Designing the Bending Stiffness of 2D Material Heterostructures

2D monolayers represent some of the most deformable inorganic materials, with bending stiffnesses approaching those of lipid bilayers. Achieving 2D heterostructures with similar properties would enable a new class of deformable devices orders of magnitude softer than conventional thin‐film electroni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-03, Vol.33 (9), p.e2007269-n/a
Hauptverfasser: Yu, Jaehyung, Han, Edmund, Hossain, M. Abir, Watanabe, Kenji, Taniguchi, Takashi, Ertekin, Elif, Zande, Arend M., Huang, Pinshane Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page e2007269
container_title Advanced materials (Weinheim)
container_volume 33
creator Yu, Jaehyung
Han, Edmund
Hossain, M. Abir
Watanabe, Kenji
Taniguchi, Takashi
Ertekin, Elif
Zande, Arend M.
Huang, Pinshane Y.
description 2D monolayers represent some of the most deformable inorganic materials, with bending stiffnesses approaching those of lipid bilayers. Achieving 2D heterostructures with similar properties would enable a new class of deformable devices orders of magnitude softer than conventional thin‐film electronics. Here, by systematically introducing low‐friction twisted or heterointerfaces, interfacial engineering is leveraged to tailor the bending stiffness of 2D heterostructures over several hundred percent. A bending model is developed and experimentally validated to predict and design the deformability of 2D heterostructures and how it evolves with the composition of the stack, the atomic arrangements at the interfaces, and the geometry of the structure. Notably, when each atomic layer is separated by heterointerfaces, the total bending stiffness reaches a theoretical minimum, equal to the sum of the constituent layers regardless of scale of deformation—lending the extreme deformability of 2D monolayers to device‐compatible multilayers. Interfacial engineering is used to tune the bending stiffness of 2D material heterostructures composed of graphene and MoS2 by over several hundred percent. The incorporation of twisted or heterointerfaces facilitates interlayer slip, which dramatically softens the 2D stacks. A bending model is developed to predict and design the deformability of 2D heterostructures as a function of composition, stacking order, and geometry of the structure.
doi_str_mv 10.1002/adma.202007269
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2480754432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480754432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4399-bc1164eede6ce8363fad5de1a3e234b5a7e7104e9efd6a7082fb634f747d86893</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EoqWwMqJILCwp_opjT6i0QJFaMQCz5STnkipNip0I9d_jqqVILEz3Ds-9unsQuiR4SDCmt6ZYmSHFFOOUCnWE-iShJOZYJceojxVLYiW47KEz75cYYyWwOEU9xrgikpI-upuALxd1WS-i9gOie6iLbX5tS2tr8D5qbEQn0dy04EpTRVMIofGt6_K2c-DP0Yk1lYeL_Ryg98eHt_E0nr08PY9HszjnTKk4ywkRHKAAkYNkgllTJAUQw4AyniUmhZRgDgpsIUyKJbWZYNymPC2kkIoN0M2ud-2azw58q1elz6GqTA1N5zXlEqcJ54wG9PoPumw6V4frAqW45MGWDNRwR-XhHe_A6rUrV8ZtNMF6q1Zv1eqD2rBwta_tshUUB_zHZQDUDvgqK9j8U6dHk_not_wb8auD_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494840208</pqid></control><display><type>article</type><title>Designing the Bending Stiffness of 2D Material Heterostructures</title><source>Wiley-Blackwell Journals</source><creator>Yu, Jaehyung ; Han, Edmund ; Hossain, M. Abir ; Watanabe, Kenji ; Taniguchi, Takashi ; Ertekin, Elif ; Zande, Arend M. ; Huang, Pinshane Y.</creator><creatorcontrib>Yu, Jaehyung ; Han, Edmund ; Hossain, M. Abir ; Watanabe, Kenji ; Taniguchi, Takashi ; Ertekin, Elif ; Zande, Arend M. ; Huang, Pinshane Y.</creatorcontrib><description>2D monolayers represent some of the most deformable inorganic materials, with bending stiffnesses approaching those of lipid bilayers. Achieving 2D heterostructures with similar properties would enable a new class of deformable devices orders of magnitude softer than conventional thin‐film electronics. Here, by systematically introducing low‐friction twisted or heterointerfaces, interfacial engineering is leveraged to tailor the bending stiffness of 2D heterostructures over several hundred percent. A bending model is developed and experimentally validated to predict and design the deformability of 2D heterostructures and how it evolves with the composition of the stack, the atomic arrangements at the interfaces, and the geometry of the structure. Notably, when each atomic layer is separated by heterointerfaces, the total bending stiffness reaches a theoretical minimum, equal to the sum of the constituent layers regardless of scale of deformation—lending the extreme deformability of 2D monolayers to device‐compatible multilayers. Interfacial engineering is used to tune the bending stiffness of 2D material heterostructures composed of graphene and MoS2 by over several hundred percent. The incorporation of twisted or heterointerfaces facilitates interlayer slip, which dramatically softens the 2D stacks. A bending model is developed to predict and design the deformability of 2D heterostructures as a function of composition, stacking order, and geometry of the structure.