Computational Investigation into the Mechanistic Features of Bromide-Catalyzed Alcohol Oxidation by PhIO in Water

Iodosobenzene (PhIO) is known to be a potent oxidant for alcohols in the presence of catalytic bromide in water. In order to understand this important and practical oxidation process, we have conducted density functional theory studies to shed light on the reaction mechanism. The key finding of this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of organic chemistry 2021-02, Vol.86 (3), p.2998-3007
Hauptverfasser: Farshadfar, Kaveh, Bird, Melissa J, Olivier, Wesley J, Hyland, Christopher J. T, Smith, Jason A, Ariafard, Alireza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3007
container_issue 3
container_start_page 2998
container_title Journal of organic chemistry
container_volume 86
creator Farshadfar, Kaveh
Bird, Melissa J
Olivier, Wesley J
Hyland, Christopher J. T
Smith, Jason A
Ariafard, Alireza
description Iodosobenzene (PhIO) is known to be a potent oxidant for alcohols in the presence of catalytic bromide in water. In order to understand this important and practical oxidation process, we have conducted density functional theory studies to shed light on the reaction mechanism. The key finding of this study is that PhIO is not the reactive oxidant itself. Instead, the active oxidant is hypobromite (BrO–), which is generated by the reaction of PhIO with bromide through an SN2-type reaction. Critically, water acts as a cocatalyst in the generation of BrO– through lowering the activation energy of this process. This investigation also demonstrates why BrO– is a more powerful oxidant than PhIO in the oxidation of alcohols. Other halide additives have been reported experimentally to be less effective catalysts than bromideour calculations provide a clear rationale for these observations. We also examined the effect of replacing water with methanol on the ease of the SN2 reaction, finding that the replacement resulted in a higher activation barrier for the generation of BrO–. Overall, this work demonstrates that the hypervalent iodine­(III) reagent PhIO can act as a convenient and controlled precursor of the oxidant hypobromite if the right conditions are present.
doi_str_mv 10.1021/acs.joc.0c02903
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2481679055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2481679055</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-a3e3ae9f518b5b3f073916934c35cd28f0ca0c391864c2e99c7abf7564db7add3</originalsourceid><addsrcrecordid>eNqNkc9P2zAcxa0JNArbeTfkIxJK8Y84iY8QraxSUXfYtGPkON9QoyQutsMofz1m6boT0nywZfvznuz3EPpCyZwSRq-U9vMHq-dEEyYJ_4BmVDCSZJKkR2hGCGMJZxk_QafeP5A4hBAf0QnnIqolmaHH0vbbMahg7KA6vByewAdz_2ePzRAsDhvAd6A3ajDxRuMFqDA68Ni2-MbZ3jSQlCqobvcCDb7utN3YDq-fTTOZ1Dv8fbNcRzP8SwVwn9BxqzoPn_frGfq5-Pqj_Jas1rfL8nqVKM55iDNwBbIVtKhFzVuSc0kzyVPNhW5Y0RKtiI5nRZZqBlLqXNVtLrK0qXPVNPwMXUy-W2cfx_irqjdeQ9epAezoK5YWNMtlTCSiVxOqnfXeQVttnemV21WUVG85VzHnKuZc7XOOivO9-Vj30Bz4v8FGoJiA31Db1msDg4YDFovIaCFSkr1VQkszFVDacQhRevn_0n_09MTRxRr9u-9-BTywqmo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481679055</pqid></control><display><type>article</type><title>Computational Investigation into the Mechanistic Features of Bromide-Catalyzed Alcohol Oxidation by PhIO in Water</title><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Farshadfar, Kaveh ; Bird, Melissa J ; Olivier, Wesley J ; Hyland, Christopher J. T ; Smith, Jason A ; Ariafard, Alireza</creator><creatorcontrib>Farshadfar, Kaveh ; Bird, Melissa J ; Olivier, Wesley J ; Hyland, Christopher J. T ; Smith, Jason A ; Ariafard, Alireza</creatorcontrib><description>Iodosobenzene (PhIO) is known to be a potent oxidant for alcohols in the presence of catalytic bromide in water. In order to understand this important and practical oxidation process, we have conducted density functional theory studies to shed light on the reaction mechanism. The key finding of this study is that PhIO is not the reactive oxidant itself. Instead, the active oxidant is hypobromite (BrO–), which is generated by the reaction of PhIO with bromide through an SN2-type reaction. Critically, water acts as a cocatalyst in the generation of BrO– through lowering the activation energy of this process. This investigation also demonstrates why BrO– is a more powerful oxidant than PhIO in the oxidation of alcohols. Other halide additives have been reported experimentally to be less effective catalysts than bromideour calculations provide a clear rationale for these observations. We also examined the effect of replacing water with methanol on the ease of the SN2 reaction, finding that the replacement resulted in a higher activation barrier for the generation of BrO–. Overall, this work demonstrates that the hypervalent iodine­(III) reagent PhIO can act as a convenient and controlled precursor of the oxidant hypobromite if the right conditions are present.