Gene coexpression networks reveal novel molecular endotypes in alpha-1 antitrypsin deficiency
BackgroundAlpha-1 antitrypsin deficiency (AATD) is a genetic condition that causes early onset pulmonary emphysema and airways obstruction. The complete mechanisms via which AATD causes lung disease are not fully understood. To improve our understanding of the pathogenesis of AATD, we investigated g...
Gespeichert in:
Veröffentlicht in: | Thorax 2021-02, Vol.76 (2), p.134-143 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 143 |
---|---|
container_issue | 2 |
container_start_page | 134 |
container_title | Thorax |
container_volume | 76 |
creator | Chu, Jen-hwa Zang, Wenlan Vukmirovic, Milica Yan, Xiting Adams, Taylor DeIuliis, Giuseppe Hu, Buqu Mihaljinec, Antun Schupp, Jonas C Becich, Michael J Hochheiser, Harry Gibson, Kevin F Chen, Edward S Morris, Alison Leader, Joseph K Wisniewski, Stephen R Zhang, Yingze Sciurba, Frank C Collman, Ronald G Sandhaus, Robert Herzog, Erica L Patterson, Karen C Sauler, Maor Strange, Charlie Kaminski, Naftali |
description | BackgroundAlpha-1 antitrypsin deficiency (AATD) is a genetic condition that causes early onset pulmonary emphysema and airways obstruction. The complete mechanisms via which AATD causes lung disease are not fully understood. To improve our understanding of the pathogenesis of AATD, we investigated gene expression profiles of bronchoalveolar lavage (BAL) and peripheral blood mononuclear cells (PBMCs) in AATD individuals.MethodsWe performed RNA-Seq on RNA extracted from matched BAL and PBMC samples isolated from 89 subjects enrolled in the Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) study. Subjects were stratified by genotype and augmentation therapy. Supervised and unsupervised differential gene expression analyses were performed using Weighted Gene Co-expression Network Analysis (WGCNA) to identify gene profiles associated with subjects’ clinical variables. The genes in the most significant WGCNA module were used to cluster AATD individuals. Gene validation was performed by NanoString nCounter Gene Expression Assay.ResultWe observed modest effects of AATD genotype and augmentation therapy on gene expression. When WGCNA was applied to BAL transcriptome, one gene module, ME31 (2312 genes), correlated with the highest number of clinical variables and was functionally enriched with numerous immune T-lymphocyte related pathways. This gene module identified two distinct clusters of AATD individuals with different disease severity and distinct PBMC gene expression patterns.ConclusionsWe successfully identified novel clusters of AATD individuals where severity correlated with increased immune response independent of individuals’ genotype and augmentation therapy. These findings may suggest the presence of previously unrecognised disease endotypes in AATD that associate with T-lymphocyte immunity and disease severity. |
doi_str_mv | 10.1136/thoraxjnl-2019-214301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2483408781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478194416</sourcerecordid><originalsourceid>FETCH-LOGICAL-b467t-a470102f154ce7ff462f8f735a28a4ef76dcf21ba2a3a32151d0f1d13018f5803</originalsourceid><addsrcrecordid>eNqNkMFu1DAQhi0EokvhEYos9cIlMGM7jvdYVVCQKnGBI4q8yVjN1rFTO2l33x5XWxaJQ8VppNH3_5r5GDtD-Igo9af5Jia72wZfCcB1JVBJwBdshUqbSoq1fslWAAoqLRt9wt7kvAUAg9i8ZidSSpB6rVfs1xUF4l2k3ZQo5yEGHmh-iOk280T3ZD0P8Z48H6OnbvE2cQp9nPcTZT4Ebv10YyvkNszDnPZTLrue3NANFLr9W_bKWZ_p3dM8ZT-_fP5x-bW6_n717fLiutoo3cyVVQ0gCIe16qhxTmnhjGtkbYWxilyj-84J3FhhpZUCa-zBYY_lY-NqA_KUfTj0TineLZTndhxyR97bQHHJrVBGKjCNwYKe_4Nu45JCua5QBVgrhbpQ9YHqUsw5kWunNIw27VuE9tF_e_TfPvpvD_5L7v1T-7IZqT-m_ggvAByAzbj97078Gzke-3zmN30Yo8Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478194416</pqid></control><display><type>article</type><title>Gene