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202007269</identifier><identifier>PMID: 33491821</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>2D heterostructures ; Bending ; bending mechanics ; deformable materials ; electron microscopy ; Formability ; Heterostructures ; Inorganic materials ; interfacial engineering ; Lipids ; Materials science ; Monolayers ; Multilayers ; Stiffness ; Two dimensional materials ; Two dimensional models</subject><ispartof>Advanced materials (Weinheim), 2021-03, Vol.33 (9), p.e2007269-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4399-bc1164eede6ce8363fad5de1a3e234b5a7e7104e9efd6a7082fb634f747d86893</citedby><cites>FETCH-LOGICAL-c4399-bc1164eede6ce8363fad5de1a3e234b5a7e7104e9efd6a7082fb634f747d86893</cites><orcidid>0000-0002-7816-1803 ; 0000-0002-9925-2309 ; 0000-0002-1910-9052 ; 0000-0002-1467-3105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202007269$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202007269$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33491821$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Jaehyung</creatorcontrib><creatorcontrib>Han, Edmund</creatorcontrib><creatorcontrib>Hossain, M. Abir</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Ertekin, Elif</creatorcontrib><creatorcontrib>Zande, Arend M.</creatorcontrib><creatorcontrib>Huang, Pinshane Y.</creatorcontrib><title>Designing the Bending Stiffness of 2D Material Heterostructures</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>2D monolayers represent some of the most deformable inorganic materials, with bending stiffnesses approaching those of lipid bilayers. Achieving 2D heterostructures with similar properties would enable a new class of deformable devices orders of magnitude softer than conventional thin‐film electronics. Here, by systematically introducing low‐friction twisted or heterointerfaces, interfacial engineering is leveraged to tailor the bending stiffness of 2D heterostructures over several hundred percent. A bending model is developed and experimentally validated to predict and design the deformability of 2D heterostructures and how it evolves with the composition of the stack, the atomic arrangements at the interfaces, and the geometry of the structure. Notably, when each atomic layer is separated by heterointerfaces, the total bending stiffness reaches a theoretical minimum, equal to the sum of the constituent layers regardless of scale of deformation—lending the extreme deformability of 2D monolayers to device‐compatible multilayers. Interfacial engineering is used to tune the bending stiffness of 2D material heterostructures composed of graphene and MoS2 by over several hundred percent. The incorporation of twisted or heterointerfaces facilitates interlayer slip, which dramatically softens the 2D stacks. A bending model is developed to predict and design the deformability of 2D heterostructures as a function of composition, stacking order, and geometry of the structure.</description><subject>2D heterostructures</subject><subject>Bending</subject><subject>bending mechanics</subject><subject>deformable materials</subject><subject>electron microscopy</subject><subject>Formability</subject><subject>Heterostructures</subject><subject>Inorganic materials</subject><subject>interfacial engineering</subject><subject>Lipids</subject><subject>Materials science</subject><subject>Monolayers</subject><subject>Multilayers</subject><subject>Stiffness</subject><subject>Two dimensional materials</subject><subject>Two dimensional models</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EoqWwMqJILCwp_opjT6i0QJFaMQCz5STnkipNip0I9d_jqqVILEz3Ds-9unsQuiR4SDCmt6ZYmSHFFOOUCnWE-iShJOZYJceojxVLYiW47KEz75cYYyWwOEU9xrgikpI-upuALxd1WS-i9gOie6iLbX5tS2tr8D5qbEQn0dy04EpTRVMIofGt6_K2c-DP0Yk1lYeL_Ryg98eHt_E0nr08PY9HszjnTKk4ywkRHKAAkYNkgllTJAUQw4AyniUmhZRgDgpsIUyKJbWZYNymPC2kkIoN0M2ud-2azw58q1elz6GqTA1N5zXlEqcJ54wG9PoPumw6V4frAqW45MGWDNRwR-XhHe_A6rUrV8ZtNMF6q1Zv1eqD2rBwta_tshUUB_zHZQDUDvgqK9j8U6dHk_not_wb8auD_g</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Yu, Jaehyung</creator><creator>Han, Edmund</creator><creator>Hossain, M. Abir</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Ertekin, Elif</creator><creator>Zande, Arend M.</creator><creator>Huang, Pinshane Y.