Structure-Property Relations in Lanthanide Borate Glasses

Glass formation in the system Ln2O3-B2O3 (Ln = Nd, Sm) was studied. Glasses could be formed in the range from 0 to 28 mol pct rare-earth oxide (Ln2O3), but liquid immiscibility in these systems limits the range of homogeneous glasses to 0 to 1.5 and 25 to 28 mol pct Ln2O3. The infrared spectra indic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 1985-07, Vol.68 (7), p.368-371
Hauptverfasser: CHAKRABORTY, INDRA N., DAY, DELBERT E., LAPP, JOSEF C., SHELBY, JAMES E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 371
container_issue 7
container_start_page 368
container_title Journal of the American Ceramic Society
container_volume 68
creator CHAKRABORTY, INDRA N.
DAY, DELBERT E.
LAPP, JOSEF C.
SHELBY, JAMES E.
description Glass formation in the system Ln2O3-B2O3 (Ln = Nd, Sm) was studied. Glasses could be formed in the range from 0 to 28 mol pct rare-earth oxide (Ln2O3), but liquid immiscibility in these systems limits the range of homogeneous glasses to 0 to 1.5 and 25 to 28 mol pct Ln2O3. The infrared spectra indicate that the rare-earth-rich glasses are structurally similar to rare-earth metaborates (LnB3O6) which contain (B3O6)-infinity chains. The variation in density, transformation temperature, thermal expansion coefficient, and transformation-range viscosity of these glasses with the size of the rare-earth ion is discussed. Glasses near the metaborate composition have a transformation temperature of about 700 C, which is high for binary borate glasses. Glasses could not be formed in the systems Eu2O3-, Gd2O3-, Ho2O3-, and Er2O3-B2O3, even by quenching at 1300 C/s. The sudden lack of glass formation in the system Ln2O3-B2O3 with Ln(3+) ions smaller than Sm(3+) is explained on the basis of the size effect of the Ln(3+) ion on the stability of (B3O6)-infinity chains in these metaborates.
doi_str_mv 10.1111/j.1151-2916.1985.tb10144.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_24808746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1298373856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5308-c4b4cf9e7b3b972195056780473fa789bf7e698b0a09569f7d7d025d4ab521ac3</originalsourceid><addsrcrecordid>eNqVkEtvEzEUhUcIJELhH7AYAWI3qd8PNqiENi2KADWgLq07jkdMmHpS2yOSf19PJ-qCXb25ss53z7k6RfEOoznO73SbB8cV0VjMsVZ8nmqMMGPz_bNihvlRel7MEEKkkoqgl8WrGLf5m3E2K_Q6hcGmIbjqZ-h3LqRDee06SG3vY9n6cgU-_QHfblz5pQ-QXLnsIEYXXxcvGuiie3OcJ8Xvi_Nfi8tq9WN5tThbVZZTpCrLamYb7WRNay0J1hxxIRVikjYgla4b6YRWNQKkudCN3MgNInzDoOYEg6UnxcfJdxf6u8HFZG7baF3XgXf9EA1hCinJRAbf_wdu-yH4fJvBRCsqqeIj9WmibOhjDK4xu9DeQjgYjMzYqdmasVMzFmfGTs2xU7PPyx-OERAtdE0Ab9v46KC4ZEyQjH2esH9t5w5PCDDfzhbnVKjs8HZy8BDB-BTiA4mQQILRLFeT3Mbk9o8BEP4aIank5ub70izWX9Xl-lqZG3oPQ6GhYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1298373856</pqid></control><display><type>article</type><title>Structure-Property Relations in Lanthanide Borate Glasses</title><source>Wiley Online Library Journals Frontfile Complete</source><source>NASA Technical Reports Server</source><source>Periodicals Index Online</source><creator>CHAKRABORTY, INDRA N. ; DAY, DELBERT E. ; LAPP, JOSEF C. ; SHELBY, JAMES E.</creator><creatorcontrib>CHAKRABORTY, INDRA N. ; DAY, DELBERT E. ; LAPP, JOSEF C. ; SHELBY, JAMES E.</creatorcontrib><description>Glass formation in the system Ln2O3-B2O3 (Ln = Nd, Sm) was studied. Glasses could be formed in the range from 0 to 28 mol pct rare-earth oxide (Ln2O3), but liquid immiscibility in these systems limits the range of homogeneous glasses to 0 to 1.5 and 25 to 28 mol pct Ln2O3. The infrared spectra indicate that the rare-earth-rich glasses are structurally similar to rare-earth metaborates (LnB3O6) which contain (B3O6)-infinity chains. The variation in density, transformation temperature, thermal expansion coefficient, and transformation-range viscosity of these glasses with the size of the rare-earth ion is discussed. Glasses near the metaborate composition have a transformation temperature of about 700 C, which is high for binary borate glasses. Glasses could not be formed in the systems Eu2O3-, Gd2O3-, Ho2O3-, and Er2O3-B2O3, even by quenching at 1300 C/s. The sudden lack of glass formation in the system Ln2O3-B2O3 with Ln(3+) ions smaller than Sm(3+) is explained on the basis of the size effect of the Ln(3+) ion on the stability of (B3O6)-infinity chains in these metaborates.