Complement inhibition at the level of C3 or C5: mechanistic reasons for ongoing terminal pathway activity

Blocking the terminal complement pathway with the C5 inhibitor eculizumab has revolutionized the clinical management of several complement-mediated diseases and has boosted the clinical development of new inhibitors. Data on the C3 inhibitor Compstatin and the C5 inhibitors eculizumab and Coversin r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2021-01, Vol.137 (4), p.443-455
Hauptverfasser: Mannes, Marco, Dopler, Arthur, Zolk, Oliver, Lang, Sophia J., Halbgebauer, Rebecca, Höchsmann, Britta, Skerra, Arne, Braun, Christian K., Huber-Lang, Markus, Schrezenmeier, Hubert, Schmidt, Christoph Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 455
container_issue 4
container_start_page 443
container_title Blood
container_volume 137
creator Mannes, Marco
Dopler, Arthur
Zolk, Oliver
Lang, Sophia J.
Halbgebauer, Rebecca
Höchsmann, Britta
Skerra, Arne
Braun, Christian K.
Huber-Lang, Markus
Schrezenmeier, Hubert
Schmidt, Christoph Q.
description Blocking the terminal complement pathway with the C5 inhibitor eculizumab has revolutionized the clinical management of several complement-mediated diseases and has boosted the clinical development of new inhibitors. Data on the C3 inhibitor Compstatin and the C5 inhibitors eculizumab and Coversin reported here demonstrate that C3/C5 convertases function differently from prevailing concepts. Stoichiometric C3 inhibition failed to inhibit C5 activation and lytic activity during strong classical pathway activation, demonstrating a “C3 bypass” activation of C5. We show that, instead of C3b, surface-deposited C4b alone can also recruit and prime C5 for consecutive proteolytic activation. Surface-bound C3b and C4b possess similar affinities for C5. By demonstrating that the fluid phase convertase C3bBb is sufficient to cleave C5 as long as C5 is bound on C3b/C4b-decorated surfaces, we show that surface fixation is necessary only for the C3b/C4b opsonins that prime C5 but not for the catalytic convertase unit C3bBb. Of note, at very high C3b densities, we observed membrane attack complex formation in absence of C5-activating enzymes. This is explained by a conformational activation in which C5 adopts a C5b-like conformation when bound to densely C3b-opsonized surfaces. Stoichiometric C5 inhibitors failed to prevent conformational C5 activation, which explains the clinical phenomenon of residual C5 activity documented for different inhibitors of C5. The new insights into the mechanism of C3/C5 convertases provided here have important implications for the development and therapeutic use of complement inhibitors as well as the interpretation of former clinical and preclinical data. •Strong classical pathway activation leads to C5 activation despite C3 inhibition signifying C3 bypass activation of C5.•Conformational activation of C5 in absence of convertases or other enzymes cannot be inhibited by different individual C5 inhibitors. [Display omitted]
doi_str_mv 10.1182/blood.2020005959
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2482674569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000649712100135X</els_id><sourcerecordid>2482674569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-58c1ed6b2ab1d0d5074dd0ede740908d9bdacbdb4964b70e722ae78f6a6b4b513</originalsourceid><addsrcrecordid>eNp1kM1v1DAQxS1URJfCnVPlYy8ptmMncW9VVD6kSlzgbPlj0h2U2Fvbu2j_e1K2lBOnkd689zTzI-QDZ9ecD-Kjm1MK14IJxpjSSr8iG67E0LBVOSObVe0aqXt-Tt6W8pMxLluh3pDztlWsF7rbEBzTspthgVgpxi06rJgitZXWLdAZDjDTNNGxpSnTUd3QBfzWRiwVPc1gS4qFTusuxYeE8YFWyAtGO9Odrdtf9kitr3jAenxHXk92LvD-eV6QH5_uvo9fmvtvn7-Ot_eNb7WojRo8h9A5YR0PLKx3yhAYBOgl02wI2gXrXXBSd9L1DHohLPTD1NnOSad4e0GuTr27nB73UKpZsHiYZxsh7YsRchBdL1WnVys7WX1OpWSYzC7jYvPRcGaeAJs_gM0_wGvk8rl97xYIL4G_RFfDzckA648HhGyKR4geAmbw1YSE_2__DRb0jEI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2482674569</pqid></control><display><type>article</type><title>Complement inhibition at the level of C3 or C5: mechanistic reasons for ongoing terminal pathway activity</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Mannes, Marco ; Dopler, Arthur ; Zolk, Oliver ; Lang, Sophia J. ; Halbgebauer, Rebecca ; Höchsmann, Britta ; Skerra, Arne ; Braun, Christian K. ; Huber-Lang, Markus ; Schrezenmeier, Hubert ; Schmidt, Christoph Q.