Can pulsed laser excitation of surfaces be described by a thermal model?
In using pulsed laser excitation of surfaces to induce desorption or reaction of adsorbed molecules, it has generally been assumed that the absorbed energy is rapidly randomized, and a thermal model can be used to calculate the surface-temperature change. In this work, the transient temperature jump...
Gespeichert in:
Veröffentlicht in: | Phys. Rev. Lett.; (United States) 1988-11, Vol.61 (22), p.2588-2591 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2591 |
---|---|
container_issue | 22 |
container_start_page | 2588 |
container_title | Phys. Rev. Lett.; (United States) |
container_volume | 61 |
creator | HICKS, J. M URBACH, L. E PLUMMER, E. W HAI-LUNG DAI |
description | In using pulsed laser excitation of surfaces to induce desorption or reaction of adsorbed molecules, it has generally been assumed that the absorbed energy is rapidly randomized, and a thermal model can be used to calculate the surface-temperature change. In this work, the transient temperature jump on a Ag(110) surface induced by an 8-nsec laser pulse is directly monitored with a psec probe pulse. The probe is based on a temperature-dependent second-harmonic-generation effect. The experiment provides the first direct evidence that the heat-diffusion model can correctly predict the magnitude and the time evolution of the temperature on the surface. (Author) |
doi_str_mv | 10.1103/PhysRevLett.61.2588 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_24828247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24828247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-5fe2cdb26b9e7e598fee200436cc14fbc0d51cc68f57f5c5604811bcd0c4a18a3</originalsourceid><addsrcrecordid>eNp90U2LFDEQBuAgiju7-gsECSLipceqTjqdPokMrisMKKLnkK6uMC39MSbd4vx7s8wge_JUh3rqA14hXiBsEUG9-3o4pW_8e8_LsjW4LStrH4kNQt0UNaJ-LDYACosGoL4S1yn9BAAsjX0qrjB3GjR6I-52fpLHdUjcycEnjpL_UL_4pZ8nOQeZ1hg8cZIty44Txb7Nsj1JL5cDx9EPcpw7Ht4_E0-Cz2ueX-qN-HH78fvurth_-fR592FfkGpgKarAJXVtadqGa64aG5hLAK0MEerQEnQVEhkbqjpUVBnQFrGlDkh7tF7diFfnvXNaepfyr0wHmqeJaXGmUUrVkNGbMzrG-dfKaXFjn4iHwU88r8mV2pa21HWGb_8L0VZNabSxJlN1phTnlCIHd4z96OPJIbj7QNyDQJxBdx9Innp5ObC2I3cPZs4JZPD6AnwiP4ToJ-rTP1cDaqNR_QWBnpVc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859264686</pqid></control><display><type>article</type><title>Can pulsed laser excitation of surfaces be described by a thermal model?</title><source>American Physical Society Journals</source><creator>HICKS, J. M ; URBACH, L. E ; PLUMMER, E. W ; HAI-LUNG DAI</creator><creatorcontrib>HICKS, J. M ; URBACH, L. E ; PLUMMER, E. W ; HAI-LUNG DAI ; Laboratory for Research on the Structure af Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104</creatorcontrib><description>In using pulsed laser excitation of surfaces to induce desorption or reaction of adsorbed molecules, it has generally been assumed that the absorbed energy is rapidly randomized, and a thermal model can be used to calculate the surface-temperature change. In this work, the transient temperature jump on a Ag(110) surface induced by an 8-nsec laser pulse is directly monitored with a psec probe pulse. The probe is based on a temperature-dependent second-harmonic-generation effect. The experiment provides the first direct evidence that the heat-diffusion model can correctly predict the magnitude and the time evolution of the temperature on the surface. (Author)</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.61.2588</identifier><identifier>PMID: 10039164</identifier><identifier>CODEN: PRLTAO</identifier><language>eng</language><publisher>Ridge, NY: American Physical Society</publisher><subject>ADSORPTION ; Applied sciences ; CHEMICAL REACTIONS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; DESORPTION ; ELECTROMAGNETIC RADIATION ; Electron and ion emission by liquids and solids; impact phenomena ; ELEMENTS ; ENERGY TRANSFER ; ENERGY-LEVEL TRANSITIONS ; Exact sciences and technology ; EXCITATION ; HARMONICS ; HEAT TRANSFER ; Impact phenomena (including electron spectra and sputtering) ; LASER RADIATION ; Laser-beam impact phenomena ; LIGHT TRANSMISSION ; Materials science ; MATHEMATICAL MODELS ; METALS ; Metals, semimetals and alloys ; Metals. Metallurgy ; MOLECULES ; NONLINEAR OPTICS ; OPTICS ; OSCILLATIONS ; PARTICLE MODELS ; Physics ; POLARIZATION ; PULSES ; RADIATIONS ; RANDOMNESS ; SILVER ; SORPTION ; Specific materials ; STATISTICAL MODELS ; SURFACES ; TEMPERATURE DEPENDENCE ; TEMPERATURE DISTRIBUTION ; THERMODYNAMIC MODEL ; TRANSIENTS ; TRANSITION ELEMENTS 656003 -- Condensed Matter Physics-- Interactions between Beams & Condensed Matter-- (1987-)</subject><ispartof>Phys. Rev. Lett.; (United States), 1988-11, Vol.61 (22), p.2588-2591</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-5fe2cdb26b9e7e598fee200436cc14fbc0d51cc68f57f5c5604811bcd0c4a18a3</citedby><cites>FETCH-LOGICAL-c390t-5fe2cdb26b9e7e598fee200436cc14fbc0d51cc68f57f5c5604811bcd0c4a18a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7014641$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10039164$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6933370$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>HICKS, J. M</creatorcontrib><creatorcontrib>URBACH, L. E</creatorcontrib><creatorcontrib>PLUMMER, E. W</creatorcontrib><creatorcontrib>HAI-LUNG DAI</creatorcontrib><creatorcontrib>Laboratory for Research on the Structure af Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104</creatorcontrib><title>Can pulsed laser excitation of surfaces be described by a thermal model?</title><title>Phys. Rev. Lett.; (United States)</title><addtitle>Phys Rev Lett</addtitle><description>In using pulsed laser excitation of surfaces to induce desorption or reaction of adsorbed molecules, it has generally been assumed that the absorbed energy is rapidly randomized, and a thermal model can be used to calculate the surface-temperature change. In this work, the transient temperature jump on a Ag(110) surface induced by an 8-nsec laser pulse is directly monitored with a psec probe pulse. The probe is based on a temperature-dependent second-harmonic-generation effect. The experiment provides the first direct evidence that the heat-diffusion model can correctly predict the magnitude and the time evolution of the temperature on the surface. (Author)</description><subject>ADSORPTION</subject><subject>Applied sciences</subject><subject>CHEMICAL REACTIONS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>DESORPTION</subject><subject>ELECTROMAGNETIC RADIATION</subject><subject>Electron and ion emission by liquids and solids; impact phenomena</subject><subject>ELEMENTS</subject><subject>ENERGY TRANSFER</subject><subject>ENERGY-LEVEL TRANSITIONS</subject><subject>Exact sciences and technology</subject><subject>EXCITATION</subject><subject>HARMONICS</subject><subject>HEAT TRANSFER</subject><subject>Impact phenomena (including electron spectra and sputtering)</subject><subject>LASER RADIATION</subject><subject>Laser-beam impact phenomena</subject><subject>LIGHT TRANSMISSION</subject><subject>Materials science</subject><subject>MATHEMATICAL MODELS</subject><subject>METALS</subject><subject>Metals, semimetals and alloys</subject><subject>Metals. Metallurgy</subject><subject>MOLECULES</subject><subject>NONLINEAR OPTICS</subject><subject>OPTICS</subject><subject>OSCILLATIONS</subject><subject>PARTICLE MODELS</subject><subject>Physics</subject><subject>POLARIZATION</subject><subject>PULSES</subject><subject>RADIATIONS</subject><subject>RANDOMNESS</subject><subject>SILVER</subject><subject>SORPTION</subject><subject>Specific materials</subject><subject>STATISTICAL MODELS</subject><subject>SURFACES</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>TEMPERATURE DISTRIBUTION</subject><subject>THERMODYNAMIC MODEL</subject><subject>TRANSIENTS</subject><subject>TRANSITION ELEMENTS 656003 -- Condensed Matter Physics-- Interactions between Beams & Condensed Matter-- (1987-)</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNp90U2LFDEQBuAgiju7-gsECSLipceqTjqdPokMrisMKKLnkK6uMC39MSbd4vx7s8wge_JUh3rqA14hXiBsEUG9-3o4pW_8e8_LsjW4LStrH4kNQt0UNaJ-LDYACosGoL4S1yn9BAAsjX0qrjB3GjR6I-52fpLHdUjcycEnjpL_UL_4pZ8nOQeZ1hg8cZIty44Txb7Nsj1JL5cDx9EPcpw7Ht4_E0-Cz2ueX-qN-HH78fvurth_-fR592FfkGpgKarAJXVtadqGa64aG5hLAK0MEerQEnQVEhkbqjpUVBnQFrGlDkh7tF7diFfnvXNaepfyr0wHmqeJaXGmUUrVkNGbMzrG-dfKaXFjn4iHwU88r8mV2pa21HWGb_8L0VZNabSxJlN1phTnlCIHd4z96OPJIbj7QNyDQJxBdx9Innp5ObC2I3cPZs4JZPD6AnwiP4ToJ-rTP1cDaqNR_QWBnpVc</recordid><startdate>19881128</startdate><enddate>19881128</enddate><creator>HICKS, J. M</creator><creator>URBACH, L. E</creator><creator>PLUMMER, E. W</creator><creator>HAI-LUNG DAI</creator><general>American Physical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19881128</creationdate><title>Can pulsed laser excitation of surfaces be described by a thermal model?</title><author>HICKS, J. M ; URBACH, L. E ; PLUMMER, E. W ; HAI-LUNG DAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-5fe2cdb26b9e7e598fee200436cc14fbc0d51cc68f57f5c5604811bcd0c4a18a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>ADSORPTION</topic><topic>Applied sciences</topic><topic>CHEMICAL REACTIONS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>DESORPTION</topic><topic>ELECTROMAGNETIC RADIATION</topic><topic>Electron and ion emission by liquids and solids; impact phenomena</topic><topic>ELEMENTS</topic><topic>ENERGY TRANSFER</topic><topic>ENERGY-LEVEL TRANSITIONS</topic><topic>Exact sciences and technology</topic><topic>EXCITATION</topic><topic>HARMONICS</topic><topic>HEAT TRANSFER</topic><topic>Impact phenomena (including electron spectra and sputtering)</topic><topic>LASER RADIATION</topic><topic>Laser-beam impact phenomena</topic><topic>LIGHT TRANSMISSION</topic><topic>Materials science</topic><topic>MATHEMATICAL MODELS</topic><topic>METALS</topic><topic>Metals, semimetals and alloys</topic><topic>Metals. Metallurgy</topic><topic>MOLECULES</topic><topic>NONLINEAR OPTICS</topic><topic>OPTICS</topic><topic>OSCILLATIONS</topic><topic>PARTICLE MODELS</topic><topic>Physics</topic><topic>POLARIZATION</topic><topic>PULSES</topic><topic>RADIATIONS</topic><topic>RANDOMNESS</topic><topic>SILVER</topic><topic>SORPTION</topic><topic>Specific materials</topic><topic>STATISTICAL MODELS</topic><topic>SURFACES</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>TEMPERATURE DISTRIBUTION</topic><topic>THERMODYNAMIC MODEL</topic><topic>TRANSIENTS</topic><topic>TRANSITION ELEMENTS 656003 -- Condensed Matter Physics-- Interactions between Beams & Condensed Matter-- (1987-)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HICKS, J. M</creatorcontrib><creatorcontrib>URBACH, L. E</creatorcontrib><creatorcontrib>PLUMMER, E. W</creatorcontrib><creatorcontrib>HAI-LUNG DAI</creatorcontrib><creatorcontrib>Laboratory for Research on the Structure af Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Phys. Rev. Lett.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HICKS, J. M</au><au>URBACH, L. E</au><au>PLUMMER, E. W</au><au>HAI-LUNG DAI</au><aucorp>Laboratory for Research on the Structure af Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can pulsed laser excitation of surfaces be described by a thermal model?</atitle><jtitle>Phys. Rev. Lett.; (United States)</jtitle><addtitle>Phys Rev Lett</addtitle><date>1988-11-28</date><risdate>1988</risdate><volume>61</volume><issue>22</issue><spage>2588</spage><epage>2591</epage><pages>2588-2591</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><coden>PRLTAO</coden><abstract>In using pulsed laser excitation of surfaces to induce desorption or reaction of adsorbed molecules, it has generally been assumed that the absorbed energy is rapidly randomized, and a thermal model can be used to calculate the surface-temperature change. In this work, the transient temperature jump on a Ag(110) surface induced by an 8-nsec laser pulse is directly monitored with a psec probe pulse. The probe is based on a temperature-dependent second-harmonic-generation effect. The experiment provides the first direct evidence that the heat-diffusion model can correctly predict the magnitude and the time evolution of the temperature on the surface. (Author)</abstract><cop>Ridge, NY</cop><pub>American Physical Society</pub><pmid>10039164</pmid><doi>10.1103/PhysRevLett.61.2588</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Phys. Rev. Lett.; (United States), 1988-11, Vol.61 (22), p.2588-2591 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_24828247 |
source | American Physical Society Journals |
subjects | ADSORPTION Applied sciences CHEMICAL REACTIONS CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science rheology DESORPTION ELECTROMAGNETIC RADIATION Electron and ion emission by liquids and solids impact phenomena ELEMENTS ENERGY TRANSFER ENERGY-LEVEL TRANSITIONS Exact sciences and technology EXCITATION HARMONICS HEAT TRANSFER Impact phenomena (including electron spectra and sputtering) LASER RADIATION Laser-beam impact phenomena LIGHT TRANSMISSION Materials science MATHEMATICAL MODELS METALS Metals, semimetals and alloys Metals. Metallurgy MOLECULES NONLINEAR OPTICS OPTICS OSCILLATIONS PARTICLE MODELS Physics POLARIZATION PULSES RADIATIONS RANDOMNESS SILVER SORPTION Specific materials STATISTICAL MODELS SURFACES TEMPERATURE DEPENDENCE TEMPERATURE DISTRIBUTION THERMODYNAMIC MODEL TRANSIENTS TRANSITION ELEMENTS 656003 -- Condensed Matter Physics-- Interactions between Beams & Condensed Matter-- (1987-) |
title | Can pulsed laser excitation of surfaces be described by a thermal model? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A52%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20pulsed%20laser%20excitation%20of%20surfaces%20be%20described%20by%20a%20thermal%20model?&rft.jtitle=Phys.%20Rev.%20Lett.;%20(United%20States)&rft.au=HICKS,%20J.%20M&rft.aucorp=Laboratory%20for%20Research%20on%20the%20Structure%20af%20Matter,%20University%20of%20Pennsylvania,%20Philadelphia,%20Pennsylvania%2019104&rft.date=1988-11-28&rft.volume=61&rft.issue=22&rft.spage=2588&rft.epage=2591&rft.pages=2588-2591&rft.issn=0031-9007&rft.eissn=1079-7114&rft.coden=PRLTAO&rft_id=info:doi/10.1103/PhysRevLett.61.2588&rft_dat=%3Cproquest_osti_%3E24828247%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859264686&rft_id=info:pmid/10039164&rfr_iscdi=true |