Efficiently Passivated PbSe Quantum Dot Solids for Infrared Photovoltaics

Infrared (IR) solar cells are promising devices for significantly improving the power conversion efficiency of common solar cells by harvesting the low-energy IR photons. PbSe quantum dots (QDs) are superior IR photon absorbing materials due to their strong quantum confinement and thus strong interd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2021-02, Vol.15 (2), p.3376-3386
Hauptverfasser: Liu, Sisi, Xiong, Kao, Wang, Kang, Liang, Guijie, Li, Ming-Yu, Tang, Haodong, Yang, Xiaokun, Huang, Zhen, Lian, Linyuan, Tan, Manlin, Wang, Kai, Gao, Liang, Song, Haisheng, Zhang, Daoli, Gao, Jianbo, Lan, Xinzheng, Tang, Jiang, Zhang, Jianbing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3386
container_issue 2
container_start_page 3376
container_title ACS nano
container_volume 15
creator Liu, Sisi
Xiong, Kao
Wang, Kang
Liang, Guijie
Li, Ming-Yu
Tang, Haodong
Yang, Xiaokun
Huang, Zhen
Lian, Linyuan
Tan, Manlin
Wang, Kai
Gao, Liang
Song, Haisheng
Zhang, Daoli
Gao, Jianbo
Lan, Xinzheng
Tang, Jiang
Zhang, Jianbing
description Infrared (IR) solar cells are promising devices for significantly improving the power conversion efficiency of common solar cells by harvesting the low-energy IR photons. PbSe quantum dots (QDs) are superior IR photon absorbing materials due to their strong quantum confinement and thus strong interdot electronic coupling. However, the high chemical activity of PbSe QDs leads to etching and poor passivation in ligand exchange, resulting in a high trap-state density and a high open circuit voltage (V OC) deficit. Here we develop a hybrid ligand co-passivation strategy to simultaneously passivate the Pb and Se sites; that is, halide anions passivate the Pb sites and Cd cations passivate the Se sites. The cation and anion hybrid passivation substantially improves the quality of PbSe QD solids, giving rise to an excellent trap-state control and prolonged carrier lifetime. A high V OC and a high short circuit current density (J SC) are achieved simultaneously in the IR QD solar cells based on this hybrid ligand treatment. Finally, a IR-PCE of 1.31% under the 1100-nm-filtered solar illumination is achieved in the PbSe QD solar cells, which is the highest IR-PCE for PbSe QD IR solar cells at present. Additionally, the PbSe QD devices show a high external quantum efficiency of 80% at ∼1295 nm.
doi_str_mv 10.1021/acsnano.0c10373
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2483819131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2483819131</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-386d8e6c4fca0d55b3ce1f586c69af19660f94371b998a46047a20eb87556caa3</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMobk7P3qRHQbolTZMmR5lTBwMnU_BWvqYJdrTNTNLB_r0dm7t5-t7D877wPQjdEjwmOCETUL6F1o6xIphm9AwNiaQ8xoJ_nZ8yIwN05f0aY5aJjF-iAaWMJISJIZrPjKlUpdtQ76IleF9tIegyWhYrHb130IauiZ5siFa2rkofGeuieWscuD30bYPd2jpApfw1ujBQe31zvCP0-Tz7mL7Gi7eX-fRxEQOVMsRU8FJorlKjAJeMFVRpYpjgikswRHKOjUxpRgopBaQcpxkkWBciY4wrADpC94fdjbM_nfYhbyqvdF1Dq23n8yQVVBBJKOnRyQFVznrvtMk3rmrA7XKC872__OgvP_rrG3fH8a5odHni_4T1wMMB6Jv52nau7X_9d-4XiNB7Wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483819131</pqid></control><display><type>article</type><title>Efficiently Passivated PbSe Quantum Dot Solids for Infrared Photovoltaics</title><source>ACS Publications</source><creator>Liu, Sisi ; Xiong, Kao ; Wang, Kang ; Liang, Guijie ; Li, Ming-Yu ; Tang, Haodong ; Yang, Xiaokun ; Huang, Zhen ; Lian, Linyuan ; Tan, Manlin ; Wang, Kai ; Gao, Liang ; Song, Haisheng ; Zhang, Daoli ; Gao, Jianbo ; Lan, Xinzheng ; Tang, Jiang ; Zhang, Jianbing</creator><creatorcontrib>Liu, Sisi ; Xiong, Kao ; Wang, Kang ; Liang, Guijie ; Li, Ming-Yu ; Tang, Haodong ; Yang, Xiaokun ; Huang, Zhen ; Lian, Linyuan ; Tan, Manlin ; Wang, Kai ; Gao, Liang ; Song, Haisheng ; Zhang, Daoli ; Gao, Jianbo ; Lan, Xinzheng ; Tang, Jiang ; Zhang, Jianbing</creatorcontrib><description>Infrared (IR) solar cells are promising devices for significantly improving the power conversion efficiency of common solar cells by harvesting the low-energy IR photons. PbSe quantum dots (QDs) are superior IR photon absorbing materials due to their strong quantum confinement and thus strong interdot electronic coupling. However, the high chemical activity of PbSe QDs leads to etching and poor passivation in ligand exchange, resulting in a high trap-state density and a high open circuit voltage (V OC) deficit. Here we develop a hybrid ligand co-passivation strategy to simultaneously passivate the Pb and Se sites; that is, halide anions passivate the Pb sites and Cd cations passivate the Se sites. The cation and anion hybrid passivation substantially improves the quality of PbSe QD solids, giving rise to an excellent trap-state control and prolonged carrier lifetime. A high V OC and a high short circuit current density (J SC) are achieved simultaneously in the IR QD solar cells based on this hybrid ligand treatment. Finally, a IR-PCE of 1.31% under the 1100-nm-filtered solar illumination is achieved in the PbSe QD solar cells, which is the highest IR-PCE for PbSe QD IR solar cells at present. Additionally, the PbSe QD devices show a high external quantum efficiency of 80% at ∼1295 nm.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.0c10373</identifier><identifier>PMID: 33512158</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2021-02, Vol.15 (2), p.3376-3386</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-386d8e6c4fca0d55b3ce1f586c69af19660f94371b998a46047a20eb87556caa3</citedby><cites>FETCH-LOGICAL-a399t-386d8e6c4fca0d55b3ce1f586c69af19660f94371b998a46047a20eb87556caa3</cites><orcidid>0000-0003-2574-2943 ; 0000-0002-5632-5096 ; 0000-0002-7764-7975 ; 0000-0003-4812-8604 ; 0000-0003-0443-6955 ; 0000-0003-0642-3939 ; 0000-0001-6203-5338 ; 0000-0003-0646-1572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.0c10373$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.0c10373$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33512158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Sisi</creatorcontrib><creatorcontrib>Xiong, Kao</creatorcontrib><creatorcontrib>Wang, Kang</creatorcontrib><creatorcontrib>Liang, Guijie</creatorcontrib><creatorcontrib>Li, Ming-Yu</creatorcontrib><creatorcontrib>Tang, Haodong</creatorcontrib><creatorcontrib>Yang, Xiaokun</creatorcontrib><creatorcontrib>Huang, Zhen</creatorcontrib><creatorcontrib>Lian, Linyuan</creatorcontrib><creatorcontrib>Tan, Manlin</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Gao, Liang</creatorcontrib><creatorcontrib>Song, Haisheng</creatorcontrib><creatorcontrib>Zhang, Daoli</creatorcontrib><creatorcontrib>Gao, Jianbo</creatorcontrib><creatorcontrib>Lan, Xinzheng</creatorcontrib><creatorcontrib>Tang, Jiang</creatorcontrib><creatorcontrib>Zhang, Jianbing</creatorcontrib><title>Efficiently Passivated PbSe Quantum Dot Solids for Infrared Photovoltaics</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Infrared (IR) solar cells are promising devices for significantly improving the power conversion efficiency of common solar cells by harvesting the low-energy IR photons. PbSe quantum dots (QDs) are superior IR photon absorbing materials due to their strong quantum confinement and