DBS electrode localization and rotational orientation detection using SQUID-based magnetoencephalography

The aim of the present study was to investigate the accuracy of localization and rotational orientation detection of a directional deep brain stimulation (DBS) electrode using a state-of-the-art magnetoencephalography (MEG) scanner. A directional DBS electrode along with its stimulator was integrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neural engineering 2021-04, Vol.18 (2), p.26021
Hauptverfasser: Yalaz, Mevlüt, Sohail Noor, M, McIntyre, Cameron C, Butz, Markus, Schnitzler, Alfons, Deuschl, Günther, Höft, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 26021
container_title Journal of neural engineering
container_volume 18
creator Yalaz, Mevlüt
Sohail Noor, M
McIntyre, Cameron C
Butz, Markus
Schnitzler, Alfons
Deuschl, Günther
Höft, Michael
description The aim of the present study was to investigate the accuracy of localization and rotational orientation detection of a directional deep brain stimulation (DBS) electrode using a state-of-the-art magnetoencephalography (MEG) scanner. A directional DBS electrode along with its stimulator was integrated into a head phantom and placed inside the MEG sensor array. The electrode was comprised of six directional and two omnidirectional contacts. Measurements were performed while stimulating with different contacts and parameters in the phantom. Finite element modeling and fitting approach were used to compute electrode position and orientation. The electrode was localized with a mean accuracy of 2.2 mm while orientation was determined with a mean accuracy of 11 . The limitation in detection accuracy was due to the lower measurement precision of the MEG system. Considering an ideal measurement condition, these values represent the lower bound of accuracy that can be achieved in patients. However, a future magnetic measuring system with higher precision will potentially detect location and orientation of a DBS electrode with an even greater accuracy.
doi_str_mv 10.1088/1741-2552/abe099
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2482669879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2482669879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-f357d639413dab35fa09bd564398f5a9c3d2bad74048361ed4adfbddb981084e3</originalsourceid><addsrcrecordid>eNo9kL1PwzAUxC0EoqWwM6GMLKF2nC-P0PJRqRJCpbP1HL-0QUkc7GQofz0JKZ3e3dPdDT9Cbhl9YDRN5ywJmR9EUTAHhVSIMzI9vc5POqYTcuXcF6WcJYJekgnnEeWRSKdkv3zaeFhi1lqj0StNBmXxA21hag9q7VnT_hkoPWMLrEfnaWz7yqA6V9Q7b_OxXS19BQ61V8GuxtZgnWGzh9LsLDT7wzW5yKF0eHO8M7J9ef5cvPnr99fV4nHtZ4EQrZ_zKNExFyHjGhSPcqBC6SgOuUjzCETGdaBAJyENUx4z1CHoXGmtRNoTCZHPyP2421jz3aFrZVW4DMsSajSdk0GYBnEs0kT0UTpGM2ucs5jLxhYV2INkVA585QBQDjDlyLev3B3XO1WhPhX-gfJfozl4jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2482669879</pqid></control><display><type>article</type><title>DBS electrode localization and rotational orientation detection using SQUID-based magnetoencephalography</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Yalaz, Mevlüt ; Sohail Noor, M ; McIntyre, Cameron C ; Butz, Markus ; Schnitzler, Alfons ; Deuschl, Günther ; Höft, Michael</creator><creatorcontrib>Yalaz, Mevlüt ; Sohail Noor, M ; McIntyre, Cameron C ; Butz, Markus ; Schnitzler, Alfons ; Deuschl, Günther ; Höft, Michael</creatorcontrib><description>The aim of the present study was to investigate the accuracy of localization and rotational orientation detection of a directional deep brain stimulation (DBS) electrode using a state-of-the-art magnetoencephalography (MEG) scanner. A directional DBS electrode along with its stimulator was integrated into a head phantom and placed inside the MEG sensor array. The electrode was comprised of six directional and two omnidirectional contacts. Measurements were performed while stimulating with different contacts and parameters in the phantom. Finite element modeling and fitting approach were used to compute electrode position and orientation. The electrode was localized with a mean accuracy of 2.2 mm while orientation was determined with a mean accuracy of 11 . The limitation in detection accuracy was due to the lower measurement precision of the MEG system. Considering an ideal measurement condition, these values represent the lower bound of accuracy that can be achieved in patients. However, a future magnetic measuring system with higher precision will potentially detect location and orientation of a DBS electrode with an even greater accuracy.