A Validated Prediction Model for End-Stage Kidney Disease in Type 1 Diabetes
End-stage kidney disease (ESKD) is a life-threatening complication of diabetes that can be prevented or delayed by intervention. Hence, early detection of people at increased risk is essential. From a population-based cohort of 5,460 clinically diagnosed Danish adults with type 1 diabetes followed f...
Gespeichert in:
Veröffentlicht in: | Diabetes care 2021-04, Vol.44 (4), p.901-907 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 907 |
---|---|
container_issue | 4 |
container_start_page | 901 |
container_title | Diabetes care |
container_volume | 44 |
creator | Vistisen, Dorte Andersen, Gregers S Hulman, Adam McGurnaghan, Stuart J Colhoun, Helen M Henriksen, Jan E Thomsen, Reimar W Persson, Frederik Rossing, Peter Jørgensen, Marit E |
description | End-stage kidney disease (ESKD) is a life-threatening complication of diabetes that can be prevented or delayed by intervention. Hence, early detection of people at increased risk is essential.
From a population-based cohort of 5,460 clinically diagnosed Danish adults with type 1 diabetes followed from 2001 to 2016, we developed a prediction model for ESKD accounting for the competing risk of death. Poisson regression analysis was used to estimate the model on the basis of information routinely collected from clinical examinations. The effect of including an extended set of predictors (lipids, alcohol intake, etc.) was further evaluated, and potential interactions identified in a survival tree analysis were tested. The final model was externally validated in 9,175 adults from Denmark and Scotland.
During a median follow-up of 10.4 years (interquartile limits 5.1; 14.7), 303 (5.5%) of the participants (mean [SD] age 42.3 [16.5] years) developed ESKD, and 764 (14.0%) died without having developed ESKD. The final ESKD prediction model included age, male sex, diabetes duration, estimated glomerular filtration rate, micro- and macroalbuminuria, systolic blood pressure, hemoglobin A
, smoking, and previous cardiovascular disease. Discrimination was excellent for 5-year risk of an ESKD event, with a C-statistic of 0.888 (95% CI 0.849; 0.927) in the derivation cohort and confirmed at 0.865 (0.811; 0.919) and 0.961 (0.940; 0.981) in the external validation cohorts from Denmark and Scotland, respectively.
We have derived and validated a novel, high-performing ESKD prediction model for risk stratification in the adult type 1 diabetes population. This model may improve clinical decision making and potentially guide early intervention. |
doi_str_mv | 10.2337/dc20-2586 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2483816112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2483816112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-803427d88da47a6541da6868608d563ccd99f2ee7d4c33a59d5df015b0e8b3fb3</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMotlYX_gEJuNHFaJ4zybLU-sCKgtVtyCR3JGU6U5Ppov_eKa0u5C4OXD4Ohw-hc0puGOfFrXeMZEyq_AANqeYyk1KoQzQkVOhMas0G6CSlBSFECKWO0YBzSbTmdIhmY_xp6-BtBx6_RfDBdaFt8EvrocZVG_G08dl7Z78APwffwAbfhQQ2AQ4Nnm9WgGn_sSV0kE7RUWXrBGf7HKGP--l88pjNXh-eJuNZ5gQVXaYIF6zwSnkrCptLQb3NVX9EeZlz57zWFQMovHCcW6m99BWhsiSgSl6VfISudr2r2H6vIXVmGZKDurYNtOtkmFBc0ZxS1qOX_9BFu45Nv84wSQpaEM1UT13vKBfblCJUZhXD0saNocRsFZutYrNV3LMX-8Z1uQT_R_465T9DTHNi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507170928</pqid></control><display><type>article</type><title>A Validated Prediction Model for End-Stage Kidney Disease in Type 1 Diabetes</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Vistisen, Dorte ; Andersen, Gregers S ; Hulman, Adam ; McGurnaghan, Stuart J ; Colhoun, Helen M ; Henriksen, Jan E ; Thomsen, Reimar W ; Persson, Frederik ; Rossing, Peter ; Jørgensen, Marit E</creator><creatorcontrib>Vistisen, Dorte ; Andersen, Gregers S ; Hulman, Adam ; McGurnaghan, Stuart J ; Colhoun, Helen M ; Henriksen, Jan E ; Thomsen, Reimar W ; Persson, Frederik ; Rossing, Peter ; Jørgensen, Marit E</creatorcontrib><description>End-stage kidney disease (ESKD) is a life-threatening complication of diabetes that can be prevented or delayed by intervention. Hence, early detection of people at increased risk is essential.
