Best practices for artificial intelligence in life sciences research
•Use of artificial intelligence (AI) and machine learning (ML) methods in life sciences research calls for best practices.•At the core of any AI project should be quality data that are well-understood, consistent and use FAIR principles.•Models should be published with code, training and testing dat...
Gespeichert in:
Veröffentlicht in: | Drug discovery today 2021-05, Vol.26 (5), p.1107-1110 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1110 |
---|---|
container_issue | 5 |
container_start_page | 1107 |
container_title | Drug discovery today |
container_volume | 26 |
creator | Makarov, Vladimir A. Stouch, Terry Allgood, Brandon Willis, Chris D. Lynch, Nick |
description | •Use of artificial intelligence (AI) and machine learning (ML) methods in life sciences research calls for best practices.•At the core of any AI project should be quality data that are well-understood, consistent and use FAIR principles.•Models should be published with code, training and testing data along with scientific results.•Research organizations should build skills in quality AI/ML modeling.
We describe 11 best practices for the successful use of artificial intelligence and machine learning in pharmaceutical and biotechnology research at the data, technology and organizational management levels. |
doi_str_mv | 10.1016/j.drudis.2021.01.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2481133818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359644621000477</els_id><sourcerecordid>2481133818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-d22bfd619c20a62b3bca998ac660c16e4cc9d1e39c25979507d3f41971baa0ec3</originalsourceid><addsrcrecordid>eNp9kEtLw0AQxxdRbK1-A5EcvSTuK5vsRdD6hIIXPS-b2YluSZu6mwp-eze0ehQGZob5z-tHyDmjBaNMXS0LF7bOx4JTzgo6WnVApqyu6rysBT9MsSh1rqRUE3IS45JSxnWpjslECKmFLOWU3N1iHLJNsDB4wJi1fchsGHzrwdsu8-sBu86_4xowJVnnW8wi-DGPWcCINsDHKTlqbRfxbO9n5O3h_nX-lC9eHp_nN4scZKmH3HHetE4xDZxaxRvRgNW6tqAUBaZQAmjHUKR6qStd0sqJVjJdscZaiiBm5HI3dxP6z2063Kx8hHSgXWO_jYbLmjEhalYnqdxJIfQxBmzNJviVDd-GUTPyM0uz42dGfoaOVqW2i_2GbbNC99f0CywJrncCTH9-eQxmT8P5gDAY1_v_N_wApKSDYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481133818</pqid></control><display><type>article</type><title>Best practices for artificial intelligence in life sciences research</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Makarov, Vladimir A. ; Stouch, Terry ; Allgood, Brandon ; Willis, Chris D. ; Lynch, Nick</creator><creatorcontrib>Makarov, Vladimir A. ; Stouch, Terry ; Allgood, Brandon ; Willis, Chris D. ; Lynch, Nick</creatorcontrib><description>•Use of artificial intelligence (AI) and machine learning (ML) methods in life sciences research calls for best practices.•At the core of any AI project should be quality data that are well-understood, consistent and use FAIR principles.•Models should be published with code, training and testing data along with scientific results.•Research organizations should build skills in quality AI/ML modeling.
We describe 11 best practices for the successful use of artificial intelligence and machine learning in pharmaceutical and biotechnology research at the data, technology and organizational management levels.</description><identifier>ISSN: 1359-6446</identifier><identifier>EISSN: 1878-5832</identifier><identifier>DOI: 10.1016/j.drudis.2021.01.017</identifier><identifier>PMID: 33493454</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Artificial Intelligence ; Biotechnology - methods ; Humans ; Machine Learning ; Research Design ; Technology, Pharmaceutical - methods</subject><ispartof>Drug discovery today, 2021-05, Vol.26 (5), p.1107-1110</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-d22bfd619c20a62b3bca998ac660c16e4cc9d1e39c25979507d3f41971baa0ec3</citedby><cites>FETCH-LOGICAL-c459t-d22bfd619c20a62b3bca998ac660c16e4cc9d1e39c25979507d3f41971baa0ec3</cites><orcidid>0000-0002-8218-1145 ; 0000-0002-1258-6710 ; 0000-0002-6639-6568 ; 0000-0002-8997-5298</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.drudis.2021.01.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33493454$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Makarov, Vladimir A.</creatorcontrib><creatorcontrib>Stouch, Terry</creatorcontrib><creatorcontrib>Allgood, Brandon</creatorcontrib><creatorcontrib>Willis, Chris D.</creatorcontrib><creatorcontrib>Lynch, Nick</creatorcontrib><title>Best practices for artificial intelligence in life sciences research</title><title>Drug discovery today</title><addtitle>Drug Discov Today</addtitle><description>•Use of artificial intelligence (AI) and machine learning (ML) methods in life sciences research calls for best practices.•At the core of any AI project should be quality data that are well-understood, consistent and use FAIR principles.•Models should be published with code, training and testing data along with scientific results.•Research organizations should build skills in quality AI/ML modeling.
