A Validated Prediction Model for End-Stage Kidney Disease in Type 1 Diabetes

End-stage kidney disease (ESKD) is a life-threatening complication of diabetes that can be prevented or delayed by intervention. Hence, early detection of people at increased risk is essential. From a population-based cohort of 5,460 clinically diagnosed Danish adults with type 1 diabetes followed f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes care 2021-04, Vol.44 (4), p.901-907
Hauptverfasser: Vistisen, Dorte, Andersen, Gregers S, Hulman, Adam, McGurnaghan, Stuart J, Colhoun, Helen M, Henriksen, Jan E, Thomsen, Reimar W, Persson, Frederik, Rossing, Peter, Jørgensen, Marit E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 907
container_issue 4
container_start_page 901
container_title Diabetes care
container_volume 44
creator Vistisen, Dorte
Andersen, Gregers S
Hulman, Adam
McGurnaghan, Stuart J
Colhoun, Helen M
Henriksen, Jan E
Thomsen, Reimar W
Persson, Frederik
Rossing, Peter
Jørgensen, Marit E
description End-stage kidney disease (ESKD) is a life-threatening complication of diabetes that can be prevented or delayed by intervention. Hence, early detection of people at increased risk is essential. From a population-based cohort of 5,460 clinically diagnosed Danish adults with type 1 diabetes followed from 2001 to 2016, we developed a prediction model for ESKD accounting for the competing risk of death. Poisson regression analysis was used to estimate the model on the basis of information routinely collected from clinical examinations. The effect of including an extended set of predictors (lipids, alcohol intake, etc.) was further evaluated, and potential interactions identified in a survival tree analysis were tested. The final model was externally validated in 9,175 adults from Denmark and Scotland. During a median follow-up of 10.4 years (interquartile limits 5.1; 14.7), 303 (5.5%) of the participants (mean [SD] age 42.3 [16.5] years) developed ESKD, and 764 (14.0%) died without having developed ESKD. The final ESKD prediction model included age, male sex, diabetes duration, estimated glomerular filtration rate, micro- and macroalbuminuria, systolic blood pressure, hemoglobin A , smoking, and previous cardiovascular disease. Discrimination was excellent for 5-year risk of an ESKD event, with a C-statistic of 0.888 (95% CI 0.849; 0.927) in the derivation cohort and confirmed at 0.865 (0.811; 0.919) and 0.961 (0.940; 0.981) in the external validation cohorts from Denmark and Scotland, respectively. We have derived and validated a novel, high-performing ESKD prediction model for risk stratification in the adult type 1 diabetes population. This model may improve clinical decision making and potentially guide early intervention.
doi_str_mv 10.2337/dc20-2586
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2483816112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2483816112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-803427d88da47a6541da6868608d563ccd99f2ee7d4c33a59d5df015b0e8b3fb3</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMotlYX_gEJuNHFaJ4zybLU-sCKgtVtyCR3JGU6U5Ppov_eKa0u5C4OXD4Ohw-hc0puGOfFrXeMZEyq_AANqeYyk1KoQzQkVOhMas0G6CSlBSFECKWO0YBzSbTmdIhmY_xp6-BtBx6_RfDBdaFt8EvrocZVG_G08dl7Z78APwffwAbfhQQ2AQ4Nnm9WgGn_sSV0kE7RUWXrBGf7HKGP--l88pjNXh-eJuNZ5gQVXaYIF6zwSnkrCptLQb3NVX9EeZlz57zWFQMovHCcW6m99BWhsiSgSl6VfISudr2r2H6vIXVmGZKDurYNtOtkmFBc0ZxS1qOX_9BFu45Nv84wSQpaEM1UT13vKBfblCJUZhXD0saNocRsFZutYrNV3LMX-8Z1uQT_R_465T9DTHNi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507170928</pqid></control><display><type>article</type><title>A Validated Prediction Model for End-Stage Kidney Disease in Type 1 Diabetes</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Vistisen, Dorte ; Andersen, Gregers S ; Hulman, Adam ; McGurnaghan, Stuart J ; Colhoun, Helen M ; Henriksen, Jan E ; Thomsen, Reimar W ; Persson, Frederik ; Rossing, Peter ; Jørgensen, Marit E</creator><creatorcontrib>Vistisen, Dorte ; Andersen, Gregers S ; Hulman, Adam ; McGurnaghan, Stuart J ; Colhoun, Helen M ; Henriksen, Jan E ; Thomsen, Reimar W ; Persson, Frederik ; Rossing, Peter ; Jørgensen, Marit E</creatorcontrib><description>End-stage kidney disease (ESKD) is a life-threatening complication of diabetes that can be prevented or delayed by intervention. Hence, early detection of people at increased risk is essential. From a population-based cohort of 5,460 clinically diagnosed Danish adults with type 1 diabetes followed from 2001 to 2016, we developed a prediction model for ESKD accounting for the competing risk of death. Poisson regression analysis was used to estimate the model on the basis of information routinely collected from clinical examinations. The effect of including an extended set of predictors (lipids, alcohol intake, etc.) was further evaluated, and potential interactions identified in a survival tree analysis were tested. The final model was externally validated in 9,175 adults from Denmark and Scotland. During a median follow-up of 10.4 years (interquartile limits 5.1; 14.7), 303 (5.5%) of the participants (mean [SD] age 42.3 [16.5] years) developed ESKD, and 764 (14.0%) died without having developed ESKD. The final ESKD prediction model included age, male sex, diabetes duration, estimated glomerular filtration rate, micro- and macroalbuminuria, systolic blood pressure, hemoglobin A , smoking, and previous cardiovascular disease. Discrimination was excellent for 5-year risk of an ESKD event, with a C-statistic of 0.888 (95% CI 0.849; 0.927) in the derivation cohort and confirmed at 0.865 (0.811; 0.919) and 0.961 (0.940; 0.981) in the external validation cohorts from Denmark and Scotland, respectively. We have derived and validated a novel, high-performing ESKD prediction model for risk stratification in the adult type 1 diabetes population. This model may improve clinical decision making and potentially guide early intervention.</description><identifier>ISSN: 0149-5992</identifier><identifier>EISSN: 1935-5548</identifier><identifier>DOI: 10.2337/dc20-2586</identifier><identifier>PMID: 33509931</identifier><language>eng</language><publisher>United States: American Diabetes Association</publisher><subject>Adult ; Adults ; Blood pressure ; Cardiovascular diseases ; Clinical decision making ; Decision making ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (insulin dependent) ; Diabetes Mellitus, Type 1 - complications ; Diabetes Mellitus, Type 1 - epidemiology ; End-stage renal disease ; Female ; Glomerular Filtration Rate ; Glycated Hemoglobin A ; Hemoglobin ; Humans ; Kidney diseases ; Kidney Failure, Chronic - diagnosis ; Kidney Failure, Chronic - epidemiology ; Kidney Failure, Chronic - etiology ; Kidneys ; Lipids ; Male ; Middle Aged ; Prediction models ; Regression analysis ; Research design ; Risk ; Risk Assessment ; Risk Factors ; Statistical analysis</subject><ispartof>Diabetes care, 2021-04, Vol.44 (4), p.901-907</ispartof><rights>2021 by the American Diabetes Association.