Realizing tissue integration with supramolecular hydrogels
Biomaterial matrices must permit tissue growth and maturation for the success of tissue regeneration strategies. Naturally, this accommodation is achieved via the dynamic remodeling of a cell's extracellular matrix (ECM). Synthetically, hydrolytic or enzymatic degradation are often engineered i...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2021-04, Vol.124, p.1-14 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Acta biomaterialia |
container_volume | 124 |
creator | Feliciano, Antonio J. van Blitterswijk, Clemens Moroni, Lorenzo Baker, Matthew B. |
description | Biomaterial matrices must permit tissue growth and maturation for the success of tissue regeneration strategies. Naturally, this accommodation is achieved via the dynamic remodeling of a cell's extracellular matrix (ECM). Synthetically, hydrolytic or enzymatic degradation are often engineered into materials for this purpose. More recently, supramolecular interactions have been used to provide a biomimetic and tunable mechanism to facilitate tissue formation via their dynamic and reversible non-covalent interactions. By engineering the mechanical and bioactive properties of a material, supramolecular chemists are able to design permissivity into the construct and facilitate tissue integration in-vivo. Furthermore, via the reversibility of non-covalent interactions, injectability and responsiveness can be designed for enhanced delivery and spatio-temporal control. In this review, we delineate the basic considerations needed when designing permissive supramolecular hydrogels for tissue engineering with an eye toward tissue growth and integration. We highlight three archetypal hydrogel systems that have shown well-documented tissue integration in vivo, and provide avenues to assess tissue in-growth. Careful design and assessment of the biomedical potential of a supramolecular hydrogels can inspire the creation of robust and dynamic implants for new tissue engineering applications.
[Display omitted] |
doi_str_mv | 10.1016/j.actbio.2021.01.034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2483813646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706121000623</els_id><sourcerecordid>2483813646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-7d6c39a6fc8ad27625a1ac02a35b4d2d9fc96928e12eeff782f9983815f3eec23</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMotlb_gcgs3cyYx0yScSFI8QUFQXQd0sydNmUeNcko9debMupSOHDv4jv3cRA6JzgjmPCrTaZNWNo-o5iSDEex_ABNiRQyFQWXh7EXOU0F5mSCTrzfYMwkofIYTRgrsCywmKLrF9CN_bLdKgnW-wES2wVYOR1s3yWfNqwTP2ydbvsGzNBol6x3letX0PhTdFTrxsPZT52ht_u71_ljunh-eJrfLlKTYxlSUXHDSs1rI3VFBaeFJtpgqlmxzCtalbUpeUklEApQ10LSuixlvLSoGYChbIYux7lb178P4INqrTfQNLqDfvCK5nua8ZxHNB9R43rvHdRq62yr3U4RrPapqY0aU1P71BSOYnm0XfxsGJYtVH-m35gicDMC8W34sOCUNxY6A5V1YIKqevv_hm_d2YB0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483813646</pqid></control><display><type>article</type><title>Realizing tissue integration with supramolecular hydrogels</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Feliciano, Antonio J. ; van Blitterswijk, Clemens ; Moroni, Lorenzo ; Baker, Matthew B.</creator><creatorcontrib>Feliciano, Antonio J. ; van Blitterswijk, Clemens ; Moroni, Lorenzo ; Baker, Matthew B.</creatorcontrib><description>Biomaterial matrices must permit tissue growth and maturation for the success of tissue regeneration strategies. Naturally, this accommodation is achieved via the dynamic remodeling of a cell's extracellular matrix (ECM). Synthetically, hydrolytic or enzymatic degradation are often engineered into materials for this purpose. More recently, supramolecular interactions have been used to provide a biomimetic and tunable mechanism to facilitate tissue formation via their dynamic and reversible non-covalent interactions. By engineering the mechanical and bioactive properties of a material, supramolecular chemists are able to design permissivity into the construct and facilitate tissue integration in-vivo. Furthermore, via the reversibility of non-covalent interactions, injectability and responsiveness can be designed for enhanced delivery and spatio-temporal control. In this review, we delineate the basic considerations needed when designing permissive supramolecular hydrogels for tissue engineering with an eye toward tissue growth and integration. We highlight three archetypal hydrogel systems that have shown well-documented tissue integration in vivo, and provide avenues to assess tissue in-growth. Careful design and assessment of the biomedical potential of a supramolecular hydrogels can inspire the creation of robust and dynamic implants for new tissue engineering applications.
[Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2021.01.034</identifier><identifier>PMID: 33508507</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biocompatible Materials ; Biomaterials ; Extracellular Matrix ; Hydrogels ; Supramolecular ; Tissue Engineering ; Tissue integration ; Tissue regeneration</subject><ispartof>Acta biomaterialia, 2021-04, Vol.124, p.1-14</ispartof><rights>2021</rights><rights>Copyright © 2021. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-7d6c39a6fc8ad27625a1ac02a35b4d2d9fc96928e12eeff782f9983815f3eec23</citedby><cites>FETCH-LOGICAL-c408t-7d6c39a6fc8ad27625a1ac02a35b4d2d9fc96928e12eeff782f9983815f3eec23</cites><orcidid>0000-0003-1731-3858 ; 0000-0002-2509-6358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1742706121000623$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33508507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feliciano, Antonio J.</creatorcontrib><creatorcontrib>van Blitterswijk, Clemens</creatorcontrib><creatorcontrib>Moroni, Lorenzo</creatorcontrib><creatorcontrib>Baker, Matthew B.</creatorcontrib><title>Realizing tissue integration with supramolecular hydrogels</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Biomaterial matrices must permit tissue growth and maturation for the success of tissue regeneration strategies. Naturally, this accommodation is achieved via the dynamic remodeling of a cell's extracellular matrix (ECM). Synthetically, hydrolytic or enzymatic degradation are often engineered into materials for this purpose. More recently, supramolecular interactions have been used to provide a biomimetic and tunable mechanism to facilitate tissue formation via their dynamic and reversible non-covalent interactions. By engineering the mechanical and bioactive properties of a material, supramolecular chemists are able to design permissivity into the construct and facilitate tissue integration in-vivo. Furthermore, via the reversibility of non-covalent interactions, injectability and responsiveness can be designed for enhanced delivery and spatio-temporal control. In this review, we delineate the basic considerations needed when designing permissive supramolecular hydrogels for tissue engineering with an eye toward tissue growth and integration. We highlight three archetypal hydrogel systems that have shown well-documented tissue integration in vivo, and provide avenues to assess tissue in-growth. Careful design and assessment of the biomedical potential of a supramolecular hydrogels can inspire the creation of robust and dynamic implants for new tissue engineering applications.
