The equations of motion of a test particle with spin and self-gravity
Papapetrou's equations of motion of a spinning particle in general relativity are extended to the case of a nonsymmetric stress-energy tensor in order to include the test particle's self-gravity. There are derivations of the spin tensor and the momentum tensor and their equations of motion...
Gespeichert in:
Veröffentlicht in: | Astrophys. J.; (United States) 1985-04, Vol.291 (2), p.422-446 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 446 |
---|---|
container_issue | 2 |
container_start_page | 422 |
container_title | Astrophys. J.; (United States) |
container_volume | 291 |
creator | NOONAN, T. W |
description | Papapetrou's equations of motion of a spinning particle in general relativity are extended to the case of a nonsymmetric stress-energy tensor in order to include the test particle's self-gravity. There are derivations of the spin tensor and the momentum tensor and their equations of motion, including gravitational radiation reaction. There is a treatment of a test particle with self-gravity, charge, and electromagnetic moment. The dynamical role of the test particle's self-gravity is illustrated in the weak-field approximation. The principal conclusion is that the test particle's Newtonian gravitational potential energy contributes to the test particle's inertial mass (under electromagnetic forces) in the same way as do other forms of mass-energy (rest mass, internal energy, and kinetic energy). |
doi_str_mv | 10.1086/163081 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_24835505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24835505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-41c3abd5b997b16672742f27a25dbe598c2e16f8c4a10a8d4a4347787b262bd43</originalsourceid><addsrcrecordid>eNpFkEtLAzEAhIMoWKv-hiDibTXvx1FKfUDBSwVvIZvN2sh2s01Spf_eLi16mhn4GJgB4Bqje4yUeMCCIoVPwARzqipGuTwFE4QQqwSVH-fgIuevMRKtJ2C-XHnoN1tbQuwzjC1cx9GOzsLic4GDTSW4zsOfUFYwD6GHtm9g9l1bfSb7HcruEpy1tsv-6qhT8P40X85eqsXb8-vscVE5wlCpGHbU1g2vtZY1FkISyUhLpCW8qT3XyhGPRascsxhZ1TDLKJNSyZoIUjeMTsHNoTfmEkx2oXi3crHvvSuGE64lV3vo7gANKW62-wVmHbLzXWd7H7fZEKYo54j_gy7FnJNvzZDC2qadwciMV5rDlXvw9thos7Ndm2zvQv6jNdZKC0F_ASUvcH4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24835505</pqid></control><display><type>article</type><title>The equations of motion of a test particle with spin and self-gravity</title><source>Alma/SFX Local Collection</source><creator>NOONAN, T. W</creator><creatorcontrib>NOONAN, T. W ; Physics Department, Brockport State College</creatorcontrib><description>Papapetrou's equations of motion of a spinning particle in general relativity are extended to the case of a nonsymmetric stress-energy tensor in order to include the test particle's self-gravity. There are derivations of the spin tensor and the momentum tensor and their equations of motion, including gravitational radiation reaction. There is a treatment of a test particle with self-gravity, charge, and electromagnetic moment. The dynamical role of the test particle's self-gravity is illustrated in the weak-field approximation. The principal conclusion is that the test particle's Newtonian gravitational potential energy contributes to the test particle's inertial mass (under electromagnetic forces) in the same way as do other forms of mass-energy (rest mass, internal energy, and kinetic energy).