DBS electrode localization and rotational orientation detection using SQUID-based magnetoencephalography
The aim of the present study was to investigate the accuracy of localization and rotational orientation detection of a directional deep brain stimulation (DBS) electrode using a state-of-the-art magnetoencephalography (MEG) scanner. A directional DBS electrode along with its stimulator was integrate...
Gespeichert in:
Veröffentlicht in: | Journal of neural engineering 2021-04, Vol.18 (2), p.26021 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 26021 |
container_title | Journal of neural engineering |
container_volume | 18 |
creator | Yalaz, Mevlüt Sohail Noor, M McIntyre, Cameron C Butz, Markus Schnitzler, Alfons Deuschl, Günther Höft, Michael |
description | The aim of the present study was to investigate the accuracy of localization and rotational orientation detection of a directional deep brain stimulation (DBS) electrode using a state-of-the-art magnetoencephalography (MEG) scanner.
A directional DBS electrode along with its stimulator was integrated into a head phantom and placed inside the MEG sensor array. The electrode was comprised of six directional and two omnidirectional contacts. Measurements were performed while stimulating with different contacts and parameters in the phantom. Finite element modeling and fitting approach were used to compute electrode position and orientation.
The electrode was localized with a mean accuracy of 2.2 mm while orientation was determined with a mean accuracy of 11
. The limitation in detection accuracy was due to the lower measurement precision of the MEG system. Considering an ideal measurement condition, these values represent the lower bound of accuracy that can be achieved in patients.
However, a future magnetic measuring system with higher precision will potentially detect location and orientation of a DBS electrode with an even greater accuracy. |
doi_str_mv | 10.1088/1741-2552/abe099 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2482669879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2482669879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-f357d639413dab35fa09bd564398f5a9c3d2bad74048361ed4adfbddb981084e3</originalsourceid><addsrcrecordid>eNo9kL1PwzAUxC0EoqWwM6GMLKF2nC-P0PJRqRJCpbP1HL-0QUkc7GQofz0JKZ3e3dPdDT9Cbhl9YDRN5ywJmR9EUTAHhVSIMzI9vc5POqYTcuXcF6WcJYJekgnnEeWRSKdkv3zaeFhi1lqj0StNBmXxA21hag9q7VnT_hkoPWMLrEfnaWz7yqA6V9Q7b_OxXS19BQ61V8GuxtZgnWGzh9LsLDT7wzW5yKF0eHO8M7J9ef5cvPnr99fV4nHtZ4EQrZ_zKNExFyHjGhSPcqBC6SgOuUjzCETGdaBAJyENUx4z1CHoXGmtRNoTCZHPyP2421jz3aFrZVW4DMsSajSdk0GYBnEs0kT0UTpGM2ucs5jLxhYV2INkVA585QBQDjDlyLev3B3XO1WhPhX-gfJfozl4jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2482669879</pqid></control><display><type>article</type><title>DBS electrode localization and rotational orientation detection using SQUID-based magnetoencephalography</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Yalaz, Mevlüt ; Sohail Noor, M ; McIntyre, Cameron C ; Butz, Markus ; Schnitzler, Alfons ; Deuschl, Günther ; Höft, Michael</creator><creatorcontrib>Yalaz, Mevlüt ; Sohail Noor, M ; McIntyre, Cameron C ; Butz, Markus ; Schnitzler, Alfons ; Deuschl, Günther ; Höft, Michael</creatorcontrib><description>The aim of the present study was to investigate the accuracy of localization and rotational orientation detection of a directional deep brain stimulation (DBS) electrode using a state-of-the-art magnetoencephalography (MEG) scanner.
A directional DBS electrode along with its stimulator was integrated into a head phantom and placed inside the MEG sensor array. The electrode was comprised of six directional and two omnidirectional contacts. Measurements were performed while stimulating with different contacts and parameters in the phantom. Finite element modeling and fitting approach were used to compute electrode position and orientation.
The electrode was localized with a mean accuracy of 2.2 mm while orientation was determined with a mean accuracy of 11
. The limitation in detection accuracy was due to the lower measurement precision of the MEG system. Considering an ideal measurement condition, these values represent the lower bound of accuracy that can be achieved in patients.