</creator><creatorcontrib>Mannes, Marco ; Dopler, Arthur ; Zolk, Oliver ; Lang, Sophia J. ; Halbgebauer, Rebecca ; Höchsmann, Britta ; Skerra, Arne ; Braun, Christian K. ; Huber-Lang, Markus ; Schrezenmeier, Hubert ; Schmidt, Christoph Q.</creatorcontrib><description>Blocking the terminal complement pathway with the C5 inhibitor eculizumab has revolutionized the clinical management of several complement-mediated diseases and has boosted the clinical development of new inhibitors. Data on the C3 inhibitor Compstatin and the C5 inhibitors eculizumab and Coversin reported here demonstrate that C3/C5 convertases function differently from prevailing concepts. Stoichiometric C3 inhibition failed to inhibit C5 activation and lytic activity during strong classical pathway activation, demonstrating a “C3 bypass” activation of C5. We show that, instead of C3b, surface-deposited C4b alone can also recruit and prime C5 for consecutive proteolytic activation. Surface-bound C3b and C4b possess similar affinities for C5. By demonstrating that the fluid phase convertase C3bBb is sufficient to cleave C5 as long as C5 is bound on C3b/C4b-decorated surfaces, we show that surface fixation is necessary only for the C3b/C4b opsonins that prime C5 but not for the catalytic convertase unit C3bBb. Of note, at very high C3b densities, we observed membrane attack complex formation in absence of C5-activating enzymes. This is explained by a conformational activation in which C5 adopts a C5b-like conformation when bound to densely C3b-opsonized surfaces. Stoichiometric C5 inhibitors failed to prevent conformational C5 activation, which explains the clinical phenomenon of residual C5 activity documented for different inhibitors of C5. The new insights into the mechanism of C3/C5 convertases provided here have important implications for the development and therapeutic use of complement inhibitors as well as the interpretation of former clinical and preclinical data. •Strong classical pathway activation leads to C5 activation despite C3 inhibition signifying C3 bypass activation of C5.•Conformational activation of C5 in absence of convertases or other enzymes cannot be inhibited by different individual C5 inhibitors. [Display omitted]</description><identifier>ISSN: 0006-4971</identifier><identifier>ISSN: 1528-0020</identifier><identifier>EISSN: 1528-0020</identifier><identifier>DOI: 10.1182/blood.2020005959</identifier><identifier>PMID: 33507296</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Antibodies, Monoclonal, Humanized - pharmacology ; Antibodies, Monoclonal, Humanized - therapeutic use ; Cell Membrane - immunology ; Complement C3 - antagonists &amp; inhibitors ; Complement C3 Convertase, Alternative Pathway - physiology ; Complement C4b - physiology ; Complement C5 - antagonists &amp; inhibitors ; Complement C5 - chemistry ; Complement Inactivating Agents - pharmacology ; Complement Inactivating Agents - therapeutic use ; Complement Membrane Attack Complex - physiology ; Complement Pathway, Classical - drug effects ; Drug Resistance ; Human Umbilical Vein Endothelial Cells ; Humans ; Models, Immunological ; Models, Molecular ; Peptides, Cyclic - pharmacology ; Peptides, Cyclic - therapeutic use ; Protein Conformation</subject><ispartof>Blood, 2021-01, Vol.137 (4), p.443-455</ispartof><rights>2021 American Society of Hematology</rights><rights>2021 by The American Society of Hematology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-58c1ed6b2ab1d0d5074dd0ede740908d9bdacbdb4964b70e722ae78f6a6b4b513</citedby><cites>FETCH-LOGICAL-c392t-58c1ed6b2ab1d0d5074dd0ede740908d9bdacbdb4964b70e722ae78f6a6b4b513</cites><orcidid>0000-0001-8060-2076 ; 0000-0002-8220-3834 ; 0000-0002-2594-9170 ; 0000-0002-5717-498X ; 0000-0002-9854-3251</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33507296$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mannes, Marco</creatorcontrib><creatorcontrib>Dopler, Arthur</creatorcontrib><creatorcontrib>Zolk, Oliver</creatorcontrib><creatorcontrib>Lang, Sophia J.