coexpression networks reveal novel molecular endotypes in alpha-1 antitrypsin deficiency</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Chu, Jen-hwa ; Zang, Wenlan ; Vukmirovic, Milica ; Yan, Xiting ; Adams, Taylor ; DeIuliis, Giuseppe ; Hu, Buqu ; Mihaljinec, Antun ; Schupp, Jonas C ; Becich, Michael J ; Hochheiser, Harry ; Gibson, Kevin F ; Chen, Edward S ; Morris, Alison ; Leader, Joseph K ; Wisniewski, Stephen R ; Zhang, Yingze ; Sciurba, Frank C ; Collman, Ronald G ; Sandhaus, Robert ; Herzog, Erica L ; Patterson, Karen C ; Sauler, Maor ; Strange, Charlie ; Kaminski, Naftali</creator><creatorcontrib>Chu, Jen-hwa ; Zang, Wenlan ; Vukmirovic, Milica ; Yan, Xiting ; Adams, Taylor ; DeIuliis, Giuseppe ; Hu, Buqu ; Mihaljinec, Antun ; Schupp, Jonas C ; Becich, Michael J ; Hochheiser, Harry ; Gibson, Kevin F ; Chen, Edward S ; Morris, Alison ; Leader, Joseph K ; Wisniewski, Stephen R ; Zhang, Yingze ; Sciurba, Frank C ; Collman, Ronald G ; Sandhaus, Robert ; Herzog, Erica L ; Patterson, Karen C ; Sauler, Maor ; Strange, Charlie ; Kaminski, Naftali ; GRADS Investigators</creatorcontrib><description>BackgroundAlpha-1 antitrypsin deficiency (AATD) is a genetic condition that causes early onset pulmonary emphysema and airways obstruction. The complete mechanisms via which AATD causes lung disease are not fully understood. To improve our understanding of the pathogenesis of AATD, we investigated gene expression profiles of bronchoalveolar lavage (BAL) and peripheral blood mononuclear cells (PBMCs) in AATD individuals.MethodsWe performed RNA-Seq on RNA extracted from matched BAL and PBMC samples isolated from 89 subjects enrolled in the Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) study. Subjects were stratified by genotype and augmentation therapy. Supervised and unsupervised differential gene expression analyses were performed using Weighted Gene Co-expression Network Analysis (WGCNA) to identify gene profiles associated with subjects’ clinical variables. The genes in the most significant WGCNA module were used to cluster AATD individuals. Gene validation was performed by NanoString nCounter Gene Expression Assay.ResultWe observed modest effects of AATD genotype and augmentation therapy on gene expression. When WGCNA was applied to BAL transcriptome, one gene module, ME31 (2312 genes), correlated with the highest number of clinical variables and was functionally enriched with numerous immune T-lymphocyte related pathways. This gene module identified two distinct clusters of AATD individuals with different disease severity and distinct PBMC gene expression patterns.ConclusionsWe successfully identified novel clusters of AATD individuals where severity correlated with increased immune response independent of individuals’ genotype and augmentation therapy. These findings may suggest the presence of previously unrecognised disease endotypes in AATD that associate with T-lymphocyte immunity and disease severity.</description><identifier>ISSN: 0040-6376</identifier><identifier>EISSN: 1468-3296</identifier><identifier>DOI: 10.1136/thoraxjnl-2019-214301</identifier><identifier>PMID: 33303696</identifier><language>eng</language><publisher>England: BMJ Publishing Group Ltd and British Thoracic Society</publisher><subject>Adult ; Age ; Airway management ; alpha 1-Antitrypsin Deficiency - genetics ; alpha1 antitrypsin deficiency ; Bronchoalveolar Lavage Fluid ; Carbon monoxide ; Chronic obstructive pulmonary disease ; COPD mechanisms ; Disease ; Emphysema ; Female ; Gene expression ; Gene Expression Profiling ; Gene Regulatory Networks ; Genotype ; Genotype & phenotype ; Humans ; Lavage ; Lungs ; Male ; Middle Aged ; Mutation ; Neutrophils ; Neutrophils - metabolism ; Prospective Studies ; Proteins ; Pulmonary Disease, Chronic Obstructive - genetics ; Sarcoidosis ; Transcriptome ; Variables ; Variance analysis</subject><ispartof>Thorax, 2021-02, Vol.76 (2), p.134-143</ispartof><rights>Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ.</rights><rights>2021 Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b467t-a470102f154ce7ff462f8f735a28a4ef76dcf21ba2a3a32151d0f1d13018f5803</citedby><cites>FETCH-LOGICAL-b467t-a470102f154ce7ff462f8f735a28a4ef76dcf21ba2a3a32151d0f1d13018f5803</cites><orcidid>0000-0001-5917-4601 ; 0000-0001-7179-9428 ; 0000-0001-6947-2901 ; 0000-0003-0841-8156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33303696$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chu, Jen-hwa</creatorcontrib><creatorcontrib>Zang, Wenlan</creatorcontrib><creatorcontrib>Vukmirovic, Milica</creatorcontrib><creatorcontrib>Yan, Xiting</creatorcontrib><creatorcontrib>Adams, Taylor</creatorcontrib><creatorcontrib>DeIuliis, Giuseppe</creatorcontrib><creatorcontrib>Hu, Buqu</creatorcontrib><creatorcontrib>Mihaljinec, Antun</creatorcontrib><creatorcontrib>Schupp, Jonas C</creatorcontrib><creatorcontrib>Becich, Michael J</creatorcontrib><creatorcontrib>Hochheiser, Harry</creatorcontrib><creatorcontrib>Gibson, Kevin F</creatorcontrib><creatorcontrib>Chen, Edward S</creatorcontrib><creatorcontrib>Morris, Alison</creatorcontrib><creatorcontrib>Leader, Joseph K</creatorcontrib><creatorcontrib>Wisniewski, Stephen R</creatorcontrib><creatorcontrib>Zhang, Yingze</creatorcontrib><creatorcontrib>Sciurba, Frank C</creatorcontrib><creatorcontrib>Collman, Ronald G</creatorcontrib><creatorcontrib>Sandhaus, Robert</creatorcontrib><creatorcontrib>Herzog, Erica L</creatorcontrib><creatorcontrib>Patterson, Karen C</creatorcontrib><creatorcontrib>Sauler, Maor</creatorcontrib><creatorcontrib>Strange, Charlie</creatorcontrib><creatorcontrib>Kaminski, Naftali</creatorcontrib><creatorcontrib>GRADS Investigators</creatorcontrib><title>Gene coexpression networks reveal novel molecular endotypes in alpha-1 antitrypsin deficiency</title><title>Thorax</title><addtitle>Thorax</addtitle><addtitle>Thorax</addtitle><description>BackgroundAlpha-1 antitrypsin deficiency (AATD) is a genetic condition that causes early onset pulmonary emphysema and airways obstruction. The complete mechanisms via which AATD causes lung disease are not fully understood. To improve our understanding of the pathogenesis of AATD, we investigated gene expression profiles of bronchoalveolar lavage (BAL) and peripheral blood mononuclear cells (PBMCs) in AATD individuals.MethodsWe performed RNA-Seq on RNA extracted from matched BAL and PBMC samples isolated from 89 subjects enrolled in the Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) study. Subjects were stratified by genotype and augmentation therapy. Supervised and unsupervised differential gene expression analyses were performed using Weighted Gene Co-expression Network Analysis (WGCNA) to identify gene profiles associated with subjects’ clinical variables. The genes in the most significant WGCNA module were used to cluster AATD individuals. Gene validation was performed by NanoString nCounter Gene Expression Assay.ResultWe observed modest effects of AATD genotype and augmentation therapy on gene expression. When WGCNA was applied to BAL transcriptome, one gene module, ME31 (2312 genes), correlated with the highest number of clinical variables and was functionally enriched with numerous immune T-lymphocyte related pathways. This gene module identified two distinct clusters of AATD individuals with different disease severity and distinct PBMC gene expression patterns.ConclusionsWe successfully identified novel clusters of AATD individuals where severity correlated with increased immune response independent of individuals’ genotype and augmentation therapy. These findings may suggest the presence of previously unrecognised disease endotypes in AATD that associate with T-lymphocyte immunity and disease severity.