Anodized Nickel Foam for Oxygen Evolution Reaction in Fe-Free and Unpurified Alkaline Electrolytes at High Current Densities

To achieve practically high electrocatalytic performance for the oxygen evolution reaction (OER), the active surface area should be maximized without severely compromising electron and mass transport throughout the catalyst electrode. Though the importance of electron and mass transport has been stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2021-02, Vol.15 (2), p.3468-3480
Hauptverfasser: Son, Yoon Jun, Kawashima, Kenta, Wygant, Bryan R, Lam, Chon Hei, Burrow, James N, Celio, Hugo, Dolocan, Andrei, Ekerdt, John G, Mullins, C. Buddie
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3480
container_issue 2
container_start_page 3468
container_title ACS nano
container_volume 15
creator Son, Yoon Jun
Kawashima, Kenta
Wygant, Bryan R
Lam, Chon Hei
Burrow, James N
Celio, Hugo
Dolocan, Andrei
Ekerdt, John G
Mullins, C. Buddie
description To achieve practically high electrocatalytic performance for the oxygen evolution reaction (OER), the active surface area should be maximized without severely compromising electron and mass transport throughout the catalyst electrode. Though the importance of electron and mass transport has been studied using low surface area catalysts under low current densities (∼tens of mA/cm2), the transport properties of large surface area catalysts under high operating current densities (∼500 mA/cm2) for practical OER catalysis have rarely been explored. Herein, three-dimensional (3D) hierarchically porous anodized nickel foams (ANFs) with large and variable surface areas were synthesized via electrochemical anodization of 3D nickel foam and applied as OER electrocatalysts in Fe-free and unpurified KOH electrolytes. Using Fe-free and in situ Fe-doped ANF that were prepared in Fe-free and unpurified electrolytes, respectively, we investigated the interdependent effects of active surface area and transport properties on OER activity under practically high current densities. While activity increased linearly with active surface area for Fe-free ANF, the activity of Fe-doped ANF showed a nonlinear increase with active surface area due to lower electrocatalytic activity enhancement. Detailed investigations on the possible factors (Fe incorporation, mass transport, and electron transport) identified that electron transport limitations played the major role in restricting the activity enhancement with increasing active surface area for Fe-doped ANF, although Fe-doped ANF has electron transport properties better than those of Fe-free ANF. This study exemplifies the growing significance of electron transport properties in large surface area catalysts, especially those with superb intrinsic catalytic activity and high operating current density.
doi_str_mv 10.1021/acsnano.0c10788
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2483818903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2483818903</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-c0f2843eaac586551e5ac1f5dcd89377a2e551ec6f97bd6ba75f502126c5c82d3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobv44e5McBemWNEubHsdcnSAORMFbydLXmS1LZtKKE_94q5u7eXqPx-f7hfdB6IKSHiUx7UsVrLSuRxQlqRAHqEszlkREJC-H-53TDjoJYUEIT0WaHKMOY5zGlCdd9DW0rtSfUOIHrZZgcO7kClfO4-nHZg4Wj9-daWrtLH4EqX4XbXEOUe4BsLQlfrbrxutKtx1Ds5RGW8BjA6r2zmxqCFjWeKLnr3jUeA-2xjdgg641hDN0VEkT4Hw3T9FzPn4aTaL76e3daHgfSZZldaRIFYsBAykVFwnnFLhUtOKlKkXG0lTG8HNUSZWlszKZyZRXvLUTJ4orEZfsFF1te9fevTUQ6mKlgwJjpAXXhCIeCCaoyAhr0f4WVd6F4KEq1l6vpN8UlBQ_youd8mKnvE1c7sqb2QrKPf_nuAWut0CbLBau8bb99d-6b6lfjhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483818903</pqid></control><display><type>article</type><title>Anodized Nickel Foam for Oxygen Evolution Reaction in Fe-Free and Unpurified Alkaline Electrolytes at High Current Densities</title><source>ACS Publications</source><creator>Son, Yoon Jun ; Kawashima, Kenta ; Wygant, Bryan R ; Lam, Chon Hei ; Burrow, James N ; Celio, Hugo ; Dolocan, Andrei ; Ekerdt, John G ; Mullins, C. Buddie</creator><creatorcontrib>Son, Yoon Jun ; Kawashima, Kenta ; Wygant, Bryan R ; Lam, Chon Hei ; Burrow, James N ; Celio, Hugo ; Dolocan, Andrei ; Ekerdt, John G ; Mullins, C. Buddie</creatorcontrib><description>To achieve practically high electrocatalytic performance for the oxygen evolution reaction (OER), the active surface area should be maximized without severely compromising electron and mass transport throughout the catalyst electrode. Though the importance of electron and mass transport has been studied using low surface area catalysts under low current densities (∼tens of mA/cm2), the transport properties of large surface area catalysts under high operating current densities (∼500 mA/cm2) for practical OER catalysis have rarely been explored. Herein, three-dimensional (3D) hierarchically porous anodized nickel foams (ANFs) with large and variable surface areas were synthesized via electrochemical anodization of 3D nickel foam and applied as OER electrocatalysts