Realizing tissue integration with supramolecular hydrogels

Biomaterial matrices must permit tissue growth and maturation for the success of tissue regeneration strategies. Naturally, this accommodation is achieved via the dynamic remodeling of a cell's extracellular matrix (ECM). Synthetically, hydrolytic or enzymatic degradation are often engineered i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2021-04, Vol.124, p.1-14
Hauptverfasser: Feliciano, Antonio J., van Blitterswijk, Clemens, Moroni, Lorenzo, Baker, Matthew B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title Acta biomaterialia
container_volume 124
creator Feliciano, Antonio J.
van Blitterswijk, Clemens
Moroni, Lorenzo
Baker, Matthew B.
description Biomaterial matrices must permit tissue growth and maturation for the success of tissue regeneration strategies. Naturally, this accommodation is achieved via the dynamic remodeling of a cell's extracellular matrix (ECM). Synthetically, hydrolytic or enzymatic degradation are often engineered into materials for this purpose. More recently, supramolecular interactions have been used to provide a biomimetic and tunable mechanism to facilitate tissue formation via their dynamic and reversible non-covalent interactions. By engineering the mechanical and bioactive properties of a material, supramolecular chemists are able to design permissivity into the construct and facilitate tissue integration in-vivo. Furthermore, via the reversibility of non-covalent interactions, injectability and responsiveness can be designed for enhanced delivery and spatio-temporal control. In this review, we delineate the basic considerations needed when designing permissive supramolecular hydrogels for tissue engineering with an eye toward tissue growth and integration. We highlight three archetypal hydrogel systems that have shown well-documented tissue integration in vivo, and provide avenues to assess tissue in-growth. Careful design and assessment of the biomedical potential of a supramolecular hydrogels can inspire the creation of robust and dynamic implants for new tissue engineering applications. [Display omitted]
doi_str_mv 10.1016/j.actbio.2021.01.034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2483813646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706121000623</els_id><sourcerecordid>2483813646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-7d6c39a6fc8ad27625a1ac02a35b4d2d9fc96928e12eeff782f9983815f3eec23</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMotlb_gcgs3cyYx0yScSFI8QUFQXQd0sydNmUeNcko9debMupSOHDv4jv3cRA6JzgjmPCrTaZNWNo-o5iSDEex_ABNiRQyFQWXh7EXOU0F5mSCTrzfYMwkofIYTRgrsCywmKLrF9CN_bLdKgnW-wES2wVYOR1s3yWfNqwTP2ydbvsGzNBol6x3letX0PhTdFTrxsPZT52ht_u71_ljunh-eJrfLlKTYxlSUXHDSs1rI3VFBaeFJtpgqlmxzCtalbUpeUklEApQ10LSuixlvLSoGYChbIYux7lb178P4INqrTfQNLqDfvCK5nua8ZxHNB9R43rvHdRq62yr3U4RrPapqY0aU1P71BSOYnm0XfxsGJYtVH-m35gicDMC8W34sOCUNxY6A5V1YIKqevv_hm_d2YB0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483813646</pqid></control><display><type>article</type><title>Realizing tissue integration with supramolecular hydrogels</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Feliciano, Antonio J. ; van Blitterswijk, Clemens ; Moroni, Lorenzo ; Baker, Matthew B.</creator><creatorcontrib>Feliciano, Antonio J. ; van Blitterswijk, Clemens ; Moroni, Lorenzo ; Baker, Matthew B.</creatorcontrib><description>Biomaterial matrices must permit tissue growth and maturation for the success of tissue regeneration strategies. Naturally, this accommodation is achieved via the dynamic remodeling of a cell's extracellular matrix (ECM). Synthetically, hydrolytic or enzymatic degradation are often engineered into materials for this purpose. More recently, supramolecular interactions have been used to provide a biomimetic and tunable mechanism to facilitate tissue formation via their dynamic and reversible non-covalent interactions. By engineering the mechanical and bioactive properties of a material, supramolecular chemists are able to design permissivity into the construct and facilitate tissue integration in-vivo. Furthermore, via the reversibility of non-covalent interactions, injectability and responsiveness can be designed for enhanced delivery and spatio-temporal control. In this review, we delineate the basic considerations needed when designing permissive supramolecular hydrogels for tissue engineering with an eye toward tissue growth and integration. We highlight three archetypal hydrogel systems that have shown well-documented tissue integration in vivo, and provide avenues to assess tissue in-growth. Careful design and assessment of the biomedical potential of a supramolecular hydrogels can inspire the creation of robust and dynamic implants for new tissue engineering applications. [Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2021.01.034</identifier><identifier>PMID: 33508507</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biocompatible Materials ; Biomaterials ; Extracellular Matrix ; Hydrogels ; Supramolecular ; Tissue Engineering ; Tissue integration ; Tissue regeneration</subject><ispartof>Acta biomaterialia, 2021-04, Vol.124, p.1-14</ispartof><rights>2021</rights><rights>Copyright © 2021. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-7d6c39a6fc8ad27625a1ac02a35b4d2d9fc96928e12eeff782f9983815f3eec23</citedby><cites>FETCH-LOGICAL-c408t-7d6c39a6fc8ad27625a1ac02a35b4d2d9fc96928e12eeff782f9983815f3eec23</cites><orcidid>0000-0003-1731-3858 ; 0000-0002-2509-6358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1742706121000623$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33508507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feliciano, Antonio J.</creatorcontrib><creatorcontrib>van Blitterswijk, Clemens</creatorcontrib><creatorcontrib>Moroni, Lorenzo</creatorcontrib><creatorcontrib>Baker, Matthew B.