</description><subject>Adult</subject><subject>Age</subject><subject>Airway management</subject><subject>alpha 1-Antitrypsin Deficiency - genetics</subject><subject>alpha1 antitrypsin deficiency</subject><subject>Bronchoalveolar Lavage Fluid</subject><subject>Carbon monoxide</subject><subject>Chronic obstructive pulmonary disease</subject><subject>COPD mechanisms</subject><subject>Disease</subject><subject>Emphysema</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Regulatory Networks</subject><subject>Genotype</subject><subject>Genotype & phenotype</subject><subject>Humans</subject><subject>Lavage</subject><subject>Lungs</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Mutation</subject><subject>Neutrophils</subject><subject>Neutrophils - metabolism</subject><subject>Prospective Studies</subject><subject>Proteins</subject><subject>Pulmonary Disease, Chronic Obstructive - genetics</subject><subject>Sarcoidosis</subject><subject>Transcriptome</subject><subject>Variables</subject><subject>Variance analysis</subject><issn>0040-6376</issn><issn>1468-3296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNqNkMFu1DAQhi0EokvhEYos9cIlMGM7jvdYVVCQKnGBI4q8yVjN1rFTO2l33x5XWxaJQ8VppNH3_5r5GDtD-Igo9af5Jia72wZfCcB1JVBJwBdshUqbSoq1fslWAAoqLRt9wt7kvAUAg9i8ZidSSpB6rVfs1xUF4l2k3ZQo5yEGHmh-iOk280T3ZD0P8Z48H6OnbvE2cQp9nPcTZT4Ebv10YyvkNszDnPZTLrue3NANFLr9W_bKWZ_p3dM8ZT-_fP5x-bW6_n717fLiutoo3cyVVQ0gCIe16qhxTmnhjGtkbYWxilyj-84J3FhhpZUCa-zBYY_lY-NqA_KUfTj0TineLZTndhxyR97bQHHJrVBGKjCNwYKe_4Nu45JCua5QBVgrhbpQ9YHqUsw5kWunNIw27VuE9tF_e_TfPvpvD_5L7v1T-7IZqT-m_ggvAByAzbj97078Gzke-3zmN30Yo8Y</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Chu, Jen-hwa</creator><creator>Zang, Wenlan</creator><creator>Vukmirovic, Milica</creator><creator>Yan, Xiting</creator><creator>Adams, Taylor</creator><creator>DeIuliis, Giuseppe</creator><creator>Hu, Buqu</creator><creator>Mihaljinec, Antun</creator><creator>Schupp, Jonas C</creator><creator>Becich, Michael J</creator><creator>Hochheiser, Harry</creator><creator>Gibson, Kevin F</creator><creator>Chen, Edward S</creator><creator>Morris, Alison</creator><creator>Leader, Joseph K</creator><creator>Wisniewski, Stephen R</creator><creator>Zhang, Yingze</creator><creator>Sciurba, Frank C</creator><creator>Collman, Ronald G</creator><creator>Sandhaus, Robert</creator><creator>Herzog, Erica L</creator><creator>Patterson, Karen C</creator><creator>Sauler, Maor</creator><creator>Strange, Charlie</creator><creator>Kaminski, Naftali</creator><general>BMJ Publishing Group Ltd and British Thoracic Society</general><general>BMJ Publishing Group LTD</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BTHHO</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5917-4601</orcidid><orcidid>https://orcid.org/0000-0001-7179-9428</orcidid><orcidid>https://orcid.org/0000-0001-6947-2901</orcidid><orcidid>https://orcid.org/0000-0003-0841-8156</orcidid></search><sort><creationdate>20210201</creationdate><title>Gene coexpression networks reveal novel molecular endotypes in alpha-1 antitrypsin deficiency</title><author>Chu, Jen-hwa ; Zang, Wenlan ; Vukmirovic, Milica ; Yan, Xiting ; Adams, Taylor ; DeIuliis, Giuseppe ; Hu, Buqu ; Mihaljinec, Antun ; Schupp, Jonas C ; Becich, Michael J ; Hochheiser, Harry ; Gibson, Kevin F ; Chen, Edward S ; Morris, Alison ; Leader, Joseph