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/j.1151-2916.1985.tb10144.x</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; Building materials. Ceramics. Glasses ; Chemical industry and chemicals ; Exact sciences and technology ; Glasses ; Nonmetallic Materials ; Special glasses</subject><ispartof>Journal of the American Ceramic Society, 1985-07, Vol.68 (7), p.368-371</ispartof><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5308-c4b4cf9e7b3b972195056780473fa789bf7e698b0a09569f7d7d025d4ab521ac3</citedby><cites>FETCH-LOGICAL-c5308-c4b4cf9e7b3b972195056780473fa789bf7e698b0a09569f7d7d025d4ab521ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1151-2916.1985.tb10144.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1151-2916.1985.tb10144.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27846,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8574462$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CHAKRABORTY, INDRA N.</creatorcontrib><creatorcontrib>DAY, DELBERT E.</creatorcontrib><creatorcontrib>LAPP, JOSEF C.</creatorcontrib><creatorcontrib>SHELBY, JAMES E.</creatorcontrib><title>Structure-Property Relations in Lanthanide Borate Glasses</title><title>Journal of the American Ceramic Society</title><description>Glass formation in the system Ln2O3-B2O3 (Ln = Nd, Sm) was studied. Glasses could be formed in the range from 0 to 28 mol pct rare-earth oxide (Ln2O3), but liquid immiscibility in these systems limits the range of homogeneous glasses to 0 to 1.5 and 25 to 28 mol pct Ln2O3. The infrared spectra indicate that the rare-earth-rich glasses are structurally similar to rare-earth metaborates (LnB3O6) which contain (B3O6)-infinity chains. The variation in density, transformation temperature, thermal expansion coefficient, and transformation-range viscosity of these glasses with the size of the rare-earth ion is discussed. Glasses near the metaborate composition have a transformation temperature of about 700 C, which is high for binary borate glasses. Glasses could not be formed in the systems Eu2O3-, Gd2O3-, Ho2O3-, and Er2O3-B2O3, even by quenching at 1300 C/s. The sudden lack of glass formation in the system Ln2O3-B2O3 with Ln(3+) ions smaller than Sm(3+) is explained on the basis of the size effect of the Ln(3+) ion on the stability of (B3O6)-infinity chains in these metaborates.</description><subject>Applied sciences</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Chemical industry and chemicals</subject><subject>Exact sciences and technology</subject><subject>Glasses</subject><subject>Nonmetallic Materials</subject><subject>Special glasses</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><sourceid>K30</sourceid><recordid>eNqVkEtvEzEUhUcIJELhH7AYAWI3qd8PNqiENi2KADWgLq07jkdMmHpS2yOSf19PJ-qCXb25ss53z7k6RfEOoznO73SbB8cV0VjMsVZ8nmqMMGPz_bNihvlRel7MEEKkkoqgl8WrGLf5m3E2K_Q6hcGmIbjqZ-h3LqRDee06SG3vY9n6cgU-_QHfblz5pQ-QXLnsIEYXXxcvGuiie3OcJ8Xvi_Nfi8tq9WN5tThbVZZTpCrLamYb7WRNay0J1hxxIRVikjYgla4b6YRWNQKkudCN3MgNInzDoOYEg6UnxcfJdxf6u8HFZG7baF3XgXf9EA1hCinJRAbf_wdu-yH4fJvBRCsqqeIj9WmibOhjDK4xu9DeQjgYjMzYqdmasVMzFmfGTs2xU7PPyx-OERAtdE0Ab9v46KC4ZEyQjH2esH9t5w5PCDDfzhbnVKjs8HZy8BDB-BTiA4mQQILRLFeT3Mbk9o8BEP4aIank5ub70izWX9Xl-lqZG3oPQ6GhYg</recordid><startdate>198507</startdate><enddate>198507</enddate><creator>CHAKRABORTY, INDRA N.</creator><creator>DAY, DELBERT E.</creator><creator>LAPP, JOSEF C.