thus strong interdot electronic coupling. However, the high chemical activity of PbSe QDs leads to etching and poor passivation in ligand exchange, resulting in a high trap-state density and a high open circuit voltage (V OC) deficit. Here we develop a hybrid ligand co-passivation strategy to simultaneously passivate the Pb and Se sites; that is, halide anions passivate the Pb sites and Cd cations passivate the Se sites. The cation and anion hybrid passivation substantially improves the quality of PbSe QD solids, giving rise to an excellent trap-state control and prolonged carrier lifetime. A high V OC and a high short circuit current density (J SC) are achieved simultaneously in the IR QD solar cells based on this hybrid ligand treatment. Finally, a IR-PCE of 1.31% under the 1100-nm-filtered solar illumination is achieved in the PbSe QD solar cells, which is the highest IR-PCE for PbSe QD IR solar cells at present. Additionally, the PbSe QD devices show a high external quantum efficiency of 80% at ∼1295 nm.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAYhoMobk7P3qRHQbolTZMmR5lTBwMnU_BWvqYJdrTNTNLB_r0dm7t5-t7D877wPQjdEjwmOCETUL6F1o6xIphm9AwNiaQ8xoJ_nZ8yIwN05f0aY5aJjF-iAaWMJISJIZrPjKlUpdtQ76IleF9tIegyWhYrHb130IauiZ5siFa2rkofGeuieWscuD30bYPd2jpApfw1ujBQe31zvCP0-Tz7mL7Gi7eX-fRxEQOVMsRU8FJorlKjAJeMFVRpYpjgikswRHKOjUxpRgopBaQcpxkkWBciY4wrADpC94fdjbM_nfYhbyqvdF1Dq23n8yQVVBBJKOnRyQFVznrvtMk3rmrA7XKC872__OgvP_rrG3fH8a5odHni_4T1wMMB6Jv52nau7X_9d-4XiNB7Wg</recordid><startdate>20210223</startdate><enddate>20210223</enddate><creator>Liu, Sisi</creator><creator>Xiong, Kao</creator><creator>Wang, Kang</creator><creator>Liang, Guijie</creator><creator>Li, Ming-Yu</creator><creator>Tang, Haodong</creator><creator>Yang, Xiaokun</creator><creator>Huang, Zhen</creator><creator>Lian, Linyuan</creator><creator>Tan, Manlin</creator><creator>Wang, Kai</creator><creator>Gao, Liang</creator><creator>Song, Haisheng</creator><creator>Zhang, Daoli</creator><creator>Gao, Jianbo</creator><creator>Lan, Xinzheng</creator><creator>Tang, Jiang</creator><creator>Zhang, Jianbing</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2574-2943</orcidid><orcidid>https://orcid.org/0000-0002-5632-5096</orcidid><orcidid>https://orcid.org/0000-0002-7764-7975</orcidid><orcidid>https://orcid.org/0000-0003-4812-8604</orcidid><orcidid>https://orcid.org/0000-0003-0443-6955</orcidid><orcidid>https://orcid.org/0000-0003-0642-3939</orcidid><orcidid>https://orcid.org/0000-0001-6203-5338</orcidid><orcidid>https://orcid.org/0000-0003-0646-1572</orcidid></search><sort><creationdate>20210223</creationdate><title>Efficiently Passivated PbSe Quantum Dot Solids for Infrared Photovoltaics</title><author>Liu, Sisi ; Xiong, Kao ; Wang, Kang ; Liang, Guijie ; Li, Ming-Yu ; Tang, Haodong ; Yang, Xiaokun ; Huang, Zhen ; Lian, Linyuan ; Tan, Manlin ; Wang, Kai ; Gao, Liang ; Song, Haisheng ; Zhang, Daoli ; Gao, Jianbo ; Lan, Xinzheng ; Tang, Jiang ; Zhang, Jianbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-386d8e6c4fca0d55b3ce1f586c69af19660f94371b998a46047a20eb87556caa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Sisi</creatorcontrib><creatorcontrib>Xiong, Kao</creatorcontrib><creatorcontrib>Wang, Kang</creatorcontrib><creatorcontrib>Liang, Guijie</creatorcontrib><creatorcontrib>Li, Ming-Yu</creatorcontrib><creatorcontrib>Tang, Haodong</creatorcontrib><creatorcontrib>Yang, Xiaokun</creatorcontrib><creatorcontrib>Huang, Zhen</creatorcontrib><creatorcontrib>Lian, Linyuan</creatorcontrib><creatorcontrib>Tan, Manlin</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Gao, Liang</creatorcontrib><creatorcontrib>Song, Haisheng</