K ; Wisniewski, Stephen R ; Zhang, Yingze ; Sciurba, Frank C ; Collman, Ronald G ; Sandhaus, Robert ; Herzog, Erica L ; Patterson, Karen C ; Sauler, Maor ; Strange, Charlie ; Kaminski, Naftali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b467t-a470102f154ce7ff462f8f735a28a4ef76dcf21ba2a3a32151d0f1d13018f5803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Age</topic><topic>Airway management</topic><topic>alpha 1-Antitrypsin Deficiency - genetics</topic><topic>alpha1 antitrypsin deficiency</topic><topic>Bronchoalveolar Lavage Fluid</topic><topic>Carbon monoxide</topic><topic>Chronic obstructive pulmonary disease</topic><topic>COPD mechanisms</topic><topic>Disease</topic><topic>Emphysema</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Regulatory Networks</topic><topic>Genotype</topic><topic>Genotype & phenotype</topic><topic>Humans</topic><topic>Lavage</topic><topic>Lungs</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Mutation</topic><topic>Neutrophils</topic><topic>Neutrophils - metabolism</topic><topic>Prospective Studies</topic><topic>Proteins</topic><topic>Pulmonary Disease, Chronic Obstructive - genetics</topic><topic>Sarcoidosis</topic><topic>Transcriptome</topic><topic>Variables</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Jen-hwa</creatorcontrib><creatorcontrib>Zang, Wenlan</creatorcontrib><creatorcontrib>Vukmirovic, Milica</creatorcontrib><creatorcontrib>Yan, Xiting</creatorcontrib><creatorcontrib>Adams, Taylor</creatorcontrib><creatorcontrib>DeIuliis, Giuseppe</creatorcontrib><creatorcontrib>Hu, Buqu</creatorcontrib><creatorcontrib>Mihaljinec, Antun</creatorcontrib><creatorcontrib>Schupp, Jonas C</creatorcontrib><creatorcontrib>Becich, Michael J</creatorcontrib><creatorcontrib>Hochheiser, Harry</creatorcontrib><creatorcontrib>Gibson, Kevin F</creatorcontrib><creatorcontrib>Chen, Edward S</creatorcontrib><creatorcontrib>Morris, Alison</creatorcontrib><creatorcontrib>Leader, Joseph K</creatorcontrib><creatorcontrib>Wisniewski, Stephen R</creatorcontrib><creatorcontrib>Zhang, Yingze</creatorcontrib><creatorcontrib>Sciurba, Frank C</creatorcontrib><creatorcontrib>Collman, Ronald G</creatorcontrib><creatorcontrib>Sandhaus, Robert</creatorcontrib><creatorcontrib>Herzog, Erica L</creatorcontrib><creatorcontrib>Patterson, Karen C</creatorcontrib><creatorcontrib>Sauler, Maor</creatorcontrib><creatorcontrib>Strange, Charlie</creatorcontrib><creatorcontrib>Kaminski, Naftali</creatorcontrib><creatorcontrib>GRADS Investigators</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>BMJ Journals</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Thorax</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Jen-hwa</au><au>Zang, Wenlan</au><au>Vukmirovic, Milica</au><au>Yan, Xiting</au><au>Adams, Taylor</au><au>DeIuliis, Giuseppe</au><au>Hu, Buqu</au><au>Mihaljinec, Antun</au><au>Schupp, Jonas C</au><au>Becich, Michael J</au><au>Hochheiser, Harry</au><au>Gibson, Kevin F</au><au>Chen, Edward S</au><au>Morris, Alison</au><au>Leader, Joseph K</au><au>Wisniewski, Stephen R</au><au>Zhang, Yingze</au><au>Sciurba, Frank C</au><au>Collman, Ronald G</au><au>Sandhaus, Robert</au><au>Herzog, Erica L</au><au>Patterson, Karen C</au><au>Sauler, Maor</au><au>Strange, Charlie</au><au>Kaminski, Naftali</au><aucorp>GRADS Investigators</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene coexpression networks reveal novel molecular endotypes in alpha-1 antitrypsin deficiency</atitle><jtitle>Thorax</jtitle><stitle>Thorax</stitle><addtitle>Thorax</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>76</volume><issue>2</issue><spage>134</spage><epage>143</epage><pages>134-143</pages><issn>0040-6376</issn><eissn>1468-3296</eissn><abstract>BackgroundAlpha-1 