Remobilization and hypoxia-dependent migration of phosphorus at the coastal sediment-water interface
Sediment internal phosphorus (P) loading can be tightly associated with overlying water hypoxia. However, the effects of long-term seasonal hypoxia on the geochemical transition of P in P-poor coastal sediment and how this transition is linked to the early diagenesis of iron (Fe), sulfur (S) and car...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2021-06, Vol.411, p.125078-125078, Article 125078 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 125078 |
---|---|
container_issue | |
container_start_page | 125078 |
container_title | Journal of hazardous materials |
container_volume | 411 |
creator | Pan, Feng Guo, Zhanrong Cai, Yu Fu, Yuyao Wu, Xindi Liu, Huatai Wang, Xinhong |
description | Sediment internal phosphorus (P) loading can be tightly associated with overlying water hypoxia. However, the effects of long-term seasonal hypoxia on the geochemical transition of P in P-poor coastal sediment and how this transition is linked to the early diagenesis of iron (Fe), sulfur (S) and carbon are still poorly understood. Here, we conducted a one-year monthly field investigation to study the (im)mobilization and migration of P among coastal sediment, porewater and overlying water. The coherent distribution of soluble Fe and mobile P and decoupled distribution of labile S (soluble sulfide) and mobile P in the depth profiles indicate that the redox cycling of Fe (but not S) dominates P mobility. Nevertheless, the monthly variation in the porewater soluble reactive P (SRP) presented significant positive correlations with that of the overlying water SRP. This finding highlights that hypoxia-fueled SRP migration from overlying water rather than weak diagenetic P mobilization due to deficient organic matter and solid labile P is the crucial factor responsible for internal P mobility over long time scales. Although SRP tends to migrate from overlying water to porewater, the potential risk of sediment labile P remobilization and reliberation to the overlying water is considerable.
[Display omitted]
•High-resolution temporal-spatial distributions of mobile P, Fe and S were explored.•Redox cycling of Fe but not S dominates sediment P mobility in sediment columns.•Hypoxia-fueled SRP migration dominates porewater P mobility over a long-time scale.•There is great risk of converting sediment into a P source for ocean in the future. |
doi_str_mv | 10.1016/j.jhazmat.2021.125078 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2480750613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030438942100042X</els_id><sourcerecordid>2480750613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-a21089a6c35028e2563164dd662e1ebce88402314238651b3a327dd5c54c38933</originalsourceid><addsrcrecordid>eNqFkEFvVCEQgInR2LX6EzQcvbwVGODRkzFNW5s0aWL0TFiYddm893gCq21_vWze6rWHmTnwzQzzEfKeszVnXH_ar_c79zS6uhZM8DUXivXmBVlx00MHAPolWTFgsgNzIc_Im1L2jDHeK_manAFIowXwFQnfcEybOMQnV2OaqJsC3T3O6SG6LuCMU8Cp0jH-zMt72tJ5l0qLfCjUVVp3SH1ypbqBFgxxbHz3x1XMNE4tb53Ht-TV1g0F353qOflxffX98mt3d39ze_nlrvOgVe2c4MxcOO1BMWFQKA1cyxC0Fshx49EYydqvpQCjFd-AA9GHoLySvl0JcE4-LnPnnH4dsFQ7xuJxGNyE6VCskIb1iml-RNWC-pxKybi1c46jy4-WM3sUbPf2JNgeBdtFcOv7cFpx2IwY_nf9M9qAzwuA7dDfEbMtPuLkm5qMvtqQ4jMr_gIcjI9m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480750613</pqid></control><display><type>article</type><title>Remobilization and hypoxia-dependent migration of phosphorus at the coastal sediment-water interface</title><source>Elsevier ScienceDirect Journals</source><creator>Pan, Feng ; Guo, Zhanrong ; Cai, Yu ; Fu, Yuyao ; Wu, Xindi ; Liu, Huatai ; Wang, Xinhong</creator><creatorcontrib>Pan, Feng ; Guo, Zhanrong ; Cai, Yu ; Fu, Yuyao ; Wu, Xindi ; Liu, Huatai ; Wang, Xinhong</creatorcontrib><description>Sediment internal phosphorus (P) loading can be tightly associated with overlying water hypoxia. However, the effects of long-term seasonal hypoxia on the geochemical transition of P in P-poor coastal sediment and how this transition is linked to the early diagenesis of iron (Fe), sulfur (S) and carbon are still poorly understood. Here, we conducted a one-year monthly field investigation to study the (im)mobilization and migration of P among coastal sediment, porewater and overlying water. The coherent distribution of soluble Fe and mobile P and decoupled distribution of labile S (soluble sulfide) and mobile P in the depth profiles indicate that the redox cycling of Fe (but not S) dominates P mobility. Nevertheless, the monthly variation in the porewater soluble reactive P (SRP) presented significant positive correlations with that of the overlying water SRP. This finding highlights that hypoxia-fueled SRP migration from overlying water rather than weak diagenetic P mobilization due to deficient organic matter and solid labile P is the crucial factor responsible for internal P mobility over long time scales. Although SRP tends to migrate from overlying water to porewater, the potential risk of sediment labile P remobilization and reliberation to the overlying water is considerable.