</creator><creator>SHELBY, JAMES E.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>American Ceramic Society</general><scope>BSCLL</scope><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HDMVH</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>198507</creationdate><title>Structure-Property Relations in Lanthanide Borate Glasses</title><author>CHAKRABORTY, INDRA N. ; DAY, DELBERT E. ; LAPP, JOSEF C. ; SHELBY, JAMES E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5308-c4b4cf9e7b3b972195056780473fa789bf7e698b0a09569f7d7d025d4ab521ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Applied sciences</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Chemical industry and chemicals</topic><topic>Exact sciences and technology</topic><topic>Glasses</topic><topic>Nonmetallic Materials</topic><topic>Special glasses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHAKRABORTY, INDRA N.</creatorcontrib><creatorcontrib>DAY, DELBERT E.</creatorcontrib><creatorcontrib>LAPP, JOSEF C.</creatorcontrib><creatorcontrib>SHELBY, JAMES E.</creatorcontrib><collection>Istex</collection><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 15</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHAKRABORTY, INDRA N.</au><au>DAY, DELBERT E.</au><au>LAPP, JOSEF C.</au><au>SHELBY, JAMES E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure-Property Relations in Lanthanide Borate Glasses</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>1985-07</date><risdate>1985</risdate><volume>68</volume><issue>7</issue><spage>368</spage><epage>371</epage><pages>368-371</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>Glass formation in the system Ln2O3-B2O3 (Ln = Nd, Sm) was studied. Glasses could be formed in the range from 0 to 28 mol pct rare-earth oxide (Ln2O3), but liquid immiscibility in these systems limits the range of homogeneous glasses to 0 to 1.5 and 25 to 28 mol pct Ln2O3. The infrared spectra indicate that the rare-earth-rich glasses are structurally similar to rare-earth metaborates (LnB3O6) which contain (B3O6)-infinity chains. The variation in density, transformation temperature, thermal expansion coefficient, and transformation-range viscosity of these glasses with the size of the rare-earth ion is discussed. Glasses near the metaborate composition have a transformation temperature of about 700 C, which is high for binary borate glasses. Glasses could not be formed in the systems Eu2O3-, Gd2O3-, Ho2O3-, and Er2O3-B2O3, even by quenching at 1300 C/s. The sudden lack of glass formation in the system Ln2O3-B2O3 with Ln(3+) ions smaller than Sm(3+) is explained on the basis of the size effect of the Ln(3+) ion on the stability of (B3O6)-infinity chains in these metaborates.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1151-2916.1985.tb10144.x</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 1985-07, Vol.68 (7), p.368-371
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_miscellaneous_24808746
source Wiley Online Library Journals Frontfile Complete; NASA Technical Reports Server; Periodicals Index Online
subjects Applied sciences
Building materials. Ceramics. Glasses
Chemical industry and chemicals
Exact sciences and technology
Glasses
Nonmetallic Materials
Special glasses
title Structure-Property Relations in Lanthanide Borate Glasses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A15%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure-Property%20Relations%20in%20Lanthanide%20Borate%20Glasses&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=CHAKRABORTY,%20INDRA%20N.&rft.date=1985-07&rft.volume=68&rft.issue=7&rft.spage=368&rft.epage=371&rft.pages=368-371&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/j.1151-2916.1985.tb10144.x&rft_dat=%3Cproquest_cross%3E1298373856%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1298373856&rft_id=info:pmid/&rfr_iscdi=true