</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1086/163081</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Chicago, IL: University of Chicago Press</publisher><subject>640100 - Astrophysics & Cosmology ; ANGULAR MOMENTUM ; Astronomy ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DIFFERENTIAL EQUATIONS ; DYNAMICS ; Earth, ocean, space ; ELECTROMAGNETISM ; EQUATIONS ; EQUATIONS OF MOTION ; Exact sciences and technology ; FIELD THEORIES ; Fundamental aspects of astrophysics ; Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations ; GENERAL RELATIVITY THEORY ; GRAVITATION ; GRAVITATIONAL RADIATION ; MAGNETISM ; MASS ; MATHEMATICS ; MECHANICS ; PARTIAL DIFFERENTIAL EQUATIONS ; PARTICLE PROPERTIES ; RADIATIONS ; Relativity and gravitation ; RELATIVITY THEORY ; SPIN ; TENSORS ; TEST PARTICLES ; VECTORS</subject><ispartof>Astrophys. J.; (United States), 1985-04, Vol.291 (2), p.422-446</ispartof><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c240t-41c3abd5b997b16672742f27a25dbe598c2e16f8c4a10a8d4a4347787b262bd43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9198966$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5259758$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>NOONAN, T. W</creatorcontrib><creatorcontrib>Physics Department, Brockport State College</creatorcontrib><title>The equations of motion of a test particle with spin and self-gravity</title><title>Astrophys. J.; (United States)</title><description>Papapetrou's equations of motion of a spinning particle in general relativity are extended to the case of a nonsymmetric stress-energy tensor in order to include the test particle's self-gravity. There are derivations of the spin tensor and the momentum tensor and their equations of motion, including gravitational radiation reaction. There is a treatment of a test particle with self-gravity, charge, and electromagnetic moment. The dynamical role of the test particle's self-gravity is illustrated in the weak-field approximation. The principal conclusion is that the test particle's Newtonian gravitational potential energy contributes to the test particle's inertial mass (under electromagnetic forces) in the same way as do other forms of mass-energy (rest mass, internal energy, and kinetic energy).</description><subject>640100 - Astrophysics & Cosmology</subject><subject>ANGULAR MOMENTUM</subject><subject>Astronomy</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>DYNAMICS</subject><subject>Earth, ocean, space</subject><subject>ELECTROMAGNETISM</subject><subject>EQUATIONS</subject><subject>EQUATIONS OF MOTION</subject><subject>Exact sciences and technology</subject><subject>FIELD THEORIES</subject><subject>Fundamental aspects of astrophysics</subject><subject>Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations</subject><subject>GENERAL RELATIVITY THEORY</subject><subject>GRAVITATION</subject><subject>GRAVITATIONAL RADIATION</subject><subject>MAGNETISM</subject><subject>MASS</subject><subject>MATHEMATICS</subject><subject>MECHANICS</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>PARTICLE PROPERTIES</subject><subject>RADIATIONS</subject><subject>Relativity and gravitation</subject><subject>RELATIVITY THEORY</subject><subject>SPIN</subject><subject>TENSORS</subject><subject>TEST PARTICLES</subject><subject>VECTORS</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLAzEAhIMoWKv-hiDibTXvx1FKfUDBSwVvIZvN2sh2s01Spf_eLi16mhn4GJgB4Bqje4yUeMCCIoVPwARzqipGuTwFE4QQqwSVH-fgIuevMRKtJ2C-XHnoN1tbQuwzjC1cx9GOzsLic4GDTSW4zsOfUFYwD6GHtm9g9l1bfSb7HcruEpy1tsv-6qhT8P40X85eqsXb8-vscVE5wlCpGHbU1g2vtZY1FkISyUhLpCW8qT3XyhGPRascsxhZ1TDLKJNSyZoIUjeMTsHNoTfmEkx2oXi3crHvvSuGE64lV3vo7gANKW62-wVmHbLzXWd7H7fZEKYo54j_gy7FnJNvzZDC2qadwciMV5rDlXvw9thos7Ndm2zvQv6jNdZKC0F_ASUvcH4</recordid><startdate>19850415</startdate><enddate>19850415</enddate><creator>NOONAN, T. W</creator><general>University of Chicago Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19850415</creationdate><title>The equations of motion of a test particle with spin and self-gravity</title><author>NOONAN, T. W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-41c3abd5b997b16672742f27a25dbe598c2e16f8c4a10a8d4a4347787b262bd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>640100 - Astrophysics & Cosmology</topic><topic>ANGULAR