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7816-1803</orcidid><orcidid>https://orcid.org/0000-0002-9925-2309</orcidid><orcidid>https://orcid.org/0000-0002-1910-9052</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid></search><sort><creationdate>20210301</creationdate><title>Designing the Bending Stiffness of 2D Material Heterostructures</title><author>Yu, Jaehyung ; Han, Edmund ; Hossain, M. Abir ; Watanabe, Kenji ; Taniguchi, Takashi ; Ertekin, Elif ; Zande, Arend M. ; Huang, Pinshane Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4399-bc1164eede6ce8363fad5de1a3e234b5a7e7104e9efd6a7082fb634f747d86893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2D heterostructures</topic><topic>Bending</topic><topic>bending mechanics</topic><topic>deformable materials</topic><topic>electron microscopy</topic><topic>Formability</topic><topic>Heterostructures</topic><topic>Inorganic materials</topic><topic>interfacial engineering</topic><topic>Lipids</topic><topic>Materials science</topic><topic>Monolayers</topic><topic>Multilayers</topic><topic>Stiffness</topic><topic>Two dimensional materials</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Jaehyung</creatorcontrib><creatorcontrib>Han, Edmund</creatorcontrib><creatorcontrib>Hossain, M. Abir</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Ertekin, Elif</creatorcontrib><creatorcontrib>Zande, Arend M.</creatorcontrib><creatorcontrib>Huang, Pinshane Y.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Jaehyung</au><au>Han, Edmund</au><au>Hossain, M. Abir</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Ertekin, Elif</au><au>Zande, Arend M.</au><au>Huang, Pinshane Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing the Bending Stiffness of 2D Material Heterostructures</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>33</volume><issue>9</issue><spage>e2007269</spage><epage>n/a</epage><pages>e2007269-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>2D monolayers represent some of the most deformable inorganic materials, with bending stiffnesses approaching those of lipid bilayers. Achieving 2D heterostructures with similar properties would enable a new class of deformable devices orders of magnitude softer than conventional thin‐film electronics. Here, by systematically introducing low‐friction twisted or heterointerfaces, interfacial engineering is leveraged to tailor the bending stiffness of 2D heterostructures over several hundred percent. A bending model is developed and experimentally validated to predict and design the deformability of 2D heterostructures and how it evolves with the composition of the stack, the atomic arrangements at the interfaces, and the geometry of the structure. Notably, when each atomic layer is separated by heterointerfaces, the total bending stiffness reaches a theoretical minimum, equal to the sum of the constituent layers regardless of scale of deformation—lending the extreme deformability of 2D monolayers to device‐compatible multilayers. Interfacial engineering is used to tune the bending stiffness of 2D material heterostructures composed of graphene and MoS2 by over several hundred percent. The incorporation of twisted or heterointerfaces facilitates interlayer slip, which dramatically softens the 2D stacks. A bending model is developed to predict and design the deformability of 2D heterostructures as a function of composition, stacking order, and geometry of the structure.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33491821</pmid><doi>10.1002/adma.202007269</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7816-1803</orcidid><orcidid>https://orcid.org/0000-0002-9925-2309</orcidid><orcidid>https://orcid.org/0000-0002-1910-9052</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-03, Vol.33 (9), p.e2007269-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2480754432
source Wiley-Blackwell Journals
subjects 2D heterostructures
Bending
bending mechanics
deformable materials
electron microscopy
Formability
Heterostructures
Inorganic materials
interfacial engineering
Lipids
Materials science
Monolayers
Multilayers
Stiffness
Two dimensional materials
Two dimensional models
title Designing the Bending Stiffness of 2D Material Heterostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T22%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20the%20Bending%20Stiffness%20of%202D%20Material%20Heterostructures&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Yu,%20Jaehyung&rft.date=2021-03-01&rft.volume=33&rft.issue=9&rft.spage=e2007269&rft.epage=n/a&rft.pages=e2007269-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202007269&rft_dat=%3Cproquest_cross%3E2480754432%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2494840208&rft_id=info:pmid/33491821&rfr_iscdi=true