</description><identifier>ISSN: 1741-2560</identifier><identifier>EISSN: 1741-2552</identifier><identifier>DOI: 10.1088/1741-2552/abe099</identifier><identifier>PMID: 33503598</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Decapodiformes ; Deep Brain Stimulation - methods ; Electrodes ; Humans ; Magnetoencephalography - methods ; Phantoms, Imaging</subject><ispartof>Journal of neural engineering, 2021-04, Vol.18 (2), p.26021</ispartof><rights>2021 IOP Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-f357d639413dab35fa09bd564398f5a9c3d2bad74048361ed4adfbddb981084e3</citedby><cites>FETCH-LOGICAL-c299t-f357d639413dab35fa09bd564398f5a9c3d2bad74048361ed4adfbddb981084e3</cites><orcidid>0000-0001-6388-6847 ; 0000-0001-9352-2868 ; 0000-0002-4176-9196 ; 0000-0003-0932-854X ; 0000-0002-6414-7939 ; 0000-0003-1438-5792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33503598$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yalaz, Mevlüt</creatorcontrib><creatorcontrib>Sohail Noor, M</creatorcontrib><creatorcontrib>McIntyre, Cameron C</creatorcontrib><creatorcontrib>Butz, Markus</creatorcontrib><creatorcontrib>Schnitzler, Alfons</creatorcontrib><creatorcontrib>Deuschl, Günther</creatorcontrib><creatorcontrib>Höft, Michael</creatorcontrib><title>DBS electrode localization and rotational orientation detection using SQUID-based magnetoencephalography</title><title>Journal of neural engineering</title><addtitle>J Neural Eng</addtitle><description>The aim of the present study was to investigate the accuracy of localization and rotational orientation detection of a directional deep brain stimulation (DBS) electrode using a state-of-the-art magnetoencephalography (MEG) scanner. A directional DBS electrode along with its stimulator was integrated into a head phantom and placed inside the MEG sensor array. The electrode was comprised of six directional and two omnidirectional contacts. Measurements were performed while stimulating with different contacts and parameters in the phantom. Finite element modeling and fitting approach were used to compute electrode position and orientation. The electrode was localized with a mean accuracy of 2.2 mm while orientation was determined with a mean accuracy of 11 . The limitation in detection accuracy was due to the lower measurement precision of the MEG system. Considering an ideal measurement condition, these values represent the lower bound of accuracy that can be achieved in patients. However, a future magnetic measuring system with higher precision will potentially detect location and orientation of a DBS electrode with an even greater accuracy.</description><subject>Animals</subject><subject>Decapodiformes</subject><subject>Deep Brain Stimulation - methods</subject><subject>Electrodes</subject><subject>Humans</subject><subject>Magnetoencephalography - methods</subject><subject>Phantoms, Imaging</subject><issn>1741-2560</issn><issn>1741-2552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kL1PwzAUxC0EoqWwM6GMLKF2nC-P0PJRqRJCpbP1HL-0QUkc7GQofz0JKZ3e3dPdDT9Cbhl9YDRN5ywJmR9EUTAHhVSIMzI9vc5POqYTcuXcF6WcJYJekgnnEeWRSKdkv3zaeFhi1lqj0StNBmXxA21hag9q7VnT_hkoPWMLrEfnaWz7yqA6V9Q7b_OxXS19BQ61V8GuxtZgnWGzh9LsLDT7wzW5yKF0eHO8M7J9ef5cvPnr99fV4nHtZ4EQrZ_zKNExFyHjGhSPcqBC6SgOuUjzCETGdaBAJyENUx4z1CHoXGmtRNoTCZHPyP2421jz3aFrZVW4DMsSajSdk0GYBnEs0kT0UTpGM2ucs5jLxhYV2INkVA585QBQDjDlyLev3B3XO1WhPhX-gfJfozl4jw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Yalaz, Mevlüt</creator><creator>Sohail Noor, M</creator><creator>McIntyre, Cameron C</creator><creator>Butz, Markus</creator><creator>Schnitzler, Alfons</creator><creator>Deuschl, Günther</creator><creator>Höft, Michael</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6388-6847</orcidid><orcidid>https://orcid.org/0000-0001-9352-2868</orcidid><orcidid>https://orcid.org/0000-0002-4176-9196</orcidid><orcidid>https://orcid.org/0000-0003-0932-854X</orcidid><orcidid>https://orcid.org/0000-0002-6414-7939</orcidid><orcidid>https://orcid.org/0000-0003-1438-5792</orcidid></search><sort><creationdate>20210401</creationdate><title>DBS