High-Temperature Storage Deterioration Mechanism of Cylindrical 21700-Type Batteries Using Ni-Rich Cathodes under Different SOCs

The safety and energy density of lithium-ion batteries (LIBs) are important concerns. The use of high-capacity cathode materials, such as Ni-rich cathodes, can greatly improve the energy density of LIBs, but it also brings some safety hazards. Cylindrical 21700-type batteries using Ni-rich cathodes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-02, Vol.13 (5), p.6286-6297
Hauptverfasser: Hu, Daozhong, Zhang, Qiyu, Tian, Jun, Chen, Lai, Li, Ning, Su, Yuefeng, Bao, Liying, Lu, Yun, Cao, Duanyun, Yan, Kang, Chen, Shi, Wu, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6297
container_issue 5
container_start_page 6286
container_title ACS applied materials & interfaces
container_volume 13
creator Hu, Daozhong
Zhang, Qiyu
Tian, Jun
Chen, Lai
Li, Ning
Su, Yuefeng
Bao, Liying
Lu, Yun
Cao, Duanyun
Yan, Kang
Chen, Shi
Wu, Feng
description The safety and energy density of lithium-ion batteries (LIBs) are important concerns. The use of high-capacity cathode materials, such as Ni-rich cathodes, can greatly improve the energy density of LIBs, but it also brings some safety hazards. Cylindrical 21700-type batteries using Ni-rich cathodes were employed here to investigate their high-temperature storage deterioration mechanism under different states of charge (SOCs). Electrolyte decomposition was identified as the main problem. It can be worsened by elevated storage temperatures and battery SOCs, with the latter having a more significant influence. Specifically, the decomposition of the LiPF6 solute and the carbonate solvent will induce hydrofluoric acid (HF) formation and solid–electrolyte interphase (SEI) film regeneration, respectively. HF erosion will aggravate the dissolution of transition metal ions and structural degradation of cathode materials, while the destruction/regeneration of SEI films will consume active lithium and hinder Li+ diffusion at the anode side. Besides, the self-discharge behavior will also enlarge the graphite layer spacing, thus decreasing the graphitization degree of graphite anodes and causing anode failure. These findings will aid in the development of strategies for improving the safety of LIBs with high energy density.
doi_str_mv 10.1021/acsami.0c20835
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2482660936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2482660936</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-15bb62ff2cd8a7cd70f091967fd794cfd4b25c5e8d54d4e0f7248bf2254e123b3</originalsourceid><addsrcrecordid>eNp1kDlPAzEQRi0E4m4pkUuEtMHnHiUsp8QhkVCvvPY4Mdoj2N4iHT-djRLoqGY0et8nzUPojJIJJYxeKR1U6yZEM5JzuYMOaSFEkjPJdv92IQ7QUQifhKScEbmPDjiXRFBRHKLvRzdfJDNol-BVHDzgaey9mgO-hQjejXt0fYdfQC9U50KLe4vLVeM6451WDWY0IySZrZaAb1RcRyDgj-C6OX51ybvTC1yquOjNeB46Ax7fOmvBQxfx9K0MJ2jPqibA6XYeo4_7u1n5mDy_PTyV18-J4pzEhMq6Tpm1TJtcZdpkxJKCFmlmTVYIbY2omdQSciOFEUBsxkReW8akAMp4zY_RxaZ36fuvAUKsWhc0NI3qoB9CNeIsTUnB0xGdbFDt-xA82GrpXav8qqKkWluvNtarrfUxcL7tHuoWzB_-q3kELjfAGKw--8F346v_tf0AEfCNKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2482660936</pqid></control><display><type>article</type><title>High-Temperature Storage Deterioration Mechanism of Cylindrical 21700-Type Batteries Using Ni-Rich Cathodes under Different SOCs</title><source>American Chemical Society Journals</source><creator>Hu, Daozhong ; Zhang, Qiyu ; Tian, Jun ; Chen, Lai ; Li, Ning ; Su, Yuefeng ; Bao, Liying ; Lu, Yun ; Cao, Duanyun ; Yan, Kang ; Chen, Shi ; Wu, Feng</creator><creatorcontrib>Hu, Daozhong ; Zhang, Qiyu ; Tian, Jun ; Chen, Lai ; Li, Ning ; Su, Yuefeng ; Bao, Liying ; Lu, Yun ; Cao, Duanyun ; Yan, Kang ; Chen, Shi ; Wu, Feng</creatorcontrib><description>The safety and energy density of lithium-ion batteries (LIBs) are important concerns. The use of high-capacity cathode materials, such as Ni-rich cathodes, can greatly improve the energy density of LIBs, but it also brings some safety hazards. Cylindrical 21700-type batteries using Ni-rich cathodes were employed here to investigate their high-temperature storage deterioration mechanism under different states of charge (SOCs). Electrolyte decomposition was identified as the main problem. It can be worsened by elevated storage temperatures and battery SOCs, with the latter having