in Fe-free and unpurified KOH electrolytes. Using Fe-free and in situ Fe-doped ANF that were prepared in Fe-free and unpurified electrolytes, respectively, we investigated the interdependent effects of active surface area and transport properties on OER activity under practically high current densities. While activity increased linearly with active surface area for Fe-free ANF, the activity of Fe-doped ANF showed a nonlinear increase with active surface area due to lower electrocatalytic activity enhancement. Detailed investigations on the possible factors (Fe incorporation, mass transport, and electron transport) identified that electron transport limitations played the major role in restricting the activity enhancement with increasing active surface area for Fe-doped ANF, although Fe-doped ANF has electron transport properties better than those of Fe-free ANF. This study exemplifies the growing significance of electron transport properties in large surface area catalysts, especially those with superb intrinsic catalytic activity and high operating current density.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.0c10788</identifier><identifier>PMID: 33512156</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2021-02, Vol.15 (2), p.3468-3480</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-c0f2843eaac586551e5ac1f5dcd89377a2e551ec6f97bd6ba75f502126c5c82d3</citedby><cites>FETCH-LOGICAL-a399t-c0f2843eaac586551e5ac1f5dcd89377a2e551ec6f97bd6ba75f502126c5c82d3</cites><orcidid>0000-0001-5653-0439 ; 0000-0003-1030-4801 ; 0000-0002-1788-5330 ; 0000-0001-7318-6115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.0c10788$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.0c10788$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33512156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Son, Yoon Jun</creatorcontrib><creatorcontrib>Kawashima, Kenta</creatorcontrib><creatorcontrib>Wygant, Bryan R</creatorcontrib><creatorcontrib>Lam, Chon Hei</creatorcontrib><creatorcontrib>Burrow, James N</creatorcontrib><creatorcontrib>Celio, Hugo</creatorcontrib><creatorcontrib>Dolocan, Andrei</creatorcontrib><creatorcontrib>Ekerdt, John G</creatorcontrib><creatorcontrib>Mullins, C. Buddie</creatorcontrib><title>Anodized Nickel Foam for Oxygen Evolution Reaction in Fe-Free and Unpurified Alkaline Electrolytes at High Current Densities</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>To achieve practically high electrocatalytic performance for the oxygen evolution reaction (OER), the active surface area should be maximized without severely compromising electron and mass transport throughout the catalyst electrode. Though the importance of electron and mass transport has been studied using low surface area catalysts under low current densities (∼tens of mA/cm2), the transport properties of large surface area catalysts under high operating current densities (∼500 mA/cm2) for practical OER catalysis have rarely been explored. Herein, three-dimensional (3D) hierarchically porous anodized nickel foams (ANFs) with large and variable surface areas were synthesized via electrochemical anodization of 3D nickel foam and applied as OER electrocatalysts in Fe-free and unpurified KOH electrolytes. Using Fe-free and in situ Fe-doped ANF that were prepared in Fe-free and unpurified electrolytes, respectively, we investigated the interdependent effects of active surface area and transport properties on OER activity under practically high current densities. While activity increased linearly with active surface area for Fe-free ANF, the activity of Fe-doped ANF showed a nonlinear increase with active surface area due to lower electrocatalytic activity enhancement. Detailed investigations on the possible factors (Fe incorporation, mass transport, and electron transport) identified that electron transport limitations played the major role in restricting the activity enhancement with increasing active surface area for Fe-doped ANF, although Fe-doped ANF has electron transport properties better than those of Fe-free ANF. This study exemplifies the growing significance of electron transport properties in large surface area catalysts, especially those with superb intrinsic catalytic activity and high operating current density.