electrode localization and rotational orientation detection using SQUID-based magnetoencephalography</title><author>Yalaz, Mevlüt ; Sohail Noor, M ; McIntyre, Cameron C ; Butz, Markus ; Schnitzler, Alfons ; Deuschl, Günther ; Höft, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-f357d639413dab35fa09bd564398f5a9c3d2bad74048361ed4adfbddb981084e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Decapodiformes</topic><topic>Deep Brain Stimulation - methods</topic><topic>Electrodes</topic><topic>Humans</topic><topic>Magnetoencephalography - methods</topic><topic>Phantoms, Imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yalaz, Mevlüt</creatorcontrib><creatorcontrib>Sohail Noor, M</creatorcontrib><creatorcontrib>McIntyre, Cameron C</creatorcontrib><creatorcontrib>Butz, Markus</creatorcontrib><creatorcontrib>Schnitzler, Alfons</creatorcontrib><creatorcontrib>Deuschl, Günther</creatorcontrib><creatorcontrib>Höft, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yalaz, Mevlüt</au><au>Sohail Noor, M</au><au>McIntyre, Cameron C</au><au>Butz, Markus</au><au>Schnitzler, Alfons</au><au>Deuschl, Günther</au><au>Höft, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DBS electrode localization and rotational orientation detection using SQUID-based magnetoencephalography</atitle><jtitle>Journal of neural engineering</jtitle><addtitle>J Neural Eng</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>18</volume><issue>2</issue><spage>26021</spage><pages>26021-</pages><issn>1741-2560</issn><eissn>1741-2552</eissn><abstract>The aim of the present study was to investigate the accuracy of localization and rotational orientation detection of a directional deep brain stimulation (DBS) electrode using a state-of-the-art magnetoencephalography (MEG) scanner. A directional DBS electrode along with its stimulator was integrated into a head phantom and placed inside the MEG sensor array. The electrode was comprised of six directional and two omnidirectional contacts. Measurements were performed while stimulating with different contacts and parameters in the phantom. Finite element modeling and fitting approach were used to compute electrode position and orientation. The electrode was localized with a mean accuracy of 2.2 mm while orientation was determined with a mean accuracy of 11 . The limitation in detection accuracy was due to the lower measurement precision of the MEG system. Considering an ideal measurement condition, these values represent the lower bound of accuracy that can be achieved in patients. However, a future magnetic measuring system with higher precision will potentially detect location and orientation of a DBS electrode with an even greater accuracy.</abstract><cop>England</cop><pmid>33503598</pmid><doi>10.1088/1741-2552/abe099</doi><orcidid>https://orcid.org/0000-0001-6388-6847</orcidid><orcidid>https://orcid.org/0000-0001-9352-2868</orcidid><orcidid>https://orcid.org/0000-0002-4176-9196</orcidid><orcidid>https://orcid.org/0000-0003-0932-854X</orcidid><orcidid>https://orcid.org/0000-0002-6414-7939</orcidid><orcidid>https://orcid.org/0000-0003-1438-5792</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1741-2560
ispartof Journal of neural engineering, 2021-04, Vol.18 (2), p.26021
issn 1741-2560
1741-2552
language eng
recordid cdi_proquest_miscellaneous_2482669879
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Animals
Decapodiformes
Deep Brain Stimulation - methods
Electrodes
Humans
Magnetoencephalography - methods
Phantoms, Imaging
title DBS electrode localization and rotational orientation detection using SQUID-based magnetoencephalography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A53%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DBS%20electrode%20localization%20and%20rotational%20orientation%20detection%20using%20SQUID-based%20magnetoencephalography&rft.jtitle=Journal%20of%20neural%20engineering&rft.au=Yalaz,%20Mevl%C3%BCt&rft.date=2021-04-01&rft.volume=18&rft.issue=2&rft.spage=26021&rft.pages=26021-&rft.issn=1741-2560&rft.eissn=1741-2552&rft_id=info:doi/10.1088/1741-2552/abe099&rft_dat=%3Cproquest_cross%3E2482669879%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2482669879&rft_id=info:pmid/33503598&rfr_iscdi=true