From a population-based cohort of 5,460 clinically diagnosed Danish adults with type 1 diabetes followed from 2001 to 2016, we developed a prediction model for ESKD accounting for the competing risk of death. Poisson regression analysis was used to estimate the model on the basis of information routinely collected from clinical examinations. The effect of including an extended set of predictors (lipids, alcohol intake, etc.) was further evaluated, and potential interactions identified in a survival tree analysis were tested. The final model was externally validated in 9,175 adults from Denmark and Scotland.
During a median follow-up of 10.4 years (interquartile limits 5.1; 14.7), 303 (5.5%) of the participants (mean [SD] age 42.3 [16.5] years) developed ESKD, and 764 (14.0%) died without having developed ESKD. The final ESKD prediction model included age, male sex, diabetes duration, estimated glomerular filtration rate, micro- and macroalbuminuria, systolic blood pressure, hemoglobin A
, smoking, and previous cardiovascular disease. Discrimination was excellent for 5-year risk of an ESKD event, with a C-statistic of 0.888 (95% CI 0.849; 0.927) in the derivation cohort and confirmed at 0.865 (0.811; 0.919) and 0.961 (0.940; 0.981) in the external validation cohorts from Denmark and Scotland, respectively.
We have derived and validated a novel, high-performing ESKD prediction model for risk stratification in the adult type 1 diabetes population. This model may improve clinical decision making and potentially guide early intervention.</description><identifier>ISSN: 0149-5992</identifier><identifier>EISSN: 1935-5548</identifier><identifier>DOI: 10.2337/dc20-2586</identifier><identifier>PMID: 33509931</identifier><language>eng</language><publisher>United States: American Diabetes Association</publisher><subject>Adult ; Adults ; Blood pressure ; Cardiovascular diseases ; Clinical decision making ; Decision making ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (insulin dependent) ; Diabetes Mellitus, Type 1 - complications ; Diabetes Mellitus, Type 1 - epidemiology ; End-stage renal disease ; Female ; Glomerular Filtration Rate ; Glycated Hemoglobin A ; Hemoglobin ; Humans ; Kidney diseases ; Kidney Failure, Chronic - diagnosis ; Kidney Failure, Chronic - epidemiology ; Kidney Failure, Chronic - etiology ; Kidneys ; Lipids ; Male ; Middle Aged ; Prediction models ; Regression analysis ; Research design ; Risk ; Risk Assessment ; Risk Factors ; Statistical analysis</subject><ispartof>Diabetes care, 2021-04, Vol.44 (4), p.901-907</ispartof><rights>2021 by the American Diabetes Association.</rights><rights>Copyright American Diabetes Association Apr 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-803427d88da47a6541da6868608d563ccd99f2ee7d4c33a59d5df015b0e8b3fb3</citedby><cites>FETCH-LOGICAL-c414t-803427d88da47a6541da6868608d563ccd99f2ee7d4c33a59d5df015b0e8b3fb3</cites><orcidid>0000-0001-9135-3474 ; 0000-0001-5045-5351 ; 0000-0002-8345-3288 ; 0000-0002-1531-4294 ; 0000-0001-8356-5565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33509931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vistisen, Dorte</creatorcontrib><creatorcontrib>Andersen, Gregers S</creatorcontrib><creatorcontrib>Hulman, Adam</creatorcontrib><creatorcontrib>McGurnaghan, Stuart J</creatorcontrib><creatorcontrib>Colhoun, Helen M</creatorcontrib><creatorcontrib>Henriksen, Jan E</creatorcontrib><creatorcontrib>Thomsen, Reimar W</creatorcontrib><creatorcontrib>Persson, Frederik</creatorcontrib><creatorcontrib>Rossing, Peter</creatorcontrib><creatorcontrib>Jørgensen, Marit E</creatorcontrib><title>A Validated Prediction Model for End-Stage Kidney Disease in Type 1 Diabetes</title><title>Diabetes care</title><addtitle>Diabetes Care</addtitle><description>End-stage kidney disease (ESKD) is a life-threatening complication of diabetes that can be prevented or delayed by intervention. Hence, early detection of people at increased risk is essential.