antitrypsin deficiency (AATD) is a genetic condition that causes early onset pulmonary emphysema and airways obstruction. The complete mechanisms via which AATD causes lung disease are not fully understood. To improve our understanding of the pathogenesis of AATD, we investigated gene expression profiles of bronchoalveolar lavage (BAL) and peripheral blood mononuclear cells (PBMCs) in AATD individuals.MethodsWe performed RNA-Seq on RNA extracted from matched BAL and PBMC samples isolated from 89 subjects enrolled in the Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) study. Subjects were stratified by genotype and augmentation therapy. Supervised and unsupervised differential gene expression analyses were performed using Weighted Gene Co-expression Network Analysis (WGCNA) to identify gene profiles associated with subjects’ clinical variables. The genes in the most significant WGCNA module were used to cluster AATD individuals. Gene validation was performed by NanoString nCounter Gene Expression Assay.ResultWe observed modest effects of AATD genotype and augmentation therapy on gene expression. When WGCNA was applied to BAL transcriptome, one gene module, ME31 (2312 genes), correlated with the highest number of clinical variables and was functionally enriched with numerous immune T-lymphocyte related pathways. This gene module identified two distinct clusters of AATD individuals with different disease severity and distinct PBMC gene expression patterns.ConclusionsWe successfully identified novel clusters of AATD individuals where severity correlated with increased immune response independent of individuals’ genotype and augmentation therapy. These findings may suggest the presence of previously unrecognised disease endotypes in AATD that associate with T-lymphocyte immunity and disease severity.</abstract><cop>England</cop><pub>BMJ Publishing Group Ltd and British Thoracic Society</pub><pmid>33303696</pmid><doi>10.1136/thoraxjnl-2019-214301</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5917-4601</orcidid><orcidid>https://orcid.org/0000-0001-7179-9428</orcidid><orcidid>https://orcid.org/0000-0001-6947-2901</orcidid><orcidid>https://orcid.org/0000-0003-0841-8156</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-6376 |
ispartof | Thorax, 2021-02, Vol.76 (2), p.134-143 |
issn | 0040-6376 1468-3296 |
language | eng |
recordid | cdi_proquest_miscellaneous_2483408781 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Adult Age Airway management alpha 1-Antitrypsin Deficiency - genetics alpha1 antitrypsin deficiency Bronchoalveolar Lavage Fluid Carbon monoxide Chronic obstructive pulmonary disease COPD mechanisms Disease Emphysema Female Gene expression Gene Expression Profiling Gene Regulatory Networks Genotype Genotype & phenotype Humans Lavage Lungs Male Middle Aged Mutation Neutrophils Neutrophils - metabolism Prospective Studies Proteins Pulmonary Disease, Chronic Obstructive - genetics Sarcoidosis Transcriptome Variables Variance analysis |
title | Gene coexpression networks reveal novel molecular endotypes in alpha-1 antitrypsin deficiency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A43%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20coexpression%20networks%20reveal%20novel%20molecular%20endotypes%20in%20alpha-1%20antitrypsin%20deficiency&rft.jtitle=Thorax&rft.au=Chu,%20Jen-hwa&rft.aucorp=GRADS%20Investigators&rft.date=2021-02-01&rft.volume=76&rft.issue=2&rft.spage=134&rft.epage=143&rft.pages=134-143&rft.issn=0040-6376&rft.eissn=1468-3296&rft_id=info:doi/10.1136/thoraxjnl-2019-214301&rft_dat=%3Cproquest_cross%3E2478194416%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478194416&rft_id=info:pmid/33303696&rfr_iscdi=true |