Best practices for artificial intelligence in life sciences research

•Use of artificial intelligence (AI) and machine learning (ML) methods in life sciences research calls for best practices.•At the core of any AI project should be quality data that are well-understood, consistent and use FAIR principles.•Models should be published with code, training and testing dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drug discovery today 2021-05, Vol.26 (5), p.1107-1110
Hauptverfasser: Makarov, Vladimir A., Stouch, Terry, Allgood, Brandon, Willis, Chris D., Lynch, Nick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1110
container_issue 5
container_start_page 1107
container_title Drug discovery today
container_volume 26
creator Makarov, Vladimir A.
Stouch, Terry
Allgood, Brandon
Willis, Chris D.
Lynch, Nick
description •Use of artificial intelligence (AI) and machine learning (ML) methods in life sciences research calls for best practices.•At the core of any AI project should be quality data that are well-understood, consistent and use FAIR principles.•Models should be published with code, training and testing data along with scientific results.•Research organizations should build skills in quality AI/ML modeling. We describe 11 best practices for the successful use of artificial intelligence and machine learning in pharmaceutical and biotechnology research at the data, technology and organizational management levels.
doi_str_mv 10.1016/j.drudis.2021.01.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2481133818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359644621000477</els_id><sourcerecordid>2481133818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-d22bfd619c20a62b3bca998ac660c16e4cc9d1e39c25979507d3f41971baa0ec3</originalsourceid><addsrcrecordid>eNp9kEtLw0AQxxdRbK1-A5EcvSTuK5vsRdD6hIIXPS-b2YluSZu6mwp-eze0ehQGZob5z-tHyDmjBaNMXS0LF7bOx4JTzgo6WnVApqyu6rysBT9MsSh1rqRUE3IS45JSxnWpjslECKmFLOWU3N1iHLJNsDB4wJi1fchsGHzrwdsu8-sBu86_4xowJVnnW8wi-DGPWcCINsDHKTlqbRfxbO9n5O3h_nX-lC9eHp_nN4scZKmH3HHetE4xDZxaxRvRgNW6tqAUBaZQAmjHUKR6qStd0sqJVjJdscZaiiBm5HI3dxP6z2063Kx8hHSgXWO_jYbLmjEhalYnqdxJIfQxBmzNJviVDd-GUTPyM0uz42dGfoaOVqW2i_2GbbNC99f0CywJrncCTH9-eQxmT8P5gDAY1_v_N_wApKSDYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481133818</pqid></control><display><type>article</type><title>Best practices for artificial intelligence in life sciences research</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Makarov, Vladimir A. ; Stouch, Terry ; Allgood, Brandon ; Willis, Chris D. ; Lynch, Nick</creator><creatorcontrib>Makarov, Vladimir A. ; Stouch, Terry ; Allgood, Brandon ; Willis, Chris D. ; Lynch, Nick</creatorcontrib><description>•Use of artificial intelligence (AI) and machine learning (ML) methods in life sciences research calls for best practices.•At the core of any AI project should be quality data that are well-understood, consistent and use FAIR principles.•Models should be published with code, training and testing data along with scientific results.•Research organizations should build skills in quality AI/ML modeling. We describe 11 best practices for the successful use of artificial intelligence and machine learning in pharmaceutical and biotechnology research at the data, technology and organizational management levels.</description><identifier>ISSN: 1359-6446</identifier><identifier>EISSN: 1878-5832</identifier><identifier>DOI: 10.1016/j.drudis.2021.01.017</identifier><identifier>PMID: 33493454</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Artificial Intelligence ; Biotechnology - methods ; Humans ; Machine Learning ; Research Design ; Technology, Pharmaceutical - methods</subject><ispartof>Drug discovery today, 2021-05, Vol.26 (5), p.1107-1110</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-d22bfd619c20a62b3bca998ac660c16e4cc9d1e39c25979507d3f41971baa0ec3</citedby><cites>FETCH-LOGICAL-c459t-d22bfd619c20a62b3bca998ac660c16e4cc9d1e39c25979507d3f41971baa0ec3</cites><orcidid>0000-0002-8218-1145 ; 0000-0002-1258-6710 ; 0000-0002-6639-6568 ; 0000-0002-8997-5298</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.drudis.2021.01.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33493454$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Makarov, Vladimir A.</creatorcontrib><creatorcontrib>Stouch, Terry</creatorcontrib><creatorcontrib>Allgood, Brandon</creatorcontrib><creatorcontrib>Willis, Chris D.</creatorcontrib><creatorcontrib>Lynch, Nick</creatorcontrib><title>Best practices for artificial intelligence in life sciences research</title><title>Drug discovery today</title><addtitle>Drug Discov Today</addtitle><description>•Use of artificial intelligence (AI) and machine learning (ML) methods in life sciences research calls for best practices.•At the core of any AI project should be quality data that are well-understood, consistent and use FAIR principles.