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4Mobv44e5McBemWNEubHsdcnSAORMFbydLXmS1LZtKKE_94q5u7eXqPx-f7hfdB6IKSHiUx7UsVrLSuRxQlqRAHqEszlkREJC-H-53TDjoJYUEIT0WaHKMOY5zGlCdd9DW0rtSfUOIHrZZgcO7kClfO4-nHZg4Wj9-daWrtLH4EqX4XbXEOUe4BsLQlfrbrxutKtx1Ds5RGW8BjA6r2zmxqCFjWeKLnr3jUeA-2xjdgg641hDN0VEkT4Hw3T9FzPn4aTaL76e3daHgfSZZldaRIFYsBAykVFwnnFLhUtOKlKkXG0lTG8HNUSZWlszKZyZRXvLUTJ4orEZfsFF1te9fevTUQ6mKlgwJjpAXXhCIeCCaoyAhr0f4WVd6F4KEq1l6vpN8UlBQ_youd8mKnvE1c7sqb2QrKPf_nuAWut0CbLBau8bb99d-6b6lfjhw</recordid><startdate>20210223</startdate><enddate>20210223</enddate><creator>Son, Yoon Jun</creator><creator>Kawashima, Kenta</creator><creator>Wygant, Bryan R</creator><creator>Lam, Chon Hei</creator><creator>Burrow, James N</creator><creator>Celio, Hugo</creator><creator>Dolocan, Andrei</creator><creator>Ekerdt, John G</creator><creator>Mullins, C. Buddie</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5653-0439</orcidid><orcidid>https://orcid.org/0000-0003-1030-4801</orcidid><orcidid>https://orcid.org/0000-0002-1788-5330</orcidid><orcidid>https://orcid.org/0000-0001-7318-6115</orcidid></search><sort><creationdate>20210223</creationdate><title>Anodized Nickel Foam for Oxygen Evolution Reaction in Fe-Free and Unpurified Alkaline Electrolytes at High Current Densities</title><author>Son, Yoon Jun ; Kawashima, Kenta ; Wygant, Bryan R ; Lam, Chon Hei ; Burrow, James N ; Celio, Hugo ; Dolocan, Andrei ; Ekerdt, John G ; Mullins, C. Buddie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-c0f2843eaac586551e5ac1f5dcd89377a2e551ec6f97bd6ba75f502126c5c82d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Son, Yoon Jun</creatorcontrib><creatorcontrib>Kawashima, Kenta</creatorcontrib><creatorcontrib>Wygant, Bryan R</creatorcontrib><creatorcontrib>Lam, Chon Hei</creatorcontrib><creatorcontrib>Burrow, James N</creatorcontrib><creatorcontrib>Celio, Hugo</creatorcontrib><creatorcontrib>Dolocan, Andrei</creatorcontrib><creatorcontrib>Ekerdt, John G</creatorcontrib><creatorcontrib>Mullins, C. Buddie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Son, Yoon Jun</au><au>Kawashima, Kenta</au><au>Wygant, Bryan R</au><au>Lam, Chon Hei</au><au>Burrow, James N</au><au>Celio, Hugo</au><au>Dolocan, Andrei</au><au>Ekerdt, John G</au><au>Mullins, C. Buddie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anodized Nickel Foam for Oxygen Evolution Reaction in Fe-Free and Unpurified Alkaline Electrolytes at High Current Densities</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2021-02-23</date><risdate>2021</risdate><volume>15</volume><issue>2</issue><spage>3468</spage><epage>3480</epage><pages>3468-3480</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>To achieve practically high electrocatalytic performance for the oxygen evolution reaction (OER), the active surface area should be maximized without severely compromising electron and mass transport throughout the catalyst electrode. Though the importance of electron and mass transport has been studied using low surface area catalysts under low current densities (∼tens of mA/cm2), the transport properties of large surface area catalysts under high operating current densities (∼500 mA/cm2) for practical OER catalysis have rarely been explored. Herein, three-dimensional (3D) hierarchically porous anodized nickel foams (ANFs) with large and variable surface areas were synthesized via electrochemical anodization of 3D nickel foam and applied as OER electrocatalysts in Fe-free and unpurified KOH electrolytes. Using Fe-free and in situ Fe-doped ANF that were prepared in Fe-free and unpurified electrolytes, respectively, we investigated the interdependent effects of active surface area and transport properties on OER activity under practically high current densities. While activity increased linearly with active surface area for Fe-free ANF, the activity of Fe-doped ANF showed a nonlinear increase with active surface area due to lower electrocatalytic activity enhancement. Detailed investigations on the possible factors (Fe incorporation, mass transport, and electron transport) identified that electron transport limitations played the major role in restricting the activity enhancement with increasing active surface area for Fe-doped ANF, although Fe-doped ANF has electron transport properties better than those of Fe-free ANF. This study exemplifies the growing significance of electron transport properties in large surface area catalysts, especially those with superb intrinsic catalytic activity and high operating current density.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33512156</pmid><doi>10.1021/acsnano.0c10788</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5653-0439</orcidid><orcidid>https://orcid.org/0000-0003-1030-4801</orcidid><orcidid>https://orcid.org/0000-0002-1788-5330</orcidid><orcidid>https://orcid.org/0000-0001-7318-6115</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2021-02, Vol.15 (2), p.3468-3480
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2483818903
source ACS Publications
title Anodized Nickel Foam for Oxygen Evolution Reaction in Fe-Free and Unpurified Alkaline Electrolytes at High Current Densities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A21%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anodized%20Nickel%20Foam%20for%20Oxygen%20Evolution%20Reaction%20in%20Fe-Free%20and%20Unpurified%20Alkaline%20Electrolytes%20at%20High%20Current%20Densities&rft.jtitle=ACS%20nano&rft.au=Son,%20Yoon%20Jun&rft.date=2021-02-23&rft.volume=15&rft.issue=2&rft.spage=3468&rft.epage=3480&rft.pages=3468-3480&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.0c10788&rft_dat=%3Cproquest_cross%3E2483818903%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483818903&rft_id=info:pmid/33512156&rfr_iscdi=true