MOMENTUM</topic><topic>Astronomy</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>DYNAMICS</topic><topic>Earth, ocean, space</topic><topic>ELECTROMAGNETISM</topic><topic>EQUATIONS</topic><topic>EQUATIONS OF MOTION</topic><topic>Exact sciences and technology</topic><topic>FIELD THEORIES</topic><topic>Fundamental aspects of astrophysics</topic><topic>Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations</topic><topic>GENERAL RELATIVITY THEORY</topic><topic>GRAVITATION</topic><topic>GRAVITATIONAL RADIATION</topic><topic>MAGNETISM</topic><topic>MASS</topic><topic>MATHEMATICS</topic><topic>MECHANICS</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>PARTICLE PROPERTIES</topic><topic>RADIATIONS</topic><topic>Relativity and gravitation</topic><topic>RELATIVITY THEORY</topic><topic>SPIN</topic><topic>TENSORS</topic><topic>TEST PARTICLES</topic><topic>VECTORS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NOONAN, T. W</creatorcontrib><creatorcontrib>Physics Department, Brockport State College</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Astrophys. J.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NOONAN, T. W</au><aucorp>Physics Department, Brockport State College</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The equations of motion of a test particle with spin and self-gravity</atitle><jtitle>Astrophys. J.; (United States)</jtitle><date>1985-04-15</date><risdate>1985</risdate><volume>291</volume><issue>2</issue><spage>422</spage><epage>446</epage><pages>422-446</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>Papapetrou's equations of motion of a spinning particle in general relativity are extended to the case of a nonsymmetric stress-energy tensor in order to include the test particle's self-gravity. There are derivations of the spin tensor and the momentum tensor and their equations of motion, including gravitational radiation reaction. There is a treatment of a test particle with self-gravity, charge, and electromagnetic moment. The dynamical role of the test particle's self-gravity is illustrated in the weak-field approximation. The principal conclusion is that the test particle's Newtonian gravitational potential energy contributes to the test particle's inertial mass (under electromagnetic forces) in the same way as do other forms of mass-energy (rest mass, internal energy, and kinetic energy).</abstract><cop>Chicago, IL</cop><pub>University of Chicago Press</pub><doi>10.1086/163081</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | Astrophys. J.; (United States), 1985-04, Vol.291 (2), p.422-446 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_miscellaneous_24835505 |
source | Alma/SFX Local Collection |
subjects | 640100 - Astrophysics & Cosmology ANGULAR MOMENTUM Astronomy CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS DIFFERENTIAL EQUATIONS DYNAMICS Earth, ocean, space ELECTROMAGNETISM EQUATIONS EQUATIONS OF MOTION Exact sciences and technology FIELD THEORIES Fundamental aspects of astrophysics Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations GENERAL RELATIVITY THEORY GRAVITATION GRAVITATIONAL RADIATION MAGNETISM MASS MATHEMATICS MECHANICS PARTIAL DIFFERENTIAL EQUATIONS PARTICLE PROPERTIES RADIATIONS Relativity and gravitation RELATIVITY THEORY SPIN TENSORS TEST PARTICLES VECTORS |
title | The equations of motion of a test particle with spin and self-gravity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20equations%20of%20motion%20of%20a%20test%20particle%20with%20spin%20and%20self-gravity&rft.jtitle=Astrophys.%20J.;%20(United%20States)&rft.au=NOONAN,%20T.%20W&rft.aucorp=Physics%20Department,%20Brockport%20State%20College&rft.date=1985-04-15&rft.volume=291&rft.issue=2&rft.spage=422&rft.epage=446&rft.pages=422-446&rft.issn=0004-637X&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1086/163081&rft_dat=%3Cproquest_osti_%3E24835505%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24835505&rft_id=info:pmid/&rfr_iscdi=true |