</rights><rights>Copyright American Diabetes Association Apr 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-803427d88da47a6541da6868608d563ccd99f2ee7d4c33a59d5df015b0e8b3fb3</citedby><cites>FETCH-LOGICAL-c414t-803427d88da47a6541da6868608d563ccd99f2ee7d4c33a59d5df015b0e8b3fb3</cites><orcidid>0000-0001-9135-3474 ; 0000-0001-5045-5351 ; 0000-0002-8345-3288 ; 0000-0002-1531-4294 ; 0000-0001-8356-5565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33509931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vistisen, Dorte</creatorcontrib><creatorcontrib>Andersen, Gregers S</creatorcontrib><creatorcontrib>Hulman, Adam</creatorcontrib><creatorcontrib>McGurnaghan, Stuart J</creatorcontrib><creatorcontrib>Colhoun, Helen M</creatorcontrib><creatorcontrib>Henriksen, Jan E</creatorcontrib><creatorcontrib>Thomsen, Reimar W</creatorcontrib><creatorcontrib>Persson, Frederik</creatorcontrib><creatorcontrib>Rossing, Peter</creatorcontrib><creatorcontrib>Jørgensen, Marit E</creatorcontrib><title>A Validated Prediction Model for End-Stage Kidney Disease in Type 1 Diabetes</title><title>Diabetes care</title><addtitle>Diabetes Care</addtitle><description>End-stage kidney disease (ESKD) is a life-threatening complication of diabetes that can be prevented or delayed by intervention. Hence, early detection of people at increased risk is essential. From a population-based cohort of 5,460 clinically diagnosed Danish adults with type 1 diabetes followed from 2001 to 2016, we developed a prediction model for ESKD accounting for the competing risk of death. Poisson regression analysis was used to estimate the model on the basis of information routinely collected from clinical examinations. The effect of including an extended set of predictors (lipids, alcohol intake, etc.) was further evaluated, and potential interactions identified in a survival tree analysis were tested. The final model was externally validated in 9,175 adults from Denmark and Scotland. During a median follow-up of 10.4 years (interquartile limits 5.1; 14.7), 303 (5.5%) of the participants (mean [SD] age 42.3 [16.5] years) developed ESKD, and 764 (14.0%) died without having developed ESKD. The final ESKD prediction model included age, male sex, diabetes duration, estimated glomerular filtration rate, micro- and macroalbuminuria, systolic blood pressure, hemoglobin A , smoking, and previous cardiovascular disease. Discrimination was excellent for 5-year risk of an ESKD event, with a C-statistic of 0.888 (95% CI 0.849; 0.927) in the derivation cohort and confirmed at 0.865 (0.811; 0.919) and 0.961 (0.940; 0.981) in the external validation cohorts from Denmark and Scotland, respectively. We have derived and validated a novel, high-performing ESKD prediction model for risk stratification in the adult type 1 diabetes population. This model may improve clinical decision making and potentially guide early intervention.</description><subject>Adult</subject><subject>Adults</subject><subject>Blood pressure</subject><subject>Cardiovascular diseases</subject><subject>Clinical decision making</subject><subject>Decision making</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (insulin dependent)</subject><subject>Diabetes Mellitus, Type 1 - complications</subject><subject>Diabetes Mellitus, Type 1 - epidemiology</subject><subject>End-stage renal disease</subject><subject>Female</subject><subject>Glomerular Filtration Rate</subject><subject>Glycated Hemoglobin A</subject><subject>Hemoglobin</subject><subject>Humans</subject><subject>Kidney diseases</subject><subject>Kidney Failure, Chronic - diagnosis</subject><subject>Kidney Failure, Chronic - epidemiology</subject><subject>Kidney Failure, Chronic - etiology</subject><subject>Kidneys</subject><subject>Lipids</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Prediction models</subject><subject>Regression analysis</subject><subject>Research design</subject><subject>Risk</subject><subject>Risk Assessment</subject><subject>Risk Factors</subject><subject>Statistical