-02, Vol.13 (5), p.281-281 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 281 |
---|---|
container_issue | 5 |
container_start_page | 281 |
container_title | Nanoscale |
container_volume | 13 |
creator | Do, Hue Thi Bich Wen Jun, Ding Mahfoud, Zackaria Lin, Wu Bosman, Michel |
description | The Particle-in-Cell (PIC) method for plasmons provides a mechanical, single-particle picture of plasmon resonances by tracking in time the movement of all the individual conduction electrons. By applying it to gold nanorods, we demonstrate the usefulness of PIC for extracting time-domain information of plasmons such as plasmon decay times, the relative contribution of each plasmon damping channel, detailed electron movement, as well as radiation and hot electron-emission during damping. An analysis of the time-resolved velocity distribution of the conduction electrons shows that only a small offset in this distribution in each cycle constitutes the plasmon oscillation. We show how PIC can be used to separately analyse Landau damping and Drude damping, and how their decay times can be calculated. Electron-electron scattering and surface scattering are both shown to gradually increase the overall kinetic energy of the electrons and decrease their coherence.
The Particle-in-Cell (PIC) method for plasmons provides a mechanical, single-particle picture of plasmon resonances by tracking in time the movement of all the individual conduction electrons. |
doi_str_mv | 10.1039/d0nr07025d |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2484149083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488203092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-3bf76480bf00bcab71c84061e37e7ffe9f09964102eebfd77c466a2bede579083</originalsourceid><addsrcrecordid>eNpd0E1Lw0AQBuBFFFurF--VghcRorMf2c0epa0fUBREzyG7mYWUZFN3m0P_vamtFTzNwDzMDC8hlxTuKHB9X4IPoICl5REZMhCQcK7Y8aGXYkDOYlwCSM0lPyUDzlPGUp4NyXheo12H1k_KjS-aysZJ5SeruohN6-M5OXFFHfFiX0fk83H-MX1OFm9PL9OHRWL7S-uEG6ekyMA4AGMLo6jNBEiKXKFyDrUDraWgwBCNK5WyQsqCGSwxVRoyPiI3u72r0H51GNd5U0WLdV14bLuYM5EJKrayp9f_6LLtgu-_26qMAQfNenW7Uza0MQZ0-SpUTRE2OYV8G1o-g9f3n9BmPb7ar-xMg-WB_qbUg_EOhGgP07_U-TdOcW6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488203092</pqid></control><display><type>article</type><title>Electron dynamics in plasmons</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Do, Hue Thi Bich ; Wen Jun, Ding ; Mahfoud, Zackaria ; Lin, Wu ; Bosman, Michel</creator><creatorcontrib>Do, Hue Thi Bich ; Wen Jun, Ding ; Mahfoud, Zackaria ; Lin, Wu ; Bosman, Michel</creatorcontrib><description>The Particle-in-Cell (PIC) method for plasmons provides a mechanical, single-particle picture of plasmon resonances by tracking in time the movement of all the individual conduction electrons. By applying it to gold nanorods, we demonstrate the usefulness of PIC for extracting time-domain information of plasmons such as plasmon decay times, the relative contribution of each plasmon damping channel, detailed electron movement, as well as radiation and hot electron-emission during damping. An analysis of the time-resolved velocity distribution of the conduction electrons shows that only a small offset in this distribution in each cycle constitutes the plasmon oscillation. We show how PIC can be used to separately analyse Landau damping and Drude damping, and how their decay times can be calculated. Electron-electron scattering and surface scattering are both shown to gradually increase the overall kinetic energy of the electrons and decrease their coherence.
The Particle-in-Cell (PIC) method for plasmons provides a mechanical, single-particle picture of plasmon resonances by tracking in time the movement of all the individual conduction electrons.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d0nr07025d</identifier><identifier>PMID: 33522538</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Conduction electrons ; Decay ; Emission analysis ; Hot electrons ; Kinetic energy ; Landau damping ; Nanorods ; Particle in cell technique ; Plasmons ; Scattering ; Velocity distribution</subject><ispartof>Nanoscale, 2021-02, Vol.13 (5), p.281-281</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-3bf76480bf00bcab71c84061e37e7ffe9f09964102eebfd77c466a2bede579083</citedby><cites>FETCH-LOGICAL-c337t-3bf76480bf00bcab71c84061e37e7ffe9f09964102eebfd77c466a2bede579083</cites><orcidid>0000-0002-8499-4609 ; 0000-0002-3188-0640 ; 0000-0001-9272-0870 ; 0000-0002-8717-7655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33522538$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Do, Hue Thi Bich</creatorcontrib><creatorcontrib>Wen Jun, Ding</creatorcontrib><creatorcontrib>Mahfoud, Zackaria</creatorcontrib><creatorcontrib>Lin, Wu</creatorcontrib><creatorcontrib>Bosman, Michel</creatorcontrib><title>Electron dynamics in plasmons</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>The Particle-in-Cell (PIC) method for plasmons provides a mechanical, single-particle picture of plasmon resonances by tracking in time the movement of all the individual conduction electrons. By applying it to gold nanorods, we demonstrate the usefulness of PIC for extracting time-domain information of plasmons such as plasmon decay times, the relative contribution of each plasmon damping channel, detailed electron movement, as well as radiation and hot electron-emission during damping. An analysis of the time-resolved velocity distribution of the conduction electrons shows that only a small offset in this distribution in each cycle constitutes the plasmon oscillation. We show how PIC can be used to separately analyse Landau damping and Drude damping, and how their decay times can be calculated. Electron-electron scattering and surface scattering are both shown to gradually increase the overall kinetic energy of the electrons and decrease their coherence.