</creatorcontrib><creatorcontrib>Halbgebauer, Rebecca</creatorcontrib><creatorcontrib>Höchsmann, Britta</creatorcontrib><creatorcontrib>Skerra, Arne</creatorcontrib><creatorcontrib>Braun, Christian K.</creatorcontrib><creatorcontrib>Huber-Lang, Markus</creatorcontrib><creatorcontrib>Schrezenmeier, Hubert</creatorcontrib><creatorcontrib>Schmidt, Christoph Q.</creatorcontrib><title>Complement inhibition at the level of C3 or C5: mechanistic reasons for ongoing terminal pathway activity</title><title>Blood</title><addtitle>Blood</addtitle><description>Blocking the terminal complement pathway with the C5 inhibitor eculizumab has revolutionized the clinical management of several complement-mediated diseases and has boosted the clinical development of new inhibitors. Data on the C3 inhibitor Compstatin and the C5 inhibitors eculizumab and Coversin reported here demonstrate that C3/C5 convertases function differently from prevailing concepts. Stoichiometric C3 inhibition failed to inhibit C5 activation and lytic activity during strong classical pathway activation, demonstrating a “C3 bypass” activation of C5. We show that, instead of C3b, surface-deposited C4b alone can also recruit and prime C5 for consecutive proteolytic activation. Surface-bound C3b and C4b possess similar affinities for C5. By demonstrating that the fluid phase convertase C3bBb is sufficient to cleave C5 as long as C5 is bound on C3b/C4b-decorated surfaces, we show that surface fixation is necessary only for the C3b/C4b opsonins that prime C5 but not for the catalytic convertase unit C3bBb. Of note, at very high C3b densities, we observed membrane attack complex formation in absence of C5-activating enzymes. This is explained by a conformational activation in which C5 adopts a C5b-like conformation when bound to densely C3b-opsonized surfaces. Stoichiometric C5 inhibitors failed to prevent conformational C5 activation, which explains the clinical phenomenon of residual C5 activity documented for different inhibitors of C5. The new insights into the mechanism of C3/C5 convertases provided here have important implications for the development and therapeutic use of complement inhibitors as well as the interpretation of former clinical and preclinical data. •Strong classical pathway activation leads to C5 activation despite C3 inhibition signifying C3 bypass activation of C5.•Conformational activation of C5 in absence of convertases or other enzymes cannot be inhibited by different individual C5 inhibitors. [Display omitted]</description><subject>Antibodies, Monoclonal, Humanized - pharmacology</subject><subject>Antibodies, Monoclonal, Humanized - therapeutic use</subject><subject>Cell Membrane - immunology</subject><subject>Complement C3 - antagonists &amp; inhibitors</subject><subject>Complement C3 Convertase, Alternative Pathway - physiology</subject><subject>Complement C4b - physiology</subject><subject>Complement C5 - antagonists &amp; inhibitors</subject><subject>Complement C5 - chemistry</subject><subject>Complement Inactivating Agents - pharmacology</subject><subject>Complement Inactivating Agents - therapeutic use</subject><subject>Complement Membrane Attack Complex - physiology</subject><subject>Complement Pathway, Classical - drug effects</subject><subject>Drug Resistance</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humans</subject><subject>Models, Immunological</subject><subject>Models, Molecular</subject><subject>Peptides, Cyclic - pharmacology</subject><subject>Peptides, Cyclic - therapeutic use</subject><subject>Protein Conformation</subject><issn>0006-4971</issn><issn>1528-0020</issn><issn>1528-0020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1v1DAQxS1URJfCnVPlYy8ptmMncW9VVD6kSlzgbPlj0h2U2Fvbu2j_e1K2lBOnkd689zTzI-QDZ9ecD-Kjm1MK14IJxpjSSr8iG67E0LBVOSObVe0aqXt-Tt6W8pMxLluh3pDztlWsF7rbEBzTspthgVgpxi06rJgitZXWLdAZDjDTNNGxpSnTUd3QBfzWRiwVPc1gS4qFTusuxYeE8YFWyAtGO9Odrdtf9kitr3jAenxHXk92LvD-eV6QH5_uvo9fmvtvn7-Ot_eNb7WojRo8h9A5YR0PLKx3yhAYBOgl02wI2gXrXXBSd9L1DHohLPTD1NnOSad4e0GuTr27nB73UKpZsHiYZxsh7YsRchBdL1WnVys7WX1OpWSYzC7jYvPRcGaeAJs_gM0_wGvk8rl97xYIL4G_RFfDzckA648HhGyKR4geAmbw1YSE_2__DRb0jEI</recordid><startdate>20210128</startdate><enddate>20210128</enddate><creator>Mannes, Marco</creator><creator>Dopler, Arthur</creator><creator>Zolk, Oliver</creator><creator>Lang, Sophia J.