Remobilization and hypoxia-dependent migration of phosphorus at the coastal sediment-water interface

Sediment internal phosphorus (P) loading can be tightly associated with overlying water hypoxia. However, the effects of long-term seasonal hypoxia on the geochemical