</description><identifier>ISSN: 0022-3263</identifier><identifier>EISSN: 1520-6904</identifier><identifier>DOI: 10.1021/acs.joc.0c02903</identifier><identifier>PMID: 33502190</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Chemistry ; Chemistry, Organic ; Physical Sciences ; Science &amp; Technology</subject><ispartof>Journal of organic chemistry, 2021-02, Vol.86 (3), p.2998-3007</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000618540600051</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a333t-a3e3ae9f518b5b3f073916934c35cd28f0ca0c391864c2e99c7abf7564db7add3</citedby><cites>FETCH-LOGICAL-a333t-a3e3ae9f518b5b3f073916934c35cd28f0ca0c391864c2e99c7abf7564db7add3</cites><orcidid>0000-0002-0863-1136 ; 0000-0001-6313-3298 ; 0000-0003-2383-6380 ; 0000-0002-9963-5924 ; 0000-0002-8838-9609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.joc.0c02903$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.joc.0c02903$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2769,27085,27933,27934,39267,56747,56797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33502190$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Farshadfar, Kaveh</creatorcontrib><creatorcontrib>Bird, Melissa J</creatorcontrib><creatorcontrib>Olivier, Wesley J</creatorcontrib><creatorcontrib>Hyland, Christopher J. T</creatorcontrib><creatorcontrib>Smith, Jason A</creatorcontrib><creatorcontrib>Ariafard, Alireza</creatorcontrib><title>Computational Investigation into the Mechanistic Features of Bromide-Catalyzed Alcohol Oxidation by PhIO in Water</title><title>Journal of organic chemistry</title><addtitle>J ORG CHEM</addtitle><addtitle>J. Org. Chem</addtitle><description>Iodosobenzene (PhIO) is known to be a potent oxidant for alcohols in the presence of catalytic bromide in water. In order to understand this important and practical oxidation process, we have conducted density functional theory studies to shed light on the reaction mechanism. The key finding of this study is that PhIO is not the reactive oxidant itself. Instead, the active oxidant is hypobromite (BrO–), which is generated by the reaction of PhIO with bromide through an SN2-type reaction. Critically, water acts as a cocatalyst in the generation of BrO– through lowering the activation energy of this process. This investigation also demonstrates why BrO– is a more powerful oxidant than PhIO in the oxidation of alcohols. Other halide additives have been reported experimentally to be less effective catalysts than bromideour calculations provide a clear rationale for these observations. We also examined the effect of replacing water with methanol on the ease of the SN2 reaction, finding that the replacement resulted in a higher activation barrier for the generation of BrO–. Overall, this work demonstrates that the hypervalent iodine­(III) reagent PhIO can act as a convenient and controlled precursor of the oxidant hypobromite if the right conditions are present.</description><subject>Chemistry</subject><subject>Chemistry, Organic</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><issn>0022-3263</issn><issn>1520-6904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkc9P2zAcxa0JNArbeTfkIxJK8Y84iY8QraxSUXfYtGPkON9QoyQutsMofz1m6boT0nywZfvznuz3EPpCyZwSRq-U9vMHq-dEEyYJ_4BmVDCSZJKkR2hGCGMJZxk_QafeP5A4hBAf0QnnIqolmaHH0vbbMahg7KA6vByewAdz_2ePzRAsDhvAd6A3ajDxRuMFqDA68Ni2-MbZ3jSQlCqobvcCDb7utN3YDq-fTTOZ1Dv8fbNcRzP8SwVwn9BxqzoPn_frGfq5-Pqj_Jas1rfL8nqVKM55iDNwBbIVtKhFzVuSc0kzyVPNhW5Y0RKtiI5nRZZqBlLqXNVtLrK0qXPVNPwMXUy-W2cfx_irqjdeQ9epAezoK5YWNMtlTCSiVxOqnfXeQVttnemV21WUVG85VzHnKuZc7XOOivO9-Vj30Bz4v8FGoJiA31Db1msDg4YDFovIaCFSkr1VQkszFVDacQhRevn_0n_09MTRxRr9u-9-BTywqmo</recordid><startdate>20210205</startdate><enddate>20210205</enddate><creator>Farshadfar, Kaveh</creator><creator>Bird, Melissa J</creator><creator>Olivier, Wesley J</creator><creator>Hyland, Christopher J. T</creator><creator>Smith, Jason