A Review of Radiomics and Deep Predictive Modeling in Glioma Characterization
Recent developments in glioma categorization based on biological genotypes and application of computational machine learning or deep learning based predictive models using multi-modal MRI biomarkers to assess these genotypes provides potential assurance for optimal and personalized treatment plans a...
Gespeichert in:
Veröffentlicht in: | Academic radiology 2021-11, Vol.28 (11), p.1599-1621 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1621 |
---|---|
container_issue | 11 |
container_start_page | 1599 |
container_title | Academic radiology |
container_volume | 28 |
creator | Gore, Sonal Chougule, Tanay Jagtap, Jayant Saini, Jitender Ingalhalikar, Madhura |
description | Recent developments in glioma categorization based on biological genotypes and application of computational machine learning or deep learning based predictive models using multi-modal MRI biomarkers to assess these genotypes provides potential assurance for optimal and personalized treatment plans and efficacy. Artificial intelligence based quantified assessment of glioma using MRI derived hand-crafted or auto-extracted features have become crucial as genomic alterations can be associated with MRI based phenotypes. This survey integrates all the recent work carried out in state-of-the-art radiomics, and Artificial Intelligence based learning solutions related to molecular diagnosis, prognosis, and treatment monitoring with the aim to create a structured resource on radiogenomic analysis of glioma. Challenges such as inter-scanner variability, requirement of benchmark datasets, prospective validations for clinical applicability are discussed with further scope for designing optimal solutions for glioma stratification with immediate recommendations for further diagnostic decisions and personalized treatment plans for glioma patients. |
doi_str_mv | 10.1016/j.acra.2020.06.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2483306476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1076633220303664</els_id><sourcerecordid>2483306476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-60fefd9dd008904b8b0d1f9eac8efc0a52114bfe7001bb0ae2e89276f7ae680d3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhRdRsFb_gKccvew62WyzWfBSqlbBohQ9h2wy0ZTtpibbiv56U-rZ0wyP94Z5X5ZdUigoUH69KpQOqiihhAJ4kaSjbERFLfIKKn6cdqh5zhkrT7OzGFcAdMIFG2WLKVnizuEX8ZYslXF-7XQkqjfkFnFDXgIapwe3Q7LwBjvXvxPXk3mXjIrMPlRQesDgftTgfH-enVjVRbz4m-Ps7f7udfaQPz3PH2fTp1wzxoacg0VrGmMARANVK1ow1DaotECrQU1KSqvWYp3ebFtQWKJoyprbWiEXYNg4uzrc3QT_ucU4yLWLGrtO9ei3UZaVYAx4VfNkLQ9WHXyMAa3cBLdW4VtSkHt2ciX37OSenQQuk5RCN4cQphKJTpBRO-x1YhFQD9J491_8FzcMd-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483306476</pqid></control><display><type>article</type><title>A Review of Radiomics and Deep Predictive Modeling in Glioma Characterization</title><source>Elsevier ScienceDirect Journals</source><creator>Gore, Sonal ; Chougule, Tanay ; Jagtap, Jayant ; Saini, Jitender ; Ingalhalikar, Madhura</creator><creatorcontrib>Gore, Sonal ; Chougule, Tanay ; Jagtap, Jayant ; Saini, Jitender ; Ingalhalikar, Madhura</creatorcontrib><description>Recent developments in glioma categorization based on biological genotypes and application of computational machine learning or deep learning based predictive models using multi-modal MRI biomarkers to assess these genotypes provides potential assurance for optimal and personalized treatment plans and efficacy. Artificial intelligence based quantified assessment of glioma using MRI derived hand-crafted or auto-extracted features have become crucial as genomic alterations can be associated with MRI based phenotypes. This survey integrates all the recent work carried out in state-of-the-art radiomics, and Artificial Intelligence based learning solutions related to molecular diagnosis, prognosis, and treatment monitoring with the aim to create a structured resource on radiogenomic analysis of glioma. Challenges such as inter-scanner variability, requirement of benchmark datasets, prospective validations for clinical applicability are discussed with further scope for designing optimal solutions for glioma stratification with immediate recommendations for further diagnostic decisions and personalized treatment plans for glioma patients.</description><identifier>ISSN: 1076-6332</identifier><identifier>EISSN: 1878-4046</identifier><identifier>DOI: 10.1016/j.acra.2020.06.016</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Biomarkers ; Deep Learning ; Glioma ; Machine Learning ; Radiogenomics ; Radiomics</subject><ispartof>Academic radiology, 2021-11, Vol.28 (11), p.1599-1621</ispartof><rights>2020 The Association of University Radiologists</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-60fefd9dd008904b8b0d1f9eac8efc0a52114bfe7001bb0ae2e89276f7ae680d3</citedby><cites>FETCH-LOGICAL-c333t-60fefd9dd008904b8b0d1f9eac8efc0a52114bfe7001bb0ae2e89276f7ae680d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1076633220303664$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Gore, Sonal</creatorcontrib><creatorcontrib>Chougule, Tanay</creatorcontrib><creatorcontrib>Jagtap, Jayant</creatorcontrib><creatorcontrib>Saini, Jitender</creatorcontrib><creatorcontrib>Ingalhalikar, Madhura</creatorcontrib><title>A Review of Radiomics and Deep Predictive Modeling in Glioma Characterization</title><title>Academic radiology</title><description>Recent developments in glioma categorization based on biological genotypes and application of computational machine learning or deep learning