[Display omitted]
•High-resolution temporal-spatial distributions of mobile P, Fe and S were explored.•Redox cycling of Fe but not S dominates sediment P mobility in sediment columns.•Hypoxia-fueled SRP migration dominates porewater P mobility over a long-time scale.•There is great risk of converting sediment into a P source for ocean in the future.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2021.125078</identifier><identifier>PMID: 33486231</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Coastal sediment ; Hypoxia ; P mobility ; Redox cycling of Fe and S ; Spatiotemporal variation</subject><ispartof>Journal of hazardous materials, 2021-06, Vol.411, p.125078-125078, Article 125078</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright © 2021 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-a21089a6c35028e2563164dd662e1ebce88402314238651b3a327dd5c54c38933</citedby><cites>FETCH-LOGICAL-c365t-a21089a6c35028e2563164dd662e1ebce88402314238651b3a327dd5c54c38933</cites><orcidid>0000-0001-9831-5411 ; 0000-0003-4217-4570</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S030438942100042X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65308</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33486231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Feng</creatorcontrib><creatorcontrib>Guo, Zhanrong</creatorcontrib><creatorcontrib>Cai, Yu</creatorcontrib><creatorcontrib>Fu, Yuyao</creatorcontrib><creatorcontrib>Wu, Xindi</creatorcontrib><creatorcontrib>Liu, Huatai</creatorcontrib><creatorcontrib>Wang, Xinhong</creatorcontrib><title>Remobilization and hypoxia-dependent migration of phosphorus at the coastal sediment-water interface</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>Sediment internal phosphorus (P) loading can be tightly associated with overlying water hypoxia. However, the effects of long-term seasonal hypoxia on the geochemical transition of P in P-poor coastal sediment and how this transition is linked to the early diagenesis of iron (Fe), sulfur (S) and carbon are still poorly understood. Here, we conducted a one-year monthly field investigation to study the (im)mobilization and migration of P among coastal sediment, porewater and overlying water. The coherent distribution of soluble Fe and mobile P and decoupled distribution of labile S (soluble sulfide) and mobile P in the depth profiles indicate that the redox cycling of Fe (but not S) dominates P mobility. Nevertheless, the monthly variation in the porewater soluble reactive P (SRP) presented significant positive correlations with that of the overlying water SRP. This finding highlights that hypoxia-fueled SRP migration from overlying water rather than weak diagenetic P mobilization due to deficient organic matter and solid labile P is the crucial factor responsible for internal P mobility over long time scales. Although SRP tends to migrate from overlying water to porewater, the potential risk of sediment labile P remobilization and reliberation to the overlying water is considerable.
[Display omitted]
•High-resolution temporal-spatial distributions of mobile P, Fe and S were explored.•Redox cycling of Fe but not S dominates sediment P mobility in sediment columns.•Hypoxia-fueled SRP migration dominates porewater P mobility over a long-time scale.•There is great risk of converting sediment into a P source for ocean in the future.</description><subject>Coastal sediment</subject><subject>Hypoxia</subject><subject>P mobility</subject><subject>Redox cycling of Fe and S</subject><subject>Spatiotemporal variation</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEFvVCEQgInR2LX6EzQcvbwVGODRkzFNW5s0aWL0TFiYddm893gCq21_vWze6rWHmTnwzQzzEfKeszVnXH_ar_c79zS6uhZM8DUXivXmBVlx00MHAPolWTFgsgNzIc_Im1L2jDHeK_manAFIowXwFQnfcEybOMQnV2OaqJsC3T3O6SG6LuCMU8Cp0jH-zMt72tJ5l0qLfCjUVVp3SH1ypbqBFgxxbHz3x1XMNE4tb53Ht-TV1g0F353qOflxffX98mt3d39ze_nlrvOgVe2c4MxcOO1BMWFQKA1cyxC0Fshx49EYydqvpQCjFd-AA9GHoLySvl0JcE4-LnPnnH4dsFQ7xuJxGNyE6VCskIb1iml-RNWC-pxKybi1c46jy4-WM3sUbPf2JNgeBdtFcOv7cFpx2IwY_nf9M9qAzwuA7dDfEbMtPuLkm5qMvtqQ4jMr_gIcjI9m</recordid><startdate>20210605</startdate><enddate>20210605</enddate><creator>Pan, Feng</creator><creator>Guo, Zhanrong</creator><creator>Cai, Yu</creator><creator>Fu, Yuyao</creator><creator>Wu, Xindi</creator><creator>Liu, Huatai</creator><creator>Wang, Xinhong</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9831-5411</orcidid><orcidid>https://orcid.org/0000-0003-4217-4570</orcidid></search><sort><creationdate>20210605</creationdate><title>Remobilization