•Models should be published with code, training and testing data along with scientific results.•Research organizations should build skills in quality AI/ML modeling. We describe 11 best practices for the successful use of artificial intelligence and machine learning in pharmaceutical and biotechnology research at the data, technology and organizational management levels.</description><subject>Artificial Intelligence</subject><subject>Biotechnology - methods</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Research Design</subject><subject>Technology, Pharmaceutical - methods</subject><issn>1359-6446</issn><issn>1878-5832</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLw0AQxxdRbK1-A5EcvSTuK5vsRdD6hIIXPS-b2YluSZu6mwp-eze0ehQGZob5z-tHyDmjBaNMXS0LF7bOx4JTzgo6WnVApqyu6rysBT9MsSh1rqRUE3IS45JSxnWpjslECKmFLOWU3N1iHLJNsDB4wJi1fchsGHzrwdsu8-sBu86_4xowJVnnW8wi-DGPWcCINsDHKTlqbRfxbO9n5O3h_nX-lC9eHp_nN4scZKmH3HHetE4xDZxaxRvRgNW6tqAUBaZQAmjHUKR6qStd0sqJVjJdscZaiiBm5HI3dxP6z2063Kx8hHSgXWO_jYbLmjEhalYnqdxJIfQxBmzNJviVDd-GUTPyM0uz42dGfoaOVqW2i_2GbbNC99f0CywJrncCTH9-eQxmT8P5gDAY1_v_N_wApKSDYQ</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Makarov, Vladimir A.</creator><creator>Stouch, Terry</creator><creator>Allgood, Brandon</creator><creator>Willis, Chris D.</creator><creator>Lynch, Nick</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8218-1145</orcidid><orcidid>https://orcid.org/0000-0002-1258-6710</orcidid><orcidid>https://orcid.org/0000-0002-6639-6568</orcidid><orcidid>https://orcid.org/0000-0002-8997-5298</orcidid></search><sort><creationdate>202105</creationdate><title>Best practices for artificial intelligence in life sciences research</title><author>Makarov, Vladimir A. ; Stouch, Terry ; Allgood, Brandon ; Willis, Chris D. ; Lynch, Nick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-d22bfd619c20a62b3bca998ac660c16e4cc9d1e39c25979507d3f41971baa0ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Biotechnology - methods</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Research Design</topic><topic>Technology, Pharmaceutical - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makarov, Vladimir A.</creatorcontrib><creatorcontrib>Stouch, Terry</creatorcontrib><creatorcontrib>Allgood, Brandon</creatorcontrib><creatorcontrib>Willis, Chris D.</creatorcontrib><creatorcontrib>Lynch, Nick</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Drug discovery today</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makarov, Vladimir A.</au><au>Stouch, Terry</au><au>Allgood, Brandon</au><au>Willis, Chris D.</au><au>Lynch, Nick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Best practices for artificial intelligence in life sciences research</atitle><jtitle>Drug discovery today</jtitle><addtitle>Drug Discov Today</addtitle><date>2021-05</date><risdate>2021</risdate><volume>26</volume><issue>5</issue><spage>1107</spage><epage>1110</epage><pages>1107-1110</pages><issn>1359-6446</issn><eissn>1878-5832</eissn><abstract>•Use of artificial intelligence (AI) and machine learning (ML) methods in life sciences research calls for best practices.•At the core of any AI project should be quality data that are well-understood, consistent and use FAIR principles.•Models should be published with code, training and testing data along with scientific results.•Research organizations should build skills in quality AI/ML modeling. We describe 11 best practices for the successful use of artificial intelligence and machine learning in pharmaceutical and biotechnology research at the data, technology and organizational management levels.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33493454</pmid><doi>10.1016/j.drudis.2021.01.017</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8218-1145</orcidid><orcidid>https://orcid.org/0000-0002-1258-6710</orcidid><orcidid>https://orcid.org/0000-0002-6639-6568</orcidid><orcidid>https://orcid.org/0000-0002-8997-5298</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6446
ispartof Drug discovery today, 2021-05, Vol.26 (5), p.1107-1110
issn 1359-6446
1878-5832
language eng
recordid cdi_proquest_miscellaneous_2481133818
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Artificial Intelligence
Biotechnology - methods
Humans
Machine Learning
Research Design
Technology, Pharmaceutical - methods
title Best practices for artificial intelligence in life sciences research
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Best%20practices%20for%20artificial%20intelligence%20in%20life%20sciences%20research&rft.jtitle=Drug%20discovery%20today&rft.au=Makarov,%20Vladimir%20A.&rft.date=2021-05&rft.volume=26&rft.issue=5&rft.spage=1107&rft.epage=1110&rft.pages=1107-1110&rft.issn=1359-6446&rft.eissn=1878-5832&rft_id=info:doi/10.1016/j.drudis.2021.01.017&rft_dat=%3Cproquest_cross%3E2481133818%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481133818&rft_id=info:pmid/33493454&rft_els_id=S1359644621000477&rfr_iscdi=true