However, a future magnetic measuring system with higher precision will potentially detect location and orientation of a DBS electrode with an even greater accuracy.</description><identifier>ISSN: 1741-2560</identifier><identifier>EISSN: 1741-2552</identifier><identifier>DOI: 10.1088/1741-2552/abe099</identifier><identifier>PMID: 33503598</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Decapodiformes ; Deep Brain Stimulation - methods ; Electrodes ; Humans ; Magnetoencephalography - methods ; Phantoms, Imaging</subject><ispartof>Journal of neural engineering, 2021-04, Vol.18 (2), p.26021</ispartof><rights>2021 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-f357d639413dab35fa09bd564398f5a9c3d2bad74048361ed4adfbddb981084e3</citedby><cites>FETCH-LOGICAL-c299t-f357d639413dab35fa09bd564398f5a9c3d2bad74048361ed4adfbddb981084e3</cites><orcidid>0000-0001-6388-6847 ; 0000-0001-9352-2868 ; 0000-0002-4176-9196 ; 0000-0003-0932-854X ; 0000-0002-6414-7939 ; 0000-0003-1438-5792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33503598$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yalaz, Mevlüt</creatorcontrib><creatorcontrib>Sohail Noor, M</creatorcontrib><creatorcontrib>McIntyre, Cameron C</creatorcontrib><creatorcontrib>Butz, Markus</creatorcontrib><creatorcontrib>Schnitzler, Alfons</creatorcontrib><creatorcontrib>Deuschl, Günther</creatorcontrib><creatorcontrib>Höft, Michael</creatorcontrib><title>DBS electrode localization and rotational orientation detection using SQUID-based magnetoencephalography</title><title>Journal of neural engineering</title><addtitle>J Neural Eng</addtitle><description>The aim of the present study was to investigate the accuracy of localization and rotational orientation detection of a directional deep brain stimulation (DBS) electrode using a state-of-the-art magnetoencephalography (MEG) scanner.
A directional DBS electrode along with its stimulator was integrated into a head phantom and placed inside the MEG sensor array. The electrode was comprised of six directional and two omnidirectional contacts. Measurements were performed while stimulating with different contacts and parameters in the phantom. Finite element modeling and fitting approach were used to compute electrode position and orientation.
The electrode was localized with a mean accuracy of 2.2 mm while orientation was determined with a mean accuracy of 11
. The limitation in detection accuracy was due to the lower measurement precision of the MEG system. Considering an ideal measurement condition, these values represent the lower bound of accuracy that can be achieved in patients.
However, a future magnetic measuring system with higher precision will potentially detect location and orientation of a DBS electrode with an even greater accuracy.</description><subject>Animals</subject><subject>Decapodiformes</subject><subject>Deep Brain Stimulation - methods</subject><subject>Electrodes</subject><subject>Humans</subject><subject>Magnetoencephalography - methods</subject><subject>Phantoms, Imaging</subject><issn>1741-2560</issn><issn>1741-2552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kL1PwzAUxC0EoqWwM6GMLKF2nC-P0PJRqRJCpbP1HL-0QUkc7GQofz0JKZ3e3dPdDT9Cbhl9YDRN5ywJmR9EUTAHhVSIMzI9vc5POqYTcuXcF6WcJYJekgnnEeWRSKdkv3zaeFhi1lqj0StNBmXxA21hag9q7VnT_hkoPWMLrEfnaWz7yqA6V9Q7b_OxXS19BQ61V8GuxtZgnWGzh9LsLDT7wzW5yKF0eHO8M7J9ef5cvPnr99fV4nHtZ4EQrZ_zKNExFyHjGhSPcqBC6SgOuUjzCETGdaBAJyENUx4z1CHoXGmtRNoTCZHPyP2421jz3aFrZVW4DMsSajSdk0GYBnEs0kT0UTpGM2ucs5jLxhYV2INkVA585QBQDjDlyLev3B3XO1WhPhX-gfJfozl4jw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Yalaz, Mevlüt</creator><creator>Sohail Noor, M</creator><creator>McIntyre, Cameron C</creator><creator>Butz, Markus</creator><creator>Schnitzler, Alfons</creator><creator>Deuschl, Günther</creator><creator>Höft, Michael</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6388-6847</orcidid><orcidid>https://orcid.org/0000-0001-9352-2868</orcidid><orcidid>https://orcid.org/0000-0002-4176-9196</orcidid><orcidid>https://orcid.org/0000-0003-0932-854X</orcidid><orcidid>https://orcid.org/0000-0002-6414-7939</orcidid><orcidid>https://orcid.org/0000-0003-1438-5792</orcidid></search><sort><creationdate>20210401</creationdate><title>DBS electrode