a more significant influence. Specifically, the decomposition of the LiPF6 solute and the carbonate solvent will induce hydrofluoric acid (HF) formation and solid–electrolyte interphase (SEI) film regeneration, respectively. HF erosion will aggravate the dissolution of transition metal ions and structural degradation of cathode materials, while the destruction/regeneration of SEI films will consume active lithium and hinder Li+ diffusion at the anode side. Besides, the self-discharge behavior will also enlarge the graphite layer spacing, thus decreasing the graphitization degree of graphite anodes and causing anode failure. These findings will aid in the development of strategies for improving the safety of LIBs with high energy density.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c20835</identifier><identifier>PMID: 33504149</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2021-02, Vol.13 (5), p.6286-6297</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-15bb62ff2cd8a7cd70f091967fd794cfd4b25c5e8d54d4e0f7248bf2254e123b3</citedby><cites>FETCH-LOGICAL-a330t-15bb62ff2cd8a7cd70f091967fd794cfd4b25c5e8d54d4e0f7248bf2254e123b3</cites><orcidid>0000-0002-1830-2723 ; 0000-0002-5144-2832 ; 0000-0002-8226-3140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c20835$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c20835$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33504149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Daozhong</creatorcontrib><creatorcontrib>Zhang, Qiyu</creatorcontrib><creatorcontrib>Tian, Jun</creatorcontrib><creatorcontrib>Chen, Lai</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Su, Yuefeng</creatorcontrib><creatorcontrib>Bao, Liying</creatorcontrib><creatorcontrib>Lu, Yun</creatorcontrib><creatorcontrib>Cao, Duanyun</creatorcontrib><creatorcontrib>Yan, Kang</creatorcontrib><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><title>High-Temperature Storage Deterioration Mechanism of Cylindrical 21700-Type Batteries Using Ni-Rich Cathodes under Different SOCs</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The safety and energy density of lithium-ion batteries (LIBs) are important concerns. The use of high-capacity cathode materials, such as Ni-rich cathodes, can greatly improve the energy density of LIBs, but it also brings some safety hazards. Cylindrical 21700-type batteries using Ni-rich cathodes were employed here to investigate their high-temperature storage deterioration mechanism under different states of charge (SOCs). Electrolyte decomposition was identified as the main problem. It can be worsened by elevated storage temperatures and battery SOCs, with the latter having a more significant influence. Specifically, the decomposition of the LiPF6 solute and the carbonate solvent will induce hydrofluoric acid (HF) formation and solid–electrolyte interphase (SEI) film regeneration, respectively. HF erosion will aggravate the dissolution of transition metal ions and structural degradation of cathode materials, while the destruction/regeneration of SEI films will consume active lithium and hinder Li+ diffusion at the anode side. Besides, the self-discharge behavior will also enlarge the graphite layer spacing, thus decreasing the graphitization degree of graphite anodes and causing anode failure. These findings will aid in the development of strategies for improving the safety of LIBs with high energy density.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kDlPAzEQRi0E4m4pkUuEtMHnHiUsp8QhkVCvvPY4Mdoj2N4iHT-djRLoqGY0et8nzUPojJIJJYxeKR1U6yZEM5JzuYMOaSFEkjPJdv92IQ7QUQifhKScEbmPDjiXRFBRHKLvRzdfJDNol-BVHDzgaey9mgO-hQjejXt0fYdfQC9U50KLe4vLVeM6451WDWY0IySZrZaAb1RcRyDgj-C6OX51ybvTC1yquOjNeB46Ax7fOmvBQxfx9K0MJ2jPqibA6XYeo4_7u1n5mDy_PTyV18-J4pzEhMq6Tpm1TJtcZdpkxJKCFmlmTVYIbY2omdQSciOFEUBsxkReW8akAMp4zY_RxaZ36fuvAUKsWhc0NI3qoB9CNeIsTUnB0xGdbFDt-xA82GrpXav8qqKkWluvNtarrfUxcL7tHuoWzB_-q3kELjfAGKw--8F346v_tf0AEfCNKA</recordid><startdate>20210210</startdate><enddate>20210210</enddate><creator>Hu, Daozhong</creator><creator>Zhang, Qiyu</creator><creator>Tian, Jun</creator><creator>Chen, Lai</creator><creator>Li, Ning</creator><creator>Su, Yuefeng</creator><creator>Bao, Liying</creator><creator>Lu, Yun</creator><creator>Cao, Duanyun</creator><creator>Yan, Kang</creator><creator>Chen, Shi</creator><creator>Wu, Feng</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1830-2723</orcidid><orcidid>https://orcid.org/0000-0002-5144-2832</orcidid><orcidid>https://orcid.org/0000-0002-8226-3140</orcidid></search><sort><creationdate>20210210</creationdate><title>High-Temperature