creatorcontrib><creatorcontrib>Zhang, Daoli</creatorcontrib><creatorcontrib>Gao, Jianbo</creatorcontrib><creatorcontrib>Lan, Xinzheng</creatorcontrib><creatorcontrib>Tang, Jiang</creatorcontrib><creatorcontrib>Zhang, Jianbing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Sisi</au><au>Xiong, Kao</au><au>Wang, Kang</au><au>Liang, Guijie</au><au>Li, Ming-Yu</au><au>Tang, Haodong</au><au>Yang, Xiaokun</au><au>Huang, Zhen</au><au>Lian, Linyuan</au><au>Tan, Manlin</au><au>Wang, Kai</au><au>Gao, Liang</au><au>Song, Haisheng</au><au>Zhang, Daoli</au><au>Gao, Jianbo</au><au>Lan, Xinzheng</au><au>Tang, Jiang</au><au>Zhang, Jianbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficiently Passivated PbSe Quantum Dot Solids for Infrared Photovoltaics</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2021-02-23</date><risdate>2021</risdate><volume>15</volume><issue>2</issue><spage>3376</spage><epage>3386</epage><pages>3376-3386</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Infrared (IR) solar cells are promising devices for significantly improving the power conversion efficiency of common solar cells by harvesting the low-energy IR photons. PbSe quantum dots (QDs) are superior IR photon absorbing materials due to their strong quantum confinement and thus strong interdot electronic coupling. However, the high chemical activity of PbSe QDs leads to etching and poor passivation in ligand exchange, resulting in a high trap-state density and a high open circuit voltage (V OC) deficit. Here we develop a hybrid ligand co-passivation strategy to simultaneously passivate the Pb and Se sites; that is, halide anions passivate the Pb sites and Cd cations passivate the Se sites. The cation and anion hybrid passivation substantially improves the quality of PbSe QD solids, giving rise to an excellent trap-state control and prolonged carrier lifetime. A high V OC and a high short circuit current density (J SC) are achieved simultaneously in the IR QD solar cells based on this hybrid ligand treatment. Finally, a IR-PCE of 1.31% under the 1100-nm-filtered solar illumination is achieved in the PbSe QD solar cells, which is the highest IR-PCE for PbSe QD IR solar cells at present. Additionally, the PbSe QD devices show a high external quantum efficiency of 80% at ∼1295 nm.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33512158</pmid><doi>10.1021/acsnano.0c10373</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2574-2943</orcidid><orcidid>https://orcid.org/0000-0002-5632-5096</orcidid><orcidid>https://orcid.org/0000-0002-7764-7975</orcidid><orcidid>https://orcid.org/0000-0003-4812-8604</orcidid><orcidid>https://orcid.org/0000-0003-0443-6955</orcidid><orcidid>https://orcid.org/0000-0003-0642-3939</orcidid><orcidid>https://orcid.org/0000-0001-6203-5338</orcidid><orcidid>https://orcid.org/0000-0003-0646-1572</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2021-02, Vol.15 (2), p.3376-3386
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2483819131
source ACS Publications
title Efficiently Passivated PbSe Quantum Dot Solids for Infrared Photovoltaics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A43%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficiently%20Passivated%20PbSe%20Quantum%20Dot%20Solids%20for%20Infrared%20Photovoltaics&rft.jtitle=ACS%20nano&rft.au=Liu,%20Sisi&rft.date=2021-02-23&rft.volume=15&rft.issue=2&rft.spage=3376&rft.epage=3386&rft.pages=3376-3386&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.0c10373&rft_dat=%3Cproquest_cross%3E2483819131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483819131&rft_id=info:pmid/33512158&rfr_iscdi=true