From a population-based cohort of 5,460 clinically diagnosed Danish adults with type 1 diabetes followed from 2001 to 2016, we developed a prediction model for ESKD accounting for the competing risk of death. Poisson regression analysis was used to estimate the model on the basis of information routinely collected from clinical examinations. The effect of including an extended set of predictors (lipids, alcohol intake, etc.) was further evaluated, and potential interactions identified in a survival tree analysis were tested. The final model was externally validated in 9,175 adults from Denmark and Scotland.
During a median follow-up of 10.4 years (interquartile limits 5.1; 14.7), 303 (5.5%) of the participants (mean [SD] age 42.3 [16.5] years) developed ESKD, and 764 (14.0%) died without having developed ESKD. The final ESKD prediction model included age, male sex, diabetes duration, estimated glomerular filtration rate, micro- and macroalbuminuria, systolic blood pressure, hemoglobin A
, smoking, and previous cardiovascular disease. Discrimination was excellent for 5-year risk of an ESKD event, with a C-statistic of 0.888 (95% CI 0.849; 0.927) in the derivation cohort and confirmed at 0.865 (0.811; 0.919) and 0.961 (0.940; 0.981) in the external validation cohorts from Denmark and Scotland, respectively.
We have derived and validated a novel, high-performing ESKD prediction model for risk stratification in the adult type 1 diabetes population. This model may improve clinical decision making and potentially guide early intervention.</description><subject>Adult</subject><subject>Adults</subject><subject>Blood pressure</subject><subject>Cardiovascular diseases</subject><subject>Clinical decision making</subject><subject>Decision making</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (insulin dependent)</subject><subject>Diabetes Mellitus, Type 1 - complications</subject><subject>Diabetes Mellitus, Type 1 - epidemiology</subject><subject>End-stage renal disease</subject><subject>Female</subject><subject>Glomerular Filtration Rate</subject><subject>Glycated Hemoglobin A</subject><subject>Hemoglobin</subject><subject>Humans</subject><subject>Kidney diseases</subject><subject>Kidney Failure, Chronic - diagnosis</subject><subject>Kidney Failure, Chronic - epidemiology</subject><subject>Kidney Failure, Chronic - etiology</subject><subject>Kidneys</subject><subject>Lipids</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Prediction models</subject><subject>Regression analysis</subject><subject>Research design</subject><subject>Risk</subject><subject>Risk Assessment</subject><subject>Risk Factors</subject><subject>Statistical analysis</subject><issn>0149-5992</issn><issn>1935-5548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkEtLAzEUhYMotlYX_gEJuNHFaJ4zybLU-sCKgtVtyCR3JGU6U5Ppov_eKa0u5C4OXD4Ohw-hc0puGOfFrXeMZEyq_AANqeYyk1KoQzQkVOhMas0G6CSlBSFECKWO0YBzSbTmdIhmY_xp6-BtBx6_RfDBdaFt8EvrocZVG_G08dl7Z78APwffwAbfhQQ2AQ4Nnm9WgGn_sSV0kE7RUWXrBGf7HKGP--l88pjNXh-eJuNZ5gQVXaYIF6zwSnkrCptLQb3NVX9EeZlz57zWFQMovHCcW6m99BWhsiSgSl6VfISudr2r2H6vIXVmGZKDurYNtOtkmFBc0ZxS1qOX_9BFu45Nv84wSQpaEM1UT13vKBfblCJUZhXD0saNocRsFZutYrNV3LMX-8Z1uQT_R_465T9DTHNi</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Vistisen, Dorte</creator><creator>Andersen, Gregers S</creator><creator>Hulman, Adam</creator><creator>McGurnaghan, Stuart J</creator><creator>Colhoun, Helen