Storage Deterioration Mechanism of Cylindrical 21700-Type Batteries Using Ni-Rich Cathodes under Different SOCs</title><author>Hu, Daozhong ; Zhang, Qiyu ; Tian, Jun ; Chen, Lai ; Li, Ning ; Su, Yuefeng ; Bao, Liying ; Lu, Yun ; Cao, Duanyun ; Yan, Kang ; Chen, Shi ; Wu, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-15bb62ff2cd8a7cd70f091967fd794cfd4b25c5e8d54d4e0f7248bf2254e123b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Daozhong</creatorcontrib><creatorcontrib>Zhang, Qiyu</creatorcontrib><creatorcontrib>Tian, Jun</creatorcontrib><creatorcontrib>Chen, Lai</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Su, Yuefeng</creatorcontrib><creatorcontrib>Bao, Liying</creatorcontrib><creatorcontrib>Lu, Yun</creatorcontrib><creatorcontrib>Cao, Duanyun</creatorcontrib><creatorcontrib>Yan, Kang</creatorcontrib><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Daozhong</au><au>Zhang, Qiyu</au><au>Tian, Jun</au><au>Chen, Lai</au><au>Li, Ning</au><au>Su, Yuefeng</au><au>Bao, Liying</au><au>Lu, Yun</au><au>Cao, Duanyun</au><au>Yan, Kang</au><au>Chen, Shi</au><au>Wu, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Temperature Storage Deterioration Mechanism of Cylindrical 21700-Type Batteries Using Ni-Rich Cathodes under Different SOCs</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-02-10</date><risdate>2021</risdate><volume>13</volume><issue>5</issue><spage>6286</spage><epage>6297</epage><pages>6286-6297</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The safety and energy density of lithium-ion batteries (LIBs) are important concerns. The use of high-capacity cathode materials, such as Ni-rich cathodes, can greatly improve the energy density of LIBs, but it also brings some safety hazards. Cylindrical 21700-type batteries using Ni-rich cathodes were employed here to investigate their high-temperature storage deterioration mechanism under different states of charge (SOCs). Electrolyte decomposition was identified as the main problem. It can be worsened by elevated storage temperatures and battery SOCs, with the latter having a more significant influence. Specifically, the decomposition of the LiPF6 solute and the carbonate solvent will induce hydrofluoric acid (HF) formation and solid–electrolyte interphase (SEI) film regeneration, respectively. HF erosion will aggravate the dissolution of transition metal ions and structural degradation of cathode materials, while the destruction/regeneration of SEI films will consume active lithium and hinder Li+ diffusion at the anode side. Besides, the self-discharge behavior will also enlarge the graphite layer spacing, thus decreasing the graphitization degree of graphite anodes and causing anode failure. These findings will aid in the development of strategies for improving the safety of LIBs with high energy density.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33504149</pmid><doi>10.1021/acsami.0c20835</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1830-2723</orcidid><orcidid>https://orcid.org/0000-0002-5144-2832</orcidid><orcidid>https://orcid.org/0000-0002-8226-3140</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-02, Vol.13 (5), p.6286-6297
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2482660936
source American Chemical Society Journals
subjects Energy, Environmental, and Catalysis Applications
title High-Temperature Storage Deterioration Mechanism of Cylindrical 21700-Type Batteries Using Ni-Rich Cathodes under Different SOCs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Temperature%20Storage%20Deterioration%20Mechanism%20of%20Cylindrical%2021700-Type%20Batteries%20Using%20Ni-Rich%20Cathodes%20under%20Different%20SOCs&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Hu,%20Daozhong&rft.date=2021-02-10&rft.volume=13&rft.issue=5&rft.spage=6286&rft.epage=6297&rft.pages=6286-6297&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c20835&rft_dat=%3Cproquest_cross%3E2482660936%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2482660936&rft_id=info:pmid/33504149&rfr_iscdi=true