The Particle-in-Cell (PIC) method for plasmons provides a mechanical, single-particle picture of plasmon resonances by tracking in time the movement of all the individual conduction electrons.</description><subject>Conduction electrons</subject><subject>Decay</subject><subject>Emission analysis</subject><subject>Hot electrons</subject><subject>Kinetic energy</subject><subject>Landau damping</subject><subject>Nanorods</subject><subject>Particle in cell technique</subject><subject>Plasmons</subject><subject>Scattering</subject><subject>Velocity distribution</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0E1Lw0AQBuBFFFurF--VghcRorMf2c0epa0fUBREzyG7mYWUZFN3m0P_vamtFTzNwDzMDC8hlxTuKHB9X4IPoICl5REZMhCQcK7Y8aGXYkDOYlwCSM0lPyUDzlPGUp4NyXheo12H1k_KjS-aysZJ5SeruohN6-M5OXFFHfFiX0fk83H-MX1OFm9PL9OHRWL7S-uEG6ekyMA4AGMLo6jNBEiKXKFyDrUDraWgwBCNK5WyQsqCGSwxVRoyPiI3u72r0H51GNd5U0WLdV14bLuYM5EJKrayp9f_6LLtgu-_26qMAQfNenW7Uza0MQZ0-SpUTRE2OYV8G1o-g9f3n9BmPb7ar-xMg-WB_qbUg_EOhGgP07_U-TdOcW6A</recordid><startdate>20210207</startdate><enddate>20210207</enddate><creator>Do, Hue Thi Bich</creator><creator>Wen Jun, Ding</creator><creator>Mahfoud, Zackaria</creator><creator>Lin, Wu</creator><creator>Bosman, Michel</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8499-4609</orcidid><orcidid>https://orcid.org/0000-0002-3188-0640</orcidid><orcidid>https://orcid.org/0000-0001-9272-0870</orcidid><orcidid>https://orcid.org/0000-0002-8717-7655</orcidid></search><sort><creationdate>20210207</creationdate><title>Electron dynamics in plasmons</title><author>Do, Hue Thi Bich ; Wen Jun, Ding ; Mahfoud, Zackaria ; Lin, Wu ; Bosman, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-3bf76480bf00bcab71c84061e37e7ffe9f09964102eebfd77c466a2bede579083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Conduction electrons</topic><topic>Decay</topic><topic>Emission analysis</topic><topic>Hot electrons</topic><topic>Kinetic energy</topic><topic>Landau damping</topic><topic>Nanorods</topic><topic>Particle in cell technique</topic><topic>Plasmons</topic><topic>Scattering</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Do, Hue Thi Bich</creatorcontrib><creatorcontrib>Wen Jun, Ding</creatorcontrib><creatorcontrib>Mahfoud, Zackaria</creatorcontrib><creatorcontrib>Lin, Wu</creatorcontrib><creatorcontrib>Bosman, Michel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Do, Hue Thi Bich</au><au>Wen Jun, Ding</au><au>Mahfoud, Zackaria</au><au>Lin, Wu</au><au>Bosman, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron dynamics in plasmons</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2021-02-07</date><risdate>2021</risdate><volume>13</volume><issue>5</issue><spage>281</spage><epage>281</epage><pages>281-281</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The Particle-in-Cell (PIC) method for plasmons provides a mechanical, single-particle picture of plasmon resonances by tracking in time the movement of all the individual conduction electrons. By applying it to gold nanorods, we demonstrate the usefulness of PIC for extracting time-domain information of plasmons such as plasmon decay times, the relative contribution of each plasmon damping channel, detailed electron movement, as well as radiation and hot electron-emission during damping. An analysis of the time-resolved velocity distribution of the conduction electrons shows that only a small offset in this distribution in each cycle constitutes the plasmon oscillation. We show how PIC can be used to separately analyse Landau damping and Drude damping, and how their decay times can be calculated. Electron-electron scattering and surface scattering are both shown to gradually increase the overall kinetic energy of the electrons and decrease their coherence.
The Particle-in-Cell (PIC) method for plasmons provides a mechanical, single-particle picture of plasmon resonances by tracking in time the movement of all the individual conduction electrons.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33522538</pmid><doi>10.1039/d0nr07025d</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8499-4609</orcidid><orcidid>https://orcid.org/0000-0002-3188-0640</orcidid><orcidid>https://orcid.org/0000-0001-9272-0870</orcidid><orcidid>https://orcid.org/0000-0002-8717-7655</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2021-02, Vol.13 (5), p.281-281 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2484149083 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Conduction electrons Decay Emission analysis Hot electrons Kinetic energy Landau damping Nanorods Particle in cell technique Plasmons Scattering Velocity distribution |
title | Electron dynamics in plasmons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A26%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20dynamics%20in%20plasmons&rft.jtitle=Nanoscale&rft.au=Do,%20Hue%20Thi%20Bich&rft.date=2021-02-07&rft.volume=13&rft.issue=5&rft.spage=281&rft.epage=281&rft.pages=281-281&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d0nr07025d&rft_dat=%3Cproquest_pubme%3E2488203092%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488203092&rft_id=info:pmid/33522538&rfr_iscdi=true |