and hypoxia-dependent migration of phosphorus at the coastal sediment-water interface</title><author>Pan, Feng ; Guo, Zhanrong ; Cai, Yu ; Fu, Yuyao ; Wu, Xindi ; Liu, Huatai ; Wang, Xinhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-a21089a6c35028e2563164dd662e1ebce88402314238651b3a327dd5c54c38933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coastal sediment</topic><topic>Hypoxia</topic><topic>P mobility</topic><topic>Redox cycling of Fe and S</topic><topic>Spatiotemporal variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Feng</creatorcontrib><creatorcontrib>Guo, Zhanrong</creatorcontrib><creatorcontrib>Cai, Yu</creatorcontrib><creatorcontrib>Fu, Yuyao</creatorcontrib><creatorcontrib>Wu, Xindi</creatorcontrib><creatorcontrib>Liu, Huatai</creatorcontrib><creatorcontrib>Wang, Xinhong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Feng</au><au>Guo, Zhanrong</au><au>Cai, Yu</au><au>Fu, Yuyao</au><au>Wu, Xindi</au><au>Liu, Huatai</au><au>Wang, Xinhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remobilization and hypoxia-dependent migration of phosphorus at the coastal sediment-water interface</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2021-06-05</date><risdate>2021</risdate><volume>411</volume><spage>125078</spage><epage>125078</epage><pages>125078-125078</pages><artnum>125078</artnum><issn>0304-3894</issn><eissn>1873-3336</eissn><abstract>Sediment internal phosphorus (P) loading can be tightly associated with overlying water hypoxia. However, the effects of long-term seasonal hypoxia on the geochemical transition of P in P-poor coastal sediment and how this transition is linked to the early diagenesis of iron (Fe), sulfur (S) and carbon are still poorly understood. Here, we conducted a one-year monthly field investigation to study the (im)mobilization and migration of P among coastal sediment, porewater and overlying water. The coherent distribution of soluble Fe and mobile P and decoupled distribution of labile S (soluble sulfide) and mobile P in the depth profiles indicate that the redox cycling of Fe (but not S) dominates P mobility. Nevertheless, the monthly variation in the porewater soluble reactive P (SRP) presented significant positive correlations with that of the overlying water SRP. This finding highlights that hypoxia-fueled SRP migration from overlying water rather than weak diagenetic P mobilization due to deficient organic matter and solid labile P is the crucial factor responsible for internal P mobility over long time scales. Although SRP tends to migrate from overlying water to porewater, the potential risk of sediment labile P remobilization and reliberation to the overlying water is considerable.
[Display omitted]
•High-resolution temporal-spatial distributions of mobile P, Fe and S were explored.•Redox cycling of Fe but not S dominates sediment P mobility in sediment columns.•Hypoxia-fueled SRP migration dominates porewater P mobility over a long-time scale.•There is great risk of converting sediment into a P source for ocean in the future.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>33486231</pmid><doi>10.1016/j.jhazmat.2021.125078</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9831-5411</orcidid><orcidid>https://orcid.org/0000-0003-4217-4570</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3894 |
ispartof | Journal of hazardous materials, 2021-06, Vol.411, p.125078-125078, Article 125078 |
issn | 0304-3894 1873-3336 |
language | eng |
recordid | cdi_proquest_miscellaneous_2480750613 |
source | Elsevier ScienceDirect Journals |
subjects | Coastal sediment Hypoxia P mobility Redox cycling of Fe and S Spatiotemporal variation |
title | Remobilization and hypoxia-dependent migration of phosphorus at the coastal sediment-water interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remobilization%20and%20hypoxia-dependent%20migration%20of%20phosphorus%20at%20the%20coastal%20sediment-water%20interface&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Pan,%20Feng&rft.date=2021-06-05&rft.volume=411&rft.spage=125078&rft.epage=125078&rft.pages=125078-125078&rft.artnum=125078&rft.issn=0304-3894&rft.eissn=1873-3336&rft_id=info:doi/10.1016/j.jhazmat.2021.125078&rft_dat=%3Cproquest_cross%3E2480750613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480750613&rft_id=info:pmid/33486231&rft_els_id=S030438942100042X&rfr_iscdi=true |