A Review of Radiomics and Deep Predictive Modeling in Glioma Characterization

Recent developments in glioma categorization based on biological genotypes and application of computational machine learning or deep learning based predictive models using multi-modal MRI biomarkers to assess these genotypes provides potential assurance for optimal and personalized treatment plans a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Academic radiology 2021-11, Vol.28 (11), p.1599-1621
Hauptverfasser: Gore, Sonal, Chougule, Tanay, Jagtap, Jayant, Saini, Jitender, Ingalhalikar, Madhura
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1621
container_issue 11
container_start_page 1599
container_title Academic radiology
container_volume 28
creator Gore, Sonal
Chougule, Tanay
Jagtap, Jayant
Saini, Jitender
Ingalhalikar, Madhura
description Recent developments in glioma categorization based on biological genotypes and application of computational machine learning or deep learning based predictive models using multi-modal MRI biomarkers to assess these genotypes provides potential assurance for optimal and personalized treatment plans and efficacy. Artificial intelligence based quantified assessment of glioma using MRI derived hand-crafted or auto-extracted features have become crucial as genomic alterations can be associated with MRI based phenotypes. This survey integrates all the recent work carried out in state-of-the-art radiomics, and Artificial Intelligence based learning solutions related to molecular diagnosis, prognosis, and treatment monitoring with the aim to create a structured resource on radiogenomic analysis of glioma. Challenges such as inter-scanner variability, requirement of benchmark datasets, prospective validations for clinical applicability are discussed with further scope for designing optimal solutions for glioma stratification with immediate recommendations for further diagnostic decisions and personalized treatment plans for glioma patients.
doi_str_mv 10.1016/j.acra.2020.06.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2483306476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1076633220303664</els_id><sourcerecordid>2483306476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-60fefd9dd008904b8b0d1f9eac8efc0a52114bfe7001bb0ae2e89276f7ae680d3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhRdRsFb_gKccvew62WyzWfBSqlbBohQ9h2wy0ZTtpibbiv56U-rZ0wyP94Z5X5ZdUigoUH69KpQOqiihhAJ4kaSjbERFLfIKKn6cdqh5zhkrT7OzGFcAdMIFG2WLKVnizuEX8ZYslXF-7XQkqjfkFnFDXgIapwe3Q7LwBjvXvxPXk3mXjIrMPlRQesDgftTgfH-enVjVRbz4m-Ps7f7udfaQPz3PH2fTp1wzxoacg0VrGmMARANVK1ow1DaotECrQU1KSqvWYp3ebFtQWKJoyprbWiEXYNg4uzrc3QT_ucU4yLWLGrtO9ei3UZaVYAx4VfNkLQ9WHXyMAa3cBLdW4VtSkHt2ciX37OSenQQuk5RCN4cQphKJTpBRO-x1YhFQD9J491_8FzcMd-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483306476</pqid></control><display><type>article</type><title>A Review of Radiomics and Deep Predictive Modeling in Glioma Characterization</title><source>Elsevier ScienceDirect Journals</source><creator>Gore, Sonal ; Chougule, Tanay ; Jagtap, Jayant ; Saini, Jitender ; Ingalhalikar, Madhura</creator><creatorcontrib>Gore, Sonal ; Chougule, Tanay ; Jagtap, Jayant ; Saini, Jitender ; Ingalhalikar, Madhura</creatorcontrib><description>Recent developments in glioma categorization based on biological genotypes and application of computational machine learning or deep learning based predictive models using multi-modal MRI biomarkers to assess these genotypes provides potential assurance for optimal and personalized treatment plans and efficacy. Artificial intelligence based quantified assessment of glioma using MRI derived hand-crafted or auto-extracted features have become crucial as genomic alterations can be associated with MRI based phenotypes. This survey integrates all the recent work carried out in state-of-the-art radiomics, and Artificial Intelligence based learning solutions related to molecular diagnosis, prognosis, and treatment monitoring with the aim to create a structured resource on radiogenomic analysis of glioma. Challenges such as inter-scanner variability, requirement of benchmark datasets, prospective validations for clinical applicability are discussed with further scope for designing optimal solutions for glioma stratification with immediate recommendations for further diagnostic decisions and personalized treatment plans for glioma patients.</description><identifier>ISSN: 1076-6332</identifier><identifier>EISSN: 1878-4046</identifier><identifier>DOI: 10.1016/j.acra.2020.06.016</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Biomarkers ; Deep Learning ; Glioma ; Machine Learning ; Radiogenomics ; Radiomics</subject><ispartof>Academic radiology, 2021-11, Vol.28 (11), p.1599-1621</ispartof><rights>2020 The Association of University Radiologists</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-60fefd9dd008904b8b0d1f9eac8efc0a52114bfe7001bb0ae2e89276f7ae680d3</citedby><cites>FETCH-LOGICAL-c333t-60fefd9dd008904b8b0d1f9eac8efc0a52114bfe7001bb0ae2e89276f7ae680d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1076633220303664$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Gore, Sonal</creatorcontrib><creatorcontrib>Chougule, Tanay</creatorcontrib><creatorcontrib>Jagtap, Jayant</creatorcontrib><creatorcontrib>Saini, Jitender</creatorcontrib><creatorcontrib>Ingalhalikar, Madhura</creatorcontrib><title>A Review of Radiomics and Deep Predictive Modeling in Glioma Characterization</title><title>Academic radiology</title><description>Recent developments in glioma categorization based on biological genotypes and