localization and rotational orientation detection using SQUID-based magnetoencephalography</title><author>Yalaz, Mevlüt ; Sohail Noor, M ; McIntyre, Cameron C ; Butz, Markus ; Schnitzler, Alfons ; Deuschl, Günther ; Höft, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-f357d639413dab35fa09bd564398f5a9c3d2bad74048361ed4adfbddb981084e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Decapodiformes</topic><topic>Deep Brain Stimulation - methods</topic><topic>Electrodes</topic><topic>Humans</topic><topic>Magnetoencephalography - methods</topic><topic>Phantoms, Imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yalaz, Mevlüt</creatorcontrib><creatorcontrib>Sohail Noor, M</creatorcontrib><creatorcontrib>McIntyre, Cameron C</creatorcontrib><creatorcontrib>Butz, Markus</creatorcontrib><creatorcontrib>Schnitzler, Alfons</creatorcontrib><creatorcontrib>Deuschl, Günther</creatorcontrib><creatorcontrib>Höft, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yalaz, Mevlüt</au><au>Sohail Noor, M</au><au>McIntyre, Cameron C</au><au>Butz, Markus</au><au>Schnitzler, Alfons</au><au>Deuschl, Günther</au><au>Höft, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DBS electrode localization and rotational orientation detection using SQUID-based magnetoencephalography</atitle><jtitle>Journal of neural engineering</jtitle><addtitle>J Neural Eng</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>18</volume><issue>2</issue><spage>26021</spage><pages>26021-</pages><issn>1741-2560</issn><eissn>1741-2552</eissn><abstract>The aim of the present study was to investigate the accuracy of localization and rotational orientation detection of a directional deep brain stimulation (DBS) electrode using a state-of-the-art magnetoencephalography (MEG) scanner.
A directional DBS electrode along with its stimulator was integrated into a head phantom and placed inside the MEG sensor array. The electrode was comprised of six directional and two omnidirectional contacts. Measurements were performed while stimulating with different contacts and parameters in the phantom. Finite element modeling and fitting approach were used to compute electrode position and orientation.
The electrode was localized with a mean accuracy of 2.2 mm while orientation was determined with a mean accuracy of 11
. The limitation in detection accuracy was due to the lower measurement precision of the MEG system. Considering an ideal measurement condition, these values represent the lower bound of accuracy that can be achieved in patients.
However, a future magnetic measuring system with higher precision will potentially detect location and orientation of a DBS electrode with an even greater accuracy.</abstract><cop>England</cop><pmid>33503598</pmid><doi>10.1088/1741-2552/abe099</doi><orcidid>https://orcid.org/0000-0001-6388-6847</orcidid><orcidid>https://orcid.org/0000-0001-9352-2868</orcidid><orcidid>https://orcid.org/0000-0002-4176-9196</orcidid><orcidid>https://orcid.org/0000-0003-0932-854X</orcidid><orcidid>https://orcid.org/0000-0002-6414-7939</orcidid><orcidid>https://orcid.org/0000-0003-1438-5792</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1741-2560 |
ispartof | Journal of neural engineering, 2021-04, Vol.18 (2), p.26021 |
issn | 1741-2560 1741-2552 |
language | eng |
recordid | cdi_proquest_miscellaneous_2482669879 |
source | MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Animals Decapodiformes Deep Brain Stimulation - methods Electrodes Humans Magnetoencephalography - methods Phantoms, Imaging |
title | DBS electrode localization and rotational orientation detection using SQUID-based magnetoencephalography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A53%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DBS%20electrode%20localization%20and%20rotational%20orientation%20detection%20using%20SQUID-based%20magnetoencephalography&rft.jtitle=Journal%20of%20neural%20engineering&rft.au=Yalaz,%20Mevl%C3%BCt&rft.date=2021-04-01&rft.volume=18&rft.issue=2&rft.spage=26021&rft.pages=26021-&rft.issn=1741-2560&rft.eissn=1741-2552&rft_id=info:doi/10.1088/1741-2552/abe099&rft_dat=%3Cproquest_cross%3E2482669879%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2482669879&rft_id=info:pmid/33503598&rfr_iscdi=true |