M</creator><creator>Henriksen, Jan E</creator><creator>Thomsen, Reimar W</creator><creator>Persson, Frederik</creator><creator>Rossing, Peter</creator><creator>Jørgensen, Marit E</creator><general>American Diabetes Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9135-3474</orcidid><orcidid>https://orcid.org/0000-0001-5045-5351</orcidid><orcidid>https://orcid.org/0000-0002-8345-3288</orcidid><orcidid>https://orcid.org/0000-0002-1531-4294</orcidid><orcidid>https://orcid.org/0000-0001-8356-5565</orcidid></search><sort><creationdate>20210401</creationdate><title>A Validated Prediction Model for End-Stage Kidney Disease in Type 1 Diabetes</title><author>Vistisen, Dorte ; Andersen, Gregers S ; Hulman, Adam ; McGurnaghan, Stuart J ; Colhoun, Helen M ; Henriksen, Jan E ; Thomsen, Reimar W ; Persson, Frederik ; Rossing, Peter ; Jørgensen, Marit E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-803427d88da47a6541da6868608d563ccd99f2ee7d4c33a59d5df015b0e8b3fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Adults</topic><topic>Blood pressure</topic><topic>Cardiovascular diseases</topic><topic>Clinical decision making</topic><topic>Decision making</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (insulin dependent)</topic><topic>Diabetes Mellitus, Type 1 - complications</topic><topic>Diabetes Mellitus, Type 1 - epidemiology</topic><topic>End-stage renal disease</topic><topic>Female</topic><topic>Glomerular Filtration Rate</topic><topic>Glycated Hemoglobin A</topic><topic>Hemoglobin</topic><topic>Humans</topic><topic>Kidney diseases</topic><topic>Kidney Failure, Chronic - diagnosis</topic><topic>Kidney Failure, Chronic - epidemiology</topic><topic>Kidney Failure, Chronic - etiology</topic><topic>Kidneys</topic><topic>Lipids</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Prediction models</topic><topic>Regression analysis</topic><topic>Research design</topic><topic>Risk</topic><topic>Risk Assessment</topic><topic>Risk Factors</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vistisen, Dorte</creatorcontrib><creatorcontrib>Andersen, Gregers S</creatorcontrib><creatorcontrib>Hulman, Adam</creatorcontrib><creatorcontrib>McGurnaghan, Stuart J</creatorcontrib><creatorcontrib>Colhoun, Helen M</creatorcontrib><creatorcontrib>Henriksen, Jan E</creatorcontrib><creatorcontrib>Thomsen, Reimar W</creatorcontrib><creatorcontrib>Persson, Frederik</creatorcontrib><creatorcontrib>Rossing, Peter</creatorcontrib><creatorcontrib>Jørgensen, Marit E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Diabetes care</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vistisen, Dorte</au><au>Andersen, Gregers S</au><au>Hulman, Adam</au><au>McGurnaghan, Stuart J</au><au>Colhoun, Helen M</au><au>Henriksen, Jan E</au><au>Thomsen, Reimar W</au><au>Persson, Frederik</au><au>Rossing, Peter</au><au>Jørgensen, Marit E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Validated Prediction Model for End-Stage Kidney Disease in Type 1 Diabetes</atitle><jtitle>Diabetes care</jtitle><addtitle>Diabetes Care</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>44</volume><issue>4</issue><spage>901</spage><epage>907</epage><pages>901-907</pages><issn>0149-5992</issn><eissn>1935-5548</eissn><abstract>End-stage kidney disease (ESKD) is a life-threatening complication of diabetes that can be prevented or delayed by intervention. Hence, early detection of people at increased risk is essential.