</creatorcontrib><title>Realizing tissue integration with supramolecular hydrogels</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Biomaterial matrices must permit tissue growth and maturation for the success of tissue regeneration strategies. Naturally, this accommodation is achieved via the dynamic remodeling of a cell's extracellular matrix (ECM). Synthetically, hydrolytic or enzymatic degradation are often engineered into materials for this purpose. More recently, supramolecular interactions have been used to provide a biomimetic and tunable mechanism to facilitate tissue formation via their dynamic and reversible non-covalent interactions. By engineering the mechanical and bioactive properties of a material, supramolecular chemists are able to design permissivity into the construct and facilitate tissue integration in-vivo. Furthermore, via the reversibility of non-covalent interactions, injectability and responsiveness can be designed for enhanced delivery and spatio-temporal control. In this review, we delineate the basic considerations needed when designing permissive supramolecular hydrogels for tissue engineering with an eye toward tissue growth and integration. We highlight three archetypal hydrogel systems that have shown well-documented tissue integration in vivo, and provide avenues to assess tissue in-growth. Careful design and assessment of the biomedical potential of a supramolecular hydrogels can inspire the creation of robust and dynamic implants for new tissue engineering applications. [Display omitted]</description><subject>Biocompatible Materials</subject><subject>Biomaterials</subject><subject>Extracellular Matrix</subject><subject>Hydrogels</subject><subject>Supramolecular</subject><subject>Tissue Engineering</subject><subject>Tissue integration</subject><subject>Tissue regeneration</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLAzEUhYMotlb_gcgs3cyYx0yScSFI8QUFQXQd0sydNmUeNcko9debMupSOHDv4jv3cRA6JzgjmPCrTaZNWNo-o5iSDEex_ABNiRQyFQWXh7EXOU0F5mSCTrzfYMwkofIYTRgrsCywmKLrF9CN_bLdKgnW-wES2wVYOR1s3yWfNqwTP2ydbvsGzNBol6x3letX0PhTdFTrxsPZT52ht_u71_ljunh-eJrfLlKTYxlSUXHDSs1rI3VFBaeFJtpgqlmxzCtalbUpeUklEApQ10LSuixlvLSoGYChbIYux7lb178P4INqrTfQNLqDfvCK5nua8ZxHNB9R43rvHdRq62yr3U4RrPapqY0aU1P71BSOYnm0XfxsGJYtVH-m35gicDMC8W34sOCUNxY6A5V1YIKqevv_hm_d2YB0</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Feliciano, Antonio J.</creator><creator>van Blitterswijk, Clemens</creator><creator>Moroni, Lorenzo</creator><creator>Baker, Matthew B.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1731-3858</orcidid><orcidid>https://orcid.org/0000-0002-2509-6358</orcidid></search><sort><creationdate>20210401</creationdate><title>Realizing tissue integration with supramolecular hydrogels</title><author>Feliciano, Antonio J. ; van Blitterswijk, Clemens ; Moroni, Lorenzo ; Baker, Matthew B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-7d6c39a6fc8ad27625a1ac02a35b4d2d9fc96928e12eeff782f9983815f3eec23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biocompatible Materials</topic><topic>Biomaterials</topic><topic>Extracellular Matrix</topic><topic>Hydrogels</topic><topic>Supramolecular</topic><topic>Tissue Engineering</topic><topic>Tissue integration</topic><topic>Tissue regeneration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feliciano, Antonio J.</creatorcontrib><creatorcontrib>van Blitterswijk, Clemens</creatorcontrib><creatorcontrib>Moroni, Lorenzo</creatorcontrib><creatorcontrib>Baker, Matthew B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feliciano, Antonio J.</au><au>van Blitterswijk, Clemens</au><au>Moroni, Lorenzo</au><au>Baker, Matthew B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realizing tissue integration with supramolecular hydrogels</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>124</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Biomaterial matrices must permit tissue growth and maturation for the success of tissue regeneration strategies. Naturally, this accommodation is achieved via the dynamic remodeling of a cell's extracellular matrix (ECM). Synthetically, hydrolytic or enzymatic degradation are often engineered into materials for this purpose. More recently, supramolecular interactions have been used to provide a biomimetic and tunable mechanism to facilitate tissue formation via their dynamic and reversible non-covalent interactions. By engineering the mechanical and bioactive properties of a material, supramolecular chemists are able to design permissivity into the construct and facilitate tissue integration in-vivo. Furthermore, via the reversibility of non-covalent interactions, injectability and responsiveness can be designed for enhanced delivery and spatio-temporal control. In this review, we delineate the basic considerations needed when designing permissive supramolecular hydrogels for tissue engineering with an eye toward tissue growth and integration. We highlight three archetypal hydrogel systems that have shown well-documented tissue integration in vivo, and provide avenues to assess tissue in-growth. Careful design and assessment of the biomedical potential of a supramolecular hydrogels can inspire the creation of robust and dynamic implants for new tissue engineering applications. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33508507</pmid><doi>10.1016/j.actbio.2021.01.034</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1731-3858</orcidid><orcidid>https://orcid.org/0000-0002-2509-6358</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2021-04, Vol.124, p.1-14
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_2483813646
source MEDLINE; Elsevier ScienceDirect Journals
subjects Biocompatible Materials
Biomaterials
Extracellular Matrix
Hydrogels
Supramolecular
Tissue Engineering
Tissue integration
Tissue regeneration
title Realizing tissue integration with supramolecular hydrogels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T08%3A18%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realizing%20tissue%20integration%20with%20supramolecular%20hydrogels&rft.jtitle=Acta%20biomaterialia&rft.au=Feliciano,%20Antonio%20J.&rft.date=2021-04-01&rft.volume=124&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2021.01.034&rft_dat=%3Cproquest_cross%3E2483813646%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483813646&rft_id=info:pmid/33508507&rft_els_id=S1742706121000623&rfr_iscdi=true