We describe 11 best practices for the successful use of artificial intelligence and machine learning in pharmaceutical and biotechnology research at the data, technology and organizational management levels.</description><subject>Artificial Intelligence</subject><subject>Biotechnology - methods</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Research Design</subject><subject>Technology, Pharmaceutical - methods</subject><issn>1359-6446</issn><issn>1878-5832</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLw0AQxxdRbK1-A5EcvSTuK5vsRdD6hIIXPS-b2YluSZu6mwp-eze0ehQGZob5z-tHyDmjBaNMXS0LF7bOx4JTzgo6WnVApqyu6rysBT9MsSh1rqRUE3IS45JSxnWpjslECKmFLOWU3N1iHLJNsDB4wJi1fchsGHzrwdsu8-sBu86_4xowJVnnW8wi-DGPWcCINsDHKTlqbRfxbO9n5O3h_nX-lC9eHp_nN4scZKmH3HHetE4xDZxaxRvRgNW6tqAUBaZQAmjHUKR6qStd0sqJVjJdscZaiiBm5HI3dxP6z2063Kx8hHSgXWO_jYbLmjEhalYnqdxJIfQxBmzNJviVDd-GUTPyM0uz42dGfoaOVqW2i_2GbbNC99f0CywJrncCTH9-eQxmT8P5gDAY1_v_N_wApKSDYQ</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Makarov, Vladimir A.</creator><creator>Stouch, Terry</creator><creator>Allgood, Brandon</creator><creator>Willis, Chris D.</creator><creator>Lynch, Nick</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8218-1145</orcidid><orcidid>https://orcid.org/0000-0002-1258-6710</orcidid><orcidid>https://orcid.org/0000-0002-6639-6568</orcidid><orcidid>https://orcid.org/0000-0002-8997-5298</orcidid></search><sort><creationdate>202105</creationdate><title>Best practices for artificial intelligence in life sciences research</title><author>Makarov, Vladimir A. ; Stouch, Terry ; Allgood, Brandon ; Willis, Chris D. ; Lynch, Nick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-d22bfd619c20a62b3bca998ac660c16e4cc9d1e39c25979507d3f41971baa0ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Biotechnology - methods</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Research Design</topic><topic>Technology, Pharmaceutical - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makarov, Vladimir A.</creatorcontrib><creatorcontrib>Stouch, Terry</creatorcontrib><creatorcontrib>Allgood, Brandon</creatorcontrib><creatorcontrib>Willis, Chris D.</creatorcontrib><creatorcontrib>Lynch, Nick</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Drug discovery today</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makarov, Vladimir A.</au><au>Stouch, Terry</au><au>Allgood, Brandon</au><au>Willis, Chris D.</au><au>Lynch, Nick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Best practices for artificial intelligence in life sciences research</atitle><jtitle>Drug discovery today</jtitle><addtitle>Drug Discov Today</addtitle><date>2021-05</date><risdate>2021</risdate><volume>26</volume><issue>5</issue><spage>1107</spage><epage>1110</epage><pages>1107-1110</pages><issn>1359-6446</issn><eissn>1878-5832</eissn><abstract>•Use of artificial intelligence (AI) and machine learning (ML) methods in life sciences research calls for best practices.•At the core of any AI project should be quality data that are well-understood, consistent and use FAIR principles.•Models should be published with code, training and testing data along with scientific results.•Research organizations should build skills in quality AI/ML modeling.
We describe 11 best practices for the successful use of artificial intelligence and machine learning in pharmaceutical and biotechnology research at the data, technology and organizational management levels.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33493454</pmid><doi>10.1016/j.drudis.2021.01.017</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8218-1145</orcidid><orcidid>https://orcid.org/0000-0002-1258-6710</orcidid><orcidid>https://orcid.org/0000-0002-6639-6568</orcidid><orcidid>https://orcid.org/0000-0002-8997-5298</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6446 |
ispartof | Drug discovery today, 2021-05, Vol.26 (5), p.1107-1110 |
issn | 1359-6446 1878-5832 |
language | eng |
recordid | cdi_proquest_miscellaneous_2481133818 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Artificial Intelligence Biotechnology - methods Humans Machine Learning Research Design Technology, Pharmaceutical - methods |
title | Best practices for artificial intelligence in life sciences research |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Best%20practices%20for%20artificial%20intelligence%20in%20life%20sciences%20research&rft.jtitle=Drug%20discovery%20today&rft.au=Makarov,%20Vladimir%20A.&rft.date=2021-05&rft.volume=26&rft.issue=5&rft.spage=1107&rft.epage=1110&rft.pages=1107-1110&rft.issn=1359-6446&rft.eissn=1878-5832&rft_id=info:doi/10.1016/j.drudis.2021.01.017&rft_dat=%3Cproquest_cross%3E2481133818%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481133818&rft_id=info:pmid/33493454&rft_els_id=S1359644621000477&rfr_iscdi=true |