A</creator><creator>Ariafard, Alireza</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0863-1136</orcidid><orcidid>https://orcid.org/0000-0001-6313-3298</orcidid><orcidid>https://orcid.org/0000-0003-2383-6380</orcidid><orcidid>https://orcid.org/0000-0002-9963-5924</orcidid><orcidid>https://orcid.org/0000-0002-8838-9609</orcidid></search><sort><creationdate>20210205</creationdate><title>Computational Investigation into the Mechanistic Features of Bromide-Catalyzed Alcohol Oxidation by PhIO in Water</title><author>Farshadfar, Kaveh ; Bird, Melissa J ; Olivier, Wesley J ; Hyland, Christopher J. T ; Smith, Jason A ; Ariafard, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-a3e3ae9f518b5b3f073916934c35cd28f0ca0c391864c2e99c7abf7564db7add3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Chemistry, Organic</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farshadfar, Kaveh</creatorcontrib><creatorcontrib>Bird, Melissa J</creatorcontrib><creatorcontrib>Olivier, Wesley J</creatorcontrib><creatorcontrib>Hyland, Christopher J. T</creatorcontrib><creatorcontrib>Smith, Jason A</creatorcontrib><creatorcontrib>Ariafard, Alireza</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of organic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farshadfar, Kaveh</au><au>Bird, Melissa J</au><au>Olivier, Wesley J</au><au>Hyland, Christopher J. T</au><au>Smith, Jason A</au><au>Ariafard, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Investigation into the Mechanistic Features of Bromide-Catalyzed Alcohol Oxidation by PhIO in Water</atitle><jtitle>Journal of organic chemistry</jtitle><stitle>J ORG CHEM</stitle><addtitle>J. Org. Chem</addtitle><date>2021-02-05</date><risdate>2021</risdate><volume>86</volume><issue>3</issue><spage>2998</spage><epage>3007</epage><pages>2998-3007</pages><issn>0022-3263</issn><eissn>1520-6904</eissn><abstract>Iodosobenzene (PhIO) is known to be a potent oxidant for alcohols in the presence of catalytic bromide in water. In order to understand this important and practical oxidation process, we have conducted density functional theory studies to shed light on the reaction mechanism. The key finding of this study is that PhIO is not the reactive oxidant itself. Instead, the active oxidant is hypobromite (BrO–), which is generated by the reaction of PhIO with bromide through an SN2-type reaction. Critically, water acts as a cocatalyst in the generation of BrO– through lowering the activation energy of this process. This investigation also demonstrates why BrO– is a more powerful oxidant than PhIO in the oxidation of alcohols. Other halide additives have been reported experimentally to be less effective catalysts than bromideour calculations provide a clear rationale for these observations. We also examined the effect of replacing water with methanol on the ease of the SN2 reaction, finding that the replacement resulted in a higher activation barrier for the generation of BrO–. Overall, this work demonstrates that the hypervalent iodine­(III) reagent PhIO can act as a convenient and controlled precursor of the oxidant hypobromite if the right conditions are present.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>33502190</pmid><doi>10.1021/acs.joc.0c02903</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0863-1136</orcidid><orcidid>https://orcid.org/0000-0001-6313-3298</orcidid><orcidid>https://orcid.org/0000-0003-2383-6380</orcidid><orcidid>https://orcid.org/0000-0002-9963-5924</orcidid><orcidid>https://orcid.org/0000-0002-8838-9609</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3263
ispartof Journal of organic chemistry, 2021-02, Vol.86 (3), p.2998-3007
issn 0022-3263
1520-6904
language eng
recordid cdi_proquest_miscellaneous_2481679055
source ACS Publications; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Chemistry
Chemistry, Organic
Physical Sciences
Science & Technology
title Computational Investigation into the Mechanistic Features of Bromide-Catalyzed Alcohol Oxidation by PhIO in Water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T03%3A19%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Investigation%20into%20the%20Mechanistic%20Features%20of%20Bromide-Catalyzed%20Alcohol%20Oxidation%20by%20PhIO%20in%20Water&rft.jtitle=Journal%20of%20organic%20chemistry&rft.au=Farshadfar,%20Kaveh&rft.date=2021-02-05&rft.volume=86&rft.issue=3&rft.spage=2998&rft.epage=3007&rft.pages=2998-3007&rft.issn=0022-3263&rft.eissn=1520-6904&rft_id=info:doi/10.1021/acs.joc.0c02903&rft_dat=%3Cproquest_cross%3E2481679055%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481679055&rft_id=info:pmid/33502190&rfr_iscdi=true