From a population-based cohort of 5,460 clinically diagnosed Danish adults with type 1 diabetes followed from 2001 to 2016, we developed a prediction model for ESKD accounting for the competing risk of death. Poisson regression analysis was used to estimate the model on the basis of information routinely collected from clinical examinations. The effect of including an extended set of predictors (lipids, alcohol intake, etc.) was further evaluated, and potential interactions identified in a survival tree analysis were tested. The final model was externally validated in 9,175 adults from Denmark and Scotland.
During a median follow-up of 10.4 years (interquartile limits 5.1; 14.7), 303 (5.5%) of the participants (mean [SD] age 42.3 [16.5] years) developed ESKD, and 764 (14.0%) died without having developed ESKD. The final ESKD prediction model included age, male sex, diabetes duration, estimated glomerular filtration rate, micro- and macroalbuminuria, systolic blood pressure, hemoglobin A
, smoking, and previous cardiovascular disease. Discrimination was excellent for 5-year risk of an ESKD event, with a C-statistic of 0.888 (95% CI 0.849; 0.927) in the derivation cohort and confirmed at 0.865 (0.811; 0.919) and 0.961 (0.940; 0.981) in the external validation cohorts from Denmark and Scotland, respectively.
We have derived and validated a novel, high-performing ESKD prediction model for risk stratification in the adult type 1 diabetes population. This model may improve clinical decision making and potentially guide early intervention.</abstract><cop>United States</cop><pub>American Diabetes Association</pub><pmid>33509931</pmid><doi>10.2337/dc20-2586</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9135-3474</orcidid><orcidid>https://orcid.org/0000-0001-5045-5351</orcidid><orcidid>https://orcid.org/0000-0002-8345-3288</orcidid><orcidid>https://orcid.org/0000-0002-1531-4294</orcidid><orcidid>https://orcid.org/0000-0001-8356-5565</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0149-5992 |
ispartof | Diabetes care, 2021-04, Vol.44 (4), p.901-907 |
issn | 0149-5992 1935-5548 |
language | eng |
recordid | cdi_proquest_miscellaneous_2483816112 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adult Adults Blood pressure Cardiovascular diseases Clinical decision making Decision making Diabetes Diabetes mellitus Diabetes mellitus (insulin dependent) Diabetes Mellitus, Type 1 - complications Diabetes Mellitus, Type 1 - epidemiology End-stage renal disease Female Glomerular Filtration Rate Glycated Hemoglobin A Hemoglobin Humans Kidney diseases Kidney Failure, Chronic - diagnosis Kidney Failure, Chronic - epidemiology Kidney Failure, Chronic - etiology Kidneys Lipids Male Middle Aged Prediction models Regression analysis Research design Risk Risk Assessment Risk Factors Statistical analysis |
title | A Validated Prediction Model for End-Stage Kidney Disease in Type 1 Diabetes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Validated%20Prediction%20Model%20for%20End-Stage%20Kidney%20Disease%20in%20Type%201%20Diabetes&rft.jtitle=Diabetes%20care&rft.au=Vistisen,%20Dorte&rft.date=2021-04-01&rft.volume=44&rft.issue=4&rft.spage=901&rft.epage=907&rft.pages=901-907&rft.issn=0149-5992&rft.eissn=1935-5548&rft_id=info:doi/10.2337/dc20-2586&rft_dat=%3Cproquest_cross%3E2483816112%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2507170928&rft_id=info:pmid/33509931&rfr_iscdi=true |