</creator><creator>Halbgebauer, Rebecca</creator><creator>Höchsmann, Britta</creator><creator>Skerra, Arne</creator><creator>Braun, Christian K.</creator><creator>Huber-Lang, Markus</creator><creator>Schrezenmeier, Hubert</creator><creator>Schmidt, Christoph Q.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8060-2076</orcidid><orcidid>https://orcid.org/0000-0002-8220-3834</orcidid><orcidid>https://orcid.org/0000-0002-2594-9170</orcidid><orcidid>https://orcid.org/0000-0002-5717-498X</orcidid><orcidid>https://orcid.org/0000-0002-9854-3251</orcidid></search><sort><creationdate>20210128</creationdate><title>Complement inhibition at the level of C3 or C5: mechanistic reasons for ongoing terminal pathway activity</title><author>Mannes, Marco ; Dopler, Arthur ; Zolk, Oliver ; Lang, Sophia J. ; Halbgebauer, Rebecca ; Höchsmann, Britta ; Skerra, Arne ; Braun, Christian K. ; Huber-Lang, Markus ; Schrezenmeier, Hubert ; Schmidt, Christoph Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-58c1ed6b2ab1d0d5074dd0ede740908d9bdacbdb4964b70e722ae78f6a6b4b513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antibodies, Monoclonal, Humanized - pharmacology</topic><topic>Antibodies, Monoclonal, Humanized - therapeutic use</topic><topic>Cell Membrane - immunology</topic><topic>Complement C3 - antagonists &amp; inhibitors</topic><topic>Complement C3 Convertase, Alternative Pathway - physiology</topic><topic>Complement C4b - physiology</topic><topic>Complement C5 - antagonists &amp; inhibitors</topic><topic>Complement C5 - chemistry</topic><topic>Complement Inactivating Agents - pharmacology</topic><topic>Complement Inactivating Agents - therapeutic use</topic><topic>Complement Membrane Attack Complex - physiology</topic><topic>Complement Pathway, Classical - drug effects</topic><topic>Drug Resistance</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humans</topic><topic>Models, Immunological</topic><topic>Models, Molecular</topic><topic>Peptides, Cyclic - pharmacology</topic><topic>Peptides, Cyclic - therapeutic use</topic><topic>Protein Conformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mannes, Marco</creatorcontrib><creatorcontrib>Dopler, Arthur</creatorcontrib><creatorcontrib>Zolk, Oliver</creatorcontrib><creatorcontrib>Lang, Sophia J.</creatorcontrib><creatorcontrib>Halbgebauer, Rebecca</creatorcontrib><creatorcontrib>Höchsmann, Britta</creatorcontrib><creatorcontrib>Skerra, Arne</creatorcontrib><creatorcontrib>Braun, Christian K.</creatorcontrib><creatorcontrib>Huber-Lang, Markus</creatorcontrib><creatorcontrib>Schrezenmeier, Hubert</creatorcontrib><creatorcontrib>Schmidt, Christoph Q.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Blood</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mannes, Marco</au><au>Dopler, Arthur</au><au>Zolk, Oliver</au><au>Lang, Sophia J.</au><au>Halbgebauer, Rebecca</au><au>Höchsmann, Britta</au><au>Skerra, Arne</au><au>Braun, Christian K.