analysis</subject><issn>0149-5992</issn><issn>1935-5548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkEtLAzEUhYMotlYX_gEJuNHFaJ4zybLU-sCKgtVtyCR3JGU6U5Ppov_eKa0u5C4OXD4Ohw-hc0puGOfFrXeMZEyq_AANqeYyk1KoQzQkVOhMas0G6CSlBSFECKWO0YBzSbTmdIhmY_xp6-BtBx6_RfDBdaFt8EvrocZVG_G08dl7Z78APwffwAbfhQQ2AQ4Nnm9WgGn_sSV0kE7RUWXrBGf7HKGP--l88pjNXh-eJuNZ5gQVXaYIF6zwSnkrCptLQb3NVX9EeZlz57zWFQMovHCcW6m99BWhsiSgSl6VfISudr2r2H6vIXVmGZKDurYNtOtkmFBc0ZxS1qOX_9BFu45Nv84wSQpaEM1UT13vKBfblCJUZhXD0saNocRsFZutYrNV3LMX-8Z1uQT_R_465T9DTHNi</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Vistisen, Dorte</creator><creator>Andersen, Gregers S</creator><creator>Hulman, Adam</creator><creator>McGurnaghan, Stuart J</creator><creator>Colhoun, Helen M</creator><creator>Henriksen, Jan E</creator><creator>Thomsen, Reimar W</creator><creator>Persson, Frederik</creator><creator>Rossing, Peter</creator><creator>Jørgensen, Marit E</creator><general>American Diabetes Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9135-3474</orcidid><orcidid>https://orcid.org/0000-0001-5045-5351</orcidid><orcidid>https://orcid.org/0000-0002-8345-3288</orcidid><orcidid>https://orcid.org/0000-0002-1531-4294</orcidid><orcidid>https://orcid.org/0000-0001-8356-5565</orcidid></search><sort><creationdate>20210401</creationdate><title>A Validated Prediction Model for End-Stage Kidney Disease in Type 1 Diabetes</title><author>Vistisen, Dorte ; Andersen, Gregers S ; Hulman, Adam ; McGurnaghan, Stuart J ; Colhoun, Helen M ; Henriksen, Jan E ; Thomsen, Reimar W ; Persson, Frederik ; Rossing, Peter ; Jørgensen, Marit E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-803427d88da47a6541da6868608d563ccd99f2ee7d4c33a59d5df015b0e8b3fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Adults</topic><topic>Blood pressure</topic><topic>Cardiovascular diseases</topic><topic>Clinical decision making</topic><topic>Decision making</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (insulin dependent)</topic><topic>Diabetes Mellitus, Type 1 - complications</topic><topic>Diabetes Mellitus, Type 1 - epidemiology</topic><topic>End-stage renal disease</topic><topic>Female</topic><topic>Glomerular Filtration Rate</topic><topic>Glycated Hemoglobin A</topic><topic>Hemoglobin</topic><topic>Humans</topic><topic>Kidney diseases</topic><topic>Kidney Failure, Chronic - diagnosis</topic><topic>Kidney Failure, Chronic - epidemiology</topic><topic>Kidney Failure, Chronic - etiology</topic><topic>Kidneys</topic><topic>Lipids</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Prediction models</topic><topic>Regression analysis</topic><topic>Research design</topic><topic>Risk</topic><topic>Risk Assessment</topic><topic>Risk Factors</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vistisen, Dorte</creatorcontrib><creatorcontrib>Andersen, Gregers S</creatorcontrib><creatorcontrib>Hulman, Adam</creatorcontrib><creatorcontrib>McGurnaghan, Stuart J</creatorcontrib><creatorcontrib>Colhoun, Helen M</creatorcontrib><creatorcontrib>Henriksen, Jan E</creatorcontrib><creatorcontrib>Thomsen, Reimar W</creatorcontrib><creatorcontrib>Persson, Frederik</creatorcontrib><creatorcontrib>Rossing, Peter</creatorcontrib><creatorcontrib>Jørgensen, Marit E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Diabetes care</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vistisen, Dorte</au><au>Andersen, Gregers S</au><au>Hulman, Adam</au><au>McGurnaghan, Stuart J</au><au>Colhoun, Helen M</au><au>Henriksen, Jan E</au><au>Thomsen, Reimar W</au><au>Persson, Frederik</au><au>Rossing, Peter</au><au>Jørgensen, Marit E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Validated Prediction Model for End-Stage Kidney Disease in Type 1 Diabetes</atitle><jtitle>Diabetes care</jtitle><addtitle>Diabetes