Can pulsed laser excitation of surfaces be described by a thermal model?

In using pulsed laser excitation of surfaces to induce desorption or reaction of adsorbed molecules, it has generally been assumed that the absorbed energy is rapidly randomized, and a thermal model can be used to calculate the surface-temperature change. In this work, the transient temperature jump...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phys. Rev. Lett.; (United States) 1988-11, Vol.61 (22), p.2588-2591
Hauptverfasser: HICKS, J. M, URBACH, L. E, PLUMMER, E. W, HAI-LUNG DAI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2591
container_issue 22
container_start_page 2588
container_title Phys. Rev. Lett.; (United States)
container_volume 61
creator HICKS, J. M
URBACH, L. E
PLUMMER, E. W
HAI-LUNG DAI
description In using pulsed laser excitation of surfaces to induce desorption or reaction of adsorbed molecules, it has generally been assumed that the absorbed energy is rapidly randomized, and a thermal model can be used to calculate the surface-temperature change. In this work, the transient temperature jump on a Ag(110) surface induced by an 8-nsec laser pulse is directly monitored with a psec probe pulse. The probe is based on a temperature-dependent second-harmonic-generation effect. The experiment provides the first direct evidence that the heat-diffusion model can correctly predict the magnitude and the time evolution of the temperature on the surface. (Author)
doi_str_mv 10.1103/PhysRevLett.61.2588
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_24828247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24828247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-5fe2cdb26b9e7e598fee200436cc14fbc0d51cc68f57f5c5604811bcd0c4a18a3</originalsourceid><addsrcrecordid>eNp90U2LFDEQBuAgiju7-gsECSLipceqTjqdPokMrisMKKLnkK6uMC39MSbd4vx7s8wge_JUh3rqA14hXiBsEUG9-3o4pW_8e8_LsjW4LStrH4kNQt0UNaJ-LDYACosGoL4S1yn9BAAsjX0qrjB3GjR6I-52fpLHdUjcycEnjpL_UL_4pZ8nOQeZ1hg8cZIty44Txb7Nsj1JL5cDx9EPcpw7Ht4_E0-Cz2ueX-qN-HH78fvurth_-fR592FfkGpgKarAJXVtadqGa64aG5hLAK0MEerQEnQVEhkbqjpUVBnQFrGlDkh7tF7diFfnvXNaepfyr0wHmqeJaXGmUUrVkNGbMzrG-dfKaXFjn4iHwU88r8mV2pa21HWGb_8L0VZNabSxJlN1phTnlCIHd4z96OPJIbj7QNyDQJxBdx9Innp5ObC2I3cPZs4JZPD6AnwiP4ToJ-rTP1cDaqNR_QWBnpVc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859264686</pqid></control><display><type>article</type><title>Can pulsed laser excitation of surfaces be described by a thermal model?</title><source>American Physical Society Journals</source><creator>HICKS, J. M ; URBACH, L. E ; PLUMMER, E. W ; HAI-LUNG DAI</creator><creatorcontrib>HICKS, J. M ; URBACH, L. E ; PLUMMER, E. W ; HAI-LUNG DAI ; Laboratory for Research on the Structure af Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104</creatorcontrib><description>In using pulsed laser excitation of surfaces to induce desorption or reaction of adsorbed molecules, it has generally been assumed that the absorbed energy is rapidly randomized, and a thermal model can be used to calculate the surface-temperature change. In this work, the transient temperature jump on a Ag(110) surface induced by an 8-nsec laser pulse is directly monitored with a psec probe pulse. The probe is based on a temperature-dependent second-harmonic-generation effect. The experiment provides the first direct evidence that the heat-diffusion model can correctly predict the magnitude and the time evolution of the temperature on the surface. (Author)</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.61.2588</identifier><identifier>PMID: 10039164</identifier><identifier>CODEN: PRLTAO</identifier><language>eng</language><publisher>Ridge, NY: American Physical Society</publisher><subject>ADSORPTION ; Applied sciences ; CHEMICAL REACTIONS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; DESORPTION ; ELECTROMAGNETIC RADIATION ; Electron and ion emission by liquids and solids; impact phenomena ; ELEMENTS ; ENERGY TRANSFER ; ENERGY-LEVEL TRANSITIONS ; Exact sciences and technology ; EXCITATION ; HARMONICS ; HEAT TRANSFER ; Impact phenomena (including electron spectra and sputtering) ; LASER RADIATION ; Laser-beam impact phenomena ; LIGHT TRANSMISSION ; Materials science ; MATHEMATICAL MODELS ; METALS ; Metals, semimetals and alloys ; Metals. Metallurgy ; MOLECULES ; NONLINEAR OPTICS ; OPTICS ; OSCILLATIONS ; PARTICLE MODELS ; Physics ; POLARIZATION ; PULSES ; RADIATIONS ; RANDOMNESS ; SILVER ; SORPTION ; Specific materials ; STATISTICAL MODELS ; SURFACES ; TEMPERATURE DEPENDENCE ; TEMPERATURE DISTRIBUTION ; THERMODYNAMIC MODEL ; TRANSIENTS ; TRANSITION ELEMENTS 656003 -- Condensed Matter Physics-- Interactions between Beams &amp; Condensed Matter-- (1987-)</subject><ispartof>Phys. Rev. Lett.; (United States), 1988-11, Vol.61 (22), p.2588-2591</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-5fe2cdb26b9e7e598fee200436cc14fbc0d51cc68f57f5c5604811bcd0c4a18a3</citedby><cites>FETCH-LOGICAL-c390t-5fe2cdb26b9e7e598fee200436cc14fbc0d51cc68f57f5c5604811bcd0c4a18a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7014641$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10039164$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6933370$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>HICKS, J. M</creatorcontrib><creatorcontrib>URBACH, L. E</creatorcontrib><creatorcontrib>PLUMMER, E. W</creatorcontrib><creatorcontrib>HAI-LUNG DAI</creatorcontrib><creatorcontrib>Laboratory for Research on the Structure af Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104</creatorcontrib><title>Can pulsed laser excitation of surfaces be described by a thermal model?</title><title>Phys. Rev. Lett.; (United States)</title><addtitle>Phys Rev Lett</addtitle><description>In using pulsed laser excitation of surfaces to induce desorption or reaction of adsorbed molecules, it has generally been assumed that the absorbed energy is rapidly randomized, and a thermal model can be used to calculate the surface-temperature change. In this work, the transient temperature jump on a Ag(110) surface induced by an 8-nsec laser pulse is directly monitored with a psec probe pulse. The probe is based on a temperature-dependent second-harmonic-generation effect. The experiment provides the first direct evidence that the heat-diffusion model can correctly predict the magnitude and the time evolution of the temperature on the surface. (Author)</description><subject>ADSORPTION</subject><subject>Applied sciences</subject><subject>CHEMICAL REACTIONS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>DESORPTION</subject><subject>ELECTROMAGNETIC RADIATION</subject><subject>Electron and ion emission by liquids and solids; impact phenomena</subject><subject>ELEMENTS</subject><subject>ENERGY TRANSFER</subject><subject>ENERGY-LEVEL TRANSITIONS</subject><subject>Exact sciences and technology</subject><subject>EXCITATION</subject><subject>HARMONICS</subject><subject>HEAT TRANSFER</subject><subject>Impact phenomena (including electron spectra and sputtering)</subject><subject>LASER RADIATION</subject><subject>Laser-beam impact phenomena</subject><subject>LIGHT TRANSMISSION</subject><subject>Materials science</subject><subject>MATHEMATICAL