based predictive models using multi-modal MRI biomarkers to assess these genotypes provides potential assurance for optimal and personalized treatment plans and efficacy. Artificial intelligence based quantified assessment of glioma using MRI derived hand-crafted or auto-extracted features have become crucial as genomic alterations can be associated with MRI based phenotypes. This survey integrates all the recent work carried out in state-of-the-art radiomics, and Artificial Intelligence based learning solutions related to molecular diagnosis, prognosis, and treatment monitoring with the aim to create a structured resource on radiogenomic analysis of glioma. Challenges such as inter-scanner variability, requirement of benchmark datasets, prospective validations for clinical applicability are discussed with further scope for designing optimal solutions for glioma stratification with immediate recommendations for further diagnostic decisions and personalized treatment plans for glioma patients.</description><subject>Biomarkers</subject><subject>Deep Learning</subject><subject>Glioma</subject><subject>Machine Learning</subject><subject>Radiogenomics</subject><subject>Radiomics</subject><issn>1076-6332</issn><issn>1878-4046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhRdRsFb_gKccvew62WyzWfBSqlbBohQ9h2wy0ZTtpibbiv56U-rZ0wyP94Z5X5ZdUigoUH69KpQOqiihhAJ4kaSjbERFLfIKKn6cdqh5zhkrT7OzGFcAdMIFG2WLKVnizuEX8ZYslXF-7XQkqjfkFnFDXgIapwe3Q7LwBjvXvxPXk3mXjIrMPlRQesDgftTgfH-enVjVRbz4m-Ps7f7udfaQPz3PH2fTp1wzxoacg0VrGmMARANVK1ow1DaotECrQU1KSqvWYp3ebFtQWKJoyprbWiEXYNg4uzrc3QT_ucU4yLWLGrtO9ei3UZaVYAx4VfNkLQ9WHXyMAa3cBLdW4VtSkHt2ciX37OSenQQuk5RCN4cQphKJTpBRO-x1YhFQD9J491_8FzcMd-E</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Gore, Sonal</creator><creator>Chougule, Tanay</creator><creator>Jagtap, Jayant</creator><creator>Saini, Jitender</creator><creator>Ingalhalikar, Madhura</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202111</creationdate><title>A Review of Radiomics and Deep Predictive Modeling in Glioma Characterization</title><author>Gore, Sonal ; Chougule, Tanay ; Jagtap, Jayant ; Saini, Jitender ; Ingalhalikar, Madhura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-60fefd9dd008904b8b0d1f9eac8efc0a52114bfe7001bb0ae2e89276f7ae680d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomarkers</topic><topic>Deep Learning</topic><topic>Glioma</topic><topic>Machine Learning</topic><topic>Radiogenomics</topic><topic>Radiomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gore, Sonal</creatorcontrib><creatorcontrib>Chougule, Tanay</creatorcontrib><creatorcontrib>Jagtap, Jayant</creatorcontrib><creatorcontrib>Saini, Jitender</creatorcontrib><creatorcontrib>Ingalhalikar, Madhura</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Academic radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gore, Sonal</au><au>Chougule, Tanay</au><au>Jagtap, Jayant</au><au>Saini, Jitender</au><au>Ingalhalikar, Madhura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review of Radiomics and Deep Predictive Modeling in Glioma Characterization</atitle><jtitle>Academic radiology</jtitle><date>2021-11</date><risdate>2021</risdate><volume>28</volume><issue>11</issue><spage>1599</spage><epage>1621</epage><pages>1599-1621</pages><issn>1076-6332</issn><eissn>1878-4046</eissn><abstract>Recent developments in glioma categorization based on biological genotypes and application of computational machine learning or deep learning based predictive models using multi-modal MRI biomarkers to assess these genotypes provides potential assurance for optimal and personalized treatment plans and efficacy. Artificial intelligence based quantified assessment of glioma using MRI derived hand-crafted or auto-extracted features have become crucial as genomic alterations can be associated with MRI based phenotypes. This survey integrates all the recent work carried out in state-of-the-art radiomics, and Artificial Intelligence based learning solutions related to molecular diagnosis, prognosis, and treatment monitoring with the aim to create a structured resource on radiogenomic analysis of glioma. Challenges such as inter-scanner variability, requirement of benchmark datasets, prospective validations for clinical applicability are discussed with further scope for designing optimal solutions for glioma stratification with immediate recommendations for further diagnostic decisions and personalized treatment plans for glioma patients.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.acra.2020.06.016</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-6332 |
ispartof | Academic radiology, 2021-11, Vol.28 (11), p.1599-1621 |
issn | 1076-6332 1878-4046 |
language | eng |
recordid | cdi_proquest_miscellaneous_2483306476 |
source | Elsevier ScienceDirect Journals |
subjects | Biomarkers Deep Learning Glioma Machine Learning Radiogenomics Radiomics |
title | A Review of Radiomics and Deep Predictive Modeling in Glioma Characterization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A44%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20of%20Radiomics%20and%20Deep%20Predictive%20Modeling%20in%20Glioma%20Characterization&rft.jtitle=Academic%20radiology&rft.au=Gore,%20Sonal&rft.date=2021-11&rft.volume=28&rft.issue=11&rft.spage=1599&rft.epage=1621&rft.pages=1599-1621&rft.issn=1076-6332&rft.eissn=1878-4046&rft_id=info:doi/10.1016/j.acra.2020.06.016&rft_dat=%3Cproquest_cross%3E2483306476%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483306476&rft_id=info:pmid/&rft_els_id=S1076633220303664&rfr_iscdi=true |