</au><au>Huber-Lang, Markus</au><au>Schrezenmeier, Hubert</au><au>Schmidt, Christoph Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complement inhibition at the level of C3 or C5: mechanistic reasons for ongoing terminal pathway activity</atitle><jtitle>Blood</jtitle><addtitle>Blood</addtitle><date>2021-01-28</date><risdate>2021</risdate><volume>137</volume><issue>4</issue><spage>443</spage><epage>455</epage><pages>443-455</pages><issn>0006-4971</issn><issn>1528-0020</issn><eissn>1528-0020</eissn><abstract>Blocking the terminal complement pathway with the C5 inhibitor eculizumab has revolutionized the clinical management of several complement-mediated diseases and has boosted the clinical development of new inhibitors. Data on the C3 inhibitor Compstatin and the C5 inhibitors eculizumab and Coversin reported here demonstrate that C3/C5 convertases function differently from prevailing concepts. Stoichiometric C3 inhibition failed to inhibit C5 activation and lytic activity during strong classical pathway activation, demonstrating a “C3 bypass” activation of C5. We show that, instead of C3b, surface-deposited C4b alone can also recruit and prime C5 for consecutive proteolytic activation. Surface-bound C3b and C4b possess similar affinities for C5. By demonstrating that the fluid phase convertase C3bBb is sufficient to cleave C5 as long as C5 is bound on C3b/C4b-decorated surfaces, we show that surface fixation is necessary only for the C3b/C4b opsonins that prime C5 but not for the catalytic convertase unit C3bBb. Of note, at very high C3b densities, we observed membrane attack complex formation in absence of C5-activating enzymes. This is explained by a conformational activation in which C5 adopts a C5b-like conformation when bound to densely C3b-opsonized surfaces. Stoichiometric C5 inhibitors failed to prevent conformational C5 activation, which explains the clinical phenomenon of residual C5 activity documented for different inhibitors of C5. The new insights into the mechanism of C3/C5 convertases provided here have important implications for the development and therapeutic use of complement inhibitors as well as the interpretation of former clinical and preclinical data. •Strong classical pathway activation leads to C5 activation despite C3 inhibition signifying C3 bypass activation of C5.•Conformational activation of C5 in absence of convertases or other enzymes cannot be inhibited by different individual C5 inhibitors. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33507296</pmid><doi>10.1182/blood.2020005959</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8060-2076</orcidid><orcidid>https://orcid.org/0000-0002-8220-3834</orcidid><orcidid>https://orcid.org/0000-0002-2594-9170</orcidid><orcidid>https://orcid.org/0000-0002-5717-498X</orcidid><orcidid>https://orcid.org/0000-0002-9854-3251</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-4971
ispartof Blood, 2021-01, Vol.137 (4), p.443-455
issn 0006-4971
1528-0020
1528-0020
language eng
recordid cdi_proquest_miscellaneous_2482674569
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Antibodies, Monoclonal, Humanized - pharmacology
Antibodies, Monoclonal, Humanized - therapeutic use
Cell Membrane - immunology
Complement C3 - antagonists & inhibitors
Complement C3 Convertase, Alternative Pathway - physiology
Complement C4b - physiology
Complement C5 - antagonists & inhibitors
Complement C5 - chemistry
Complement Inactivating Agents - pharmacology
Complement Inactivating Agents - therapeutic use
Complement Membrane Attack Complex - physiology
Complement Pathway, Classical - drug effects
Drug Resistance
Human Umbilical Vein Endothelial Cells
Humans
Models, Immunological
Models, Molecular
Peptides, Cyclic - pharmacology
Peptides, Cyclic - therapeutic use
Protein Conformation
title Complement inhibition at the level of C3 or C5: mechanistic reasons for ongoing terminal pathway activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A51%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complement%20inhibition%20at%20the%20level%20of%20C3%20or%20C5:%20mechanistic%20reasons%20for%20ongoing%20terminal%20pathway%20activity&rft.jtitle=Blood&rft.au=Mannes,%20Marco&rft.date=2021-01-28&rft.volume=137&rft.issue=4&rft.spage=443&rft.epage=455&rft.pages=443-455&rft.issn=0006-4971&rft.eissn=1528-0020&rft_id=info:doi/10.1182/blood.2020005959&rft_dat=%3Cproquest_cross%3E2482674569%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2482674569&rft_id=info:pmid/33507296&rft_els_id=S000649712100135X&rfr_iscdi=true