application of computational machine learning or deep learning based predictive models using multi-modal MRI biomarkers to assess these genotypes provides potential assurance for optimal and personalized treatment plans and efficacy. Artificial intelligence based quantified assessment of glioma using MRI derived hand-crafted or auto-extracted features have become crucial as genomic alterations can be associated with MRI based phenotypes. This survey integrates all the recent work carried out in state-of-the-art radiomics, and Artificial Intelligence based learning solutions related to molecular diagnosis, prognosis, and treatment monitoring with the aim to create a structured resource on radiogenomic analysis of glioma. Challenges such as inter-scanner variability, requirement of benchmark datasets, prospective validations for clinical applicability are discussed with further scope for designing optimal solutions for glioma stratification with immediate recommendations for further diagnostic decisions and personalized treatment plans for glioma patients.</description><subject>Biomarkers</subject><subject>Deep Learning</subject><subject>Glioma</subject><subject>Machine Learning</subject><subject>Radiogenomics</subject><subject>Radiomics</subject><issn>1076-6332</issn><issn>1878-4046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhRdRsFb_gKccvew62WyzWfBSqlbBohQ9h2wy0ZTtpibbiv56U-rZ0wyP94Z5X5ZdUigoUH69KpQOqiihhAJ4kaSjbERFLfIKKn6cdqh5zhkrT7OzGFcAdMIFG2WLKVnizuEX8ZYslXF-7XQkqjfkFnFDXgIapwe3Q7LwBjvXvxPXk3mXjIrMPlRQesDgftTgfH-enVjVRbz4m-Ps7f7udfaQPz3PH2fTp1wzxoacg0VrGmMARANVK1ow1DaotECrQU1KSqvWYp3ebFtQWKJoyprbWiEXYNg4uzrc3QT_ucU4yLWLGrtO9ei3UZaVYAx4VfNkLQ9WHXyMAa3cBLdW4VtSkHt2ciX37OSenQQuk5RCN4cQphKJTpBRO-x1YhFQD9J491_8FzcMd-E</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Gore, Sonal</creator><creator>Chougule, Tanay</creator><creator>Jagtap, Jayant</creator><creator>Saini, Jitender</creator><creator>Ingalhalikar, Madhura</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202111</creationdate><title>A Review of Radiomics and Deep Predictive Modeling in Glioma Characterization</title><author>Gore, Sonal ; Chougule, Tanay ; Jagtap, Jayant ; Saini, Jitender ; Ingalhalikar, Madhura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-60fefd9dd008904b8b0d1f9eac8efc0a52114bfe7001bb0ae2e89276f7ae680d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomarkers</topic><topic>Deep Learning</topic><topic>Glioma</topic><topic>Machine Learning</topic><topic>Radiogenomics</topic><topic>Radiomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gore, Sonal</creatorcontrib><creatorcontrib>Chougule, Tanay</creatorcontrib><creatorcontrib>Jagtap, Jayant</creatorcontrib><creatorcontrib>Saini, Jitender</creatorcontrib><creatorcontrib>Ingalhalikar, Madhura</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Academic radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gore, Sonal</au><au>Chougule, Tanay</au><au>Jagtap, Jayant</au><au>Saini, Jitender</au><au>Ingalhalikar, Madhura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review of Radiomics and Deep Predictive Modeling in Glioma Characterization</atitle><jtitle>Academic radiology</jtitle><date>2021-11</date><risdate>2021</risdate><volume>28</volume><issue>11</issue><spage>1599</spage><epage>1621</epage><pages>1599-1621</pages><issn>1076-6332</issn><eissn>1878-4046</eissn><abstract>Recent developments in glioma categorization based on biological genotypes and application of computational machine learning or deep learning based predictive models using multi-modal MRI biomarkers to assess these genotypes provides potential assurance for optimal and personalized treatment plans and efficacy. Artificial intelligence based quantified assessment of glioma using MRI derived hand-crafted or auto-extracted features have become crucial as genomic alterations can be associated with MRI based phenotypes. This survey integrates all the recent work carried out in state-of-the-art radiomics, and Artificial Intelligence based learning solutions related to molecular diagnosis, prognosis, and treatment monitoring with the aim to create a structured resource on radiogenomic analysis of glioma. Challenges such as inter-scanner variability, requirement of benchmark datasets, prospective validations for clinical applicability are discussed with further scope for designing optimal solutions for glioma stratification with immediate recommendations for further diagnostic decisions and personalized treatment plans for glioma patients.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.acra.2020.06.016</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1076-6332
ispartof Academic radiology, 2021-11, Vol.28 (11), p.1599-1621
issn 1076-6332
1878-4046
language eng
recordid cdi_proquest_miscellaneous_2483306476
source Elsevier ScienceDirect Journals
subjects Biomarkers
Deep Learning
Glioma
Machine Learning
Radiogenomics
Radiomics
title A Review of Radiomics and Deep Predictive Modeling in Glioma Characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A44%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20of%20Radiomics%20and%20Deep%20Predictive%20Modeling%20in%20Glioma%20Characterization&rft.jtitle=Academic%20radiology&rft.au=Gore,%20Sonal&rft.date=2021-11&rft.volume=28&rft.issue=11&rft.spage=1599&rft.epage=1621&rft.pages=1599-1621&rft.issn=1076-6332&rft.eissn=1878-4046&rft_id=info:doi/10.1016/j.acra.2020.06.016&rft_dat=%3Cproquest_cross%3E2483306476%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483306476&rft_id=info:pmid/&rft_els_id=S1076633220303664&rfr_iscdi=true