Care</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>44</volume><issue>4</issue><spage>901</spage><epage>907</epage><pages>901-907</pages><issn>0149-5992</issn><eissn>1935-5548</eissn><abstract>End-stage kidney disease (ESKD) is a life-threatening complication of diabetes that can be prevented or delayed by intervention. Hence, early detection of people at increased risk is essential. From a population-based cohort of 5,460 clinically diagnosed Danish adults with type 1 diabetes followed from 2001 to 2016, we developed a prediction model for ESKD accounting for the competing risk of death. Poisson regression analysis was used to estimate the model on the basis of information routinely collected from clinical examinations. The effect of including an extended set of predictors (lipids, alcohol intake, etc.) was further evaluated, and potential interactions identified in a survival tree analysis were tested. The final model was externally validated in 9,175 adults from Denmark and Scotland. During a median follow-up of 10.4 years (interquartile limits 5.1; 14.7), 303 (5.5%) of the participants (mean [SD] age 42.3 [16.5] years) developed ESKD, and 764 (14.0%) died without having developed ESKD. The final ESKD prediction model included age, male sex, diabetes duration, estimated glomerular filtration rate, micro- and macroalbuminuria, systolic blood pressure, hemoglobin A , smoking, and previous cardiovascular disease. Discrimination was excellent for 5-year risk of an ESKD event, with a C-statistic of 0.888 (95% CI 0.849; 0.927) in the derivation cohort and confirmed at 0.865 (0.811; 0.919) and 0.961 (0.940; 0.981) in the external validation cohorts from Denmark and Scotland, respectively. We have derived and validated a novel, high-performing ESKD prediction model for risk stratification in the adult type 1 diabetes population. This model may improve clinical decision making and potentially guide early intervention.</abstract><cop>United States</cop><pub>American Diabetes Association</pub><pmid>33509931</pmid><doi>10.2337/dc20-2586</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9135-3474</orcidid><orcidid>https://orcid.org/0000-0001-5045-5351</orcidid><orcidid>https://orcid.org/0000-0002-8345-3288</orcidid><orcidid>https://orcid.org/0000-0002-1531-4294</orcidid><orcidid>https://orcid.org/0000-0001-8356-5565</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0149-5992
ispartof Diabetes care, 2021-04, Vol.44 (4), p.901-907
issn 0149-5992
1935-5548
language eng
recordid cdi_proquest_miscellaneous_2483816112
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adult
Adults
Blood pressure
Cardiovascular diseases
Clinical decision making
Decision making
Diabetes
Diabetes mellitus
Diabetes mellitus (insulin dependent)
Diabetes Mellitus, Type 1 - complications
Diabetes Mellitus, Type 1 - epidemiology
End-stage renal disease
Female
Glomerular Filtration Rate
Glycated Hemoglobin A
Hemoglobin
Humans
Kidney diseases
Kidney Failure, Chronic - diagnosis
Kidney Failure, Chronic - epidemiology
Kidney Failure, Chronic - etiology
Kidneys
Lipids
Male
Middle Aged
Prediction models
Regression analysis
Research design
Risk
Risk Assessment
Risk Factors
Statistical analysis
title A Validated Prediction Model for End-Stage Kidney Disease in Type 1 Diabetes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Validated%20Prediction%20Model%20for%20End-Stage%20Kidney%20Disease%20in%20Type%201%20Diabetes&rft.jtitle=Diabetes%20care&rft.au=Vistisen,%20Dorte&rft.date=2021-04-01&rft.volume=44&rft.issue=4&rft.spage=901&rft.epage=907&rft.pages=901-907&rft.issn=0149-5992&rft.eissn=1935-5548&rft_id=info:doi/10.2337/dc20-2586&rft_dat=%3Cproquest_cross%3E2483816112%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2507170928&rft_id=info:pmid/33509931&rfr_iscdi=true