[Display omitted]</description><subject>Biocompatible Materials</subject><subject>Biomaterials</subject><subject>Extracellular Matrix</subject><subject>Hydrogels</subject><subject>Supramolecular</subject><subject>Tissue Engineering</subject><subject>Tissue integration</subject><subject>Tissue regeneration</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLAzEUhYMotlb_gcgs3cyYx0yScSFI8QUFQXQd0sydNmUeNcko9debMupSOHDv4jv3cRA6JzgjmPCrTaZNWNo-o5iSDEex_ABNiRQyFQWXh7EXOU0F5mSCTrzfYMwkofIYTRgrsCywmKLrF9CN_bLdKgnW-wES2wVYOR1s3yWfNqwTP2ydbvsGzNBol6x3letX0PhTdFTrxsPZT52ht_u71_ljunh-eJrfLlKTYxlSUXHDSs1rI3VFBaeFJtpgqlmxzCtalbUpeUklEApQ10LSuixlvLSoGYChbIYux7lb178P4INqrTfQNLqDfvCK5nua8ZxHNB9R43rvHdRq62yr3U4RrPapqY0aU1P71BSOYnm0XfxsGJYtVH-m35gicDMC8W34sOCUNxY6A5V1YIKqevv_hm_d2YB0</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Feliciano, Antonio J.</creator><creator>van Blitterswijk, Clemens</creator><creator>Moroni, Lorenzo</creator><creator>Baker, Matthew B.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1731-3858</orcidid><orcidid>https://orcid.org/0000-0002-2509-6358</orcidid></search><sort><creationdate>20210401</creationdate><title>Realizing tissue integration with supramolecular hydrogels</title><author>Feliciano, Antonio J. ; van Blitterswijk, Clemens ; Moroni, Lorenzo ; Baker, Matthew B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-7d6c39a6fc8ad27625a1ac02a35b4d2d9fc96928e12eeff782f9983815f3eec23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biocompatible Materials</topic><topic>Biomaterials</topic><topic>Extracellular Matrix</topic><topic>Hydrogels</topic><topic>Supramolecular</topic><topic>Tissue Engineering</topic><topic>Tissue integration</topic><topic>Tissue regeneration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feliciano, Antonio J.</creatorcontrib><creatorcontrib>van Blitterswijk, Clemens</creatorcontrib><creatorcontrib>Moroni, Lorenzo</creatorcontrib><creatorcontrib>Baker, Matthew B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feliciano, Antonio J.</au><au>van Blitterswijk, Clemens</au><au>Moroni, Lorenzo</au><au>Baker, Matthew B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realizing tissue integration with supramolecular hydrogels</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>124</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Biomaterial matrices must permit tissue growth and maturation for the success of tissue regeneration strategies. Naturally, this accommodation is achieved via the dynamic remodeling of a cell's extracellular matrix (ECM). Synthetically, hydrolytic or enzymatic degradation are often engineered into materials for this purpose. More recently, supramolecular interactions have been used to provide a biomimetic and tunable mechanism to facilitate tissue formation via their dynamic and reversible non-covalent interactions. By engineering the mechanical and bioactive properties of a material, supramolecular chemists are able to design permissivity into the construct and facilitate tissue integration in-vivo. Furthermore, via the reversibility of non-covalent interactions, injectability and responsiveness can be designed for enhanced delivery and spatio-temporal control. In this review, we delineate the basic considerations needed when designing permissive supramolecular hydrogels for tissue engineering with an eye toward tissue growth and integration. We highlight three archetypal hydrogel systems that have shown well-documented tissue integration in vivo, and provide avenues to assess tissue in-growth. Careful design and assessment of the biomedical potential of a supramolecular hydrogels can inspire the creation of robust and dynamic implants for new tissue engineering applications.
[Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33508507</pmid><doi>10.1016/j.actbio.2021.01.034</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1731-3858</orcidid><orcidid>https://orcid.org/0000-0002-2509-6358</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2021-04, Vol.124, p.1-14 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_2483813646 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Biocompatible Materials Biomaterials Extracellular Matrix Hydrogels Supramolecular Tissue Engineering Tissue integration Tissue regeneration |
title | Realizing tissue integration with supramolecular hydrogels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T08%3A18%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realizing%20tissue%20integration%20with%20supramolecular%20hydrogels&rft.jtitle=Acta%20biomaterialia&rft.au=Feliciano,%20Antonio%20J.&rft.date=2021-04-01&rft.volume=124&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2021.01.034&rft_dat=%3Cproquest_cross%3E2483813646%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483813646&rft_id=info:pmid/33508507&rft_els_id=S1742706121000623&rfr_iscdi=true |