MODELS</subject><subject>METALS</subject><subject>Metals, semimetals and alloys</subject><subject>Metals. Metallurgy</subject><subject>MOLECULES</subject><subject>NONLINEAR OPTICS</subject><subject>OPTICS</subject><subject>OSCILLATIONS</subject><subject>PARTICLE MODELS</subject><subject>Physics</subject><subject>POLARIZATION</subject><subject>PULSES</subject><subject>RADIATIONS</subject><subject>RANDOMNESS</subject><subject>SILVER</subject><subject>SORPTION</subject><subject>Specific materials</subject><subject>STATISTICAL MODELS</subject><subject>SURFACES</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>TEMPERATURE DISTRIBUTION</subject><subject>THERMODYNAMIC MODEL</subject><subject>TRANSIENTS</subject><subject>TRANSITION ELEMENTS 656003 -- Condensed Matter Physics-- Interactions between Beams &amp; Condensed Matter-- (1987-)</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNp90U2LFDEQBuAgiju7-gsECSLipceqTjqdPokMrisMKKLnkK6uMC39MSbd4vx7s8wge_JUh3rqA14hXiBsEUG9-3o4pW_8e8_LsjW4LStrH4kNQt0UNaJ-LDYACosGoL4S1yn9BAAsjX0qrjB3GjR6I-52fpLHdUjcycEnjpL_UL_4pZ8nOQeZ1hg8cZIty44Txb7Nsj1JL5cDx9EPcpw7Ht4_E0-Cz2ueX-qN-HH78fvurth_-fR592FfkGpgKarAJXVtadqGa64aG5hLAK0MEerQEnQVEhkbqjpUVBnQFrGlDkh7tF7diFfnvXNaepfyr0wHmqeJaXGmUUrVkNGbMzrG-dfKaXFjn4iHwU88r8mV2pa21HWGb_8L0VZNabSxJlN1phTnlCIHd4z96OPJIbj7QNyDQJxBdx9Innp5ObC2I3cPZs4JZPD6AnwiP4ToJ-rTP1cDaqNR_QWBnpVc</recordid><startdate>19881128</startdate><enddate>19881128</enddate><creator>HICKS, J. M</creator><creator>URBACH, L. E</creator><creator>PLUMMER, E. W</creator><creator>HAI-LUNG DAI</creator><general>American Physical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19881128</creationdate><title>Can pulsed laser excitation of surfaces be described by a thermal model?</title><author>HICKS, J. M ; URBACH, L. E ; PLUMMER, E. W ; HAI-LUNG DAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-5fe2cdb26b9e7e598fee200436cc14fbc0d51cc68f57f5c5604811bcd0c4a18a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>ADSORPTION</topic><topic>Applied sciences</topic><topic>CHEMICAL REACTIONS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>DESORPTION</topic><topic>ELECTROMAGNETIC RADIATION</topic><topic>Electron and ion emission by liquids and solids; impact phenomena</topic><topic>ELEMENTS</topic><topic>ENERGY TRANSFER</topic><topic>ENERGY-LEVEL TRANSITIONS</topic><topic>Exact sciences and technology</topic><topic>EXCITATION</topic><topic>HARMONICS</topic><topic>HEAT TRANSFER</topic><topic>Impact phenomena (including electron spectra and sputtering)</topic><topic>LASER RADIATION</topic><topic>Laser-beam impact phenomena</topic><topic>LIGHT TRANSMISSION</topic><topic>Materials science</topic><topic>MATHEMATICAL MODELS</topic><topic>METALS</topic><topic>Metals, semimetals and alloys</topic><topic>Metals. Metallurgy</topic><topic>MOLECULES</topic><topic>NONLINEAR OPTICS</topic><topic>OPTICS</topic><topic>OSCILLATIONS</topic><topic>PARTICLE MODELS</topic><topic>Physics</topic><topic>POLARIZATION</topic><topic>PULSES</topic><topic>RADIATIONS</topic><topic>RANDOMNESS</topic><topic>SILVER</topic><topic>SORPTION</topic><topic>Specific materials</topic><topic>STATISTICAL MODELS</topic><topic>SURFACES</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>TEMPERATURE DISTRIBUTION</topic><topic>THERMODYNAMIC MODEL</topic><topic>TRANSIENTS</topic><topic>TRANSITION ELEMENTS 656003 -- Condensed Matter Physics-- Interactions between Beams &amp; Condensed Matter-- (1987-)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HICKS, J. M</creatorcontrib><creatorcontrib>URBACH, L. E</creatorcontrib><creatorcontrib>PLUMMER, E. W</creatorcontrib><creatorcontrib>HAI-LUNG DAI</creatorcontrib><creatorcontrib>Laboratory for Research on the Structure af Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Phys. Rev. Lett.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HICKS, J. M</au><au>URBACH, L. E</au><au>PLUMMER, E. W</au><au>HAI-LUNG DAI</au><aucorp>Laboratory for Research on the Structure af Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can pulsed laser excitation of surfaces be described by a thermal model?</atitle><jtitle>Phys. Rev. Lett.; (United States)</jtitle><addtitle>Phys Rev Lett</addtitle><date>1988-11-28</date><risdate>1988</risdate><volume>61</volume><issue>22</issue><spage>2588</spage><epage>2591</epage><pages>2588-2591</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><coden>PRLTAO</coden><abstract>In using pulsed laser excitation of surfaces to induce desorption or reaction of adsorbed molecules, it has generally been assumed that the absorbed energy is rapidly randomized, and a thermal model can be used to calculate the surface-temperature change. In this work, the transient temperature jump on a Ag(110) surface induced by an 8-nsec laser pulse is directly monitored with a psec probe pulse. The probe is based on a temperature-dependent second-harmonic-generation effect. The experiment provides the first direct evidence that the heat-diffusion model can correctly predict the magnitude and the time evolution of the temperature on the surface. (Author)</abstract><cop>Ridge, NY</cop><pub>American Physical Society</pub><pmid>10039164</pmid><doi>10.1103/PhysRevLett.61.2588</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Phys. Rev. Lett.; (United States), 1988-11, Vol.61 (22), p.2588-2591
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_24828247
source American Physical Society Journals
subjects ADSORPTION
Applied sciences
CHEMICAL REACTIONS
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
DESORPTION
ELECTROMAGNETIC RADIATION
Electron and ion emission by liquids and solids
impact phenomena
ELEMENTS
ENERGY TRANSFER
ENERGY-LEVEL TRANSITIONS
Exact sciences and technology
EXCITATION
HARMONICS
HEAT TRANSFER
Impact phenomena (including electron spectra and sputtering)
LASER RADIATION
Laser-beam impact phenomena
LIGHT TRANSMISSION
Materials science
MATHEMATICAL MODELS
METALS
Metals, semimetals and alloys
Metals. Metallurgy
MOLECULES
NONLINEAR OPTICS
OPTICS
OSCILLATIONS
PARTICLE MODELS
Physics
POLARIZATION
PULSES
RADIATIONS
RANDOMNESS
SILVER
SORPTION
Specific materials
STATISTICAL MODELS
SURFACES
TEMPERATURE DEPENDENCE
TEMPERATURE DISTRIBUTION
THERMODYNAMIC MODEL
TRANSIENTS
TRANSITION ELEMENTS 656003 -- Condensed Matter Physics-- Interactions between Beams & Condensed Matter-- (1987-)
title Can pulsed laser excitation of surfaces be described by a thermal model?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A52%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20pulsed%20laser%20excitation%20of%20surfaces%20be%20described%20by%20a%20thermal%20model?&rft.jtitle=Phys.%20Rev.%20Lett.;%20(United%20States)&rft.au=HICKS,%20J.%20M&rft.aucorp=Laboratory%20for%20Research%20on%20the%20Structure%20af%20Matter,%20University%20of%20Pennsylvania,%20Philadelphia,%20Pennsylvania%2019104&rft.date=1988-11-28&rft.volume=61&rft.issue=22&rft.spage=2588&rft.epage=2591&rft.pages=2588-2591&rft.issn=0031-9007&rft.eissn=1079-7114&rft.coden=PRLTAO&rft_id=info:doi/10.1103/PhysRevLett.61.2588&rft_dat=%3Cproquest_osti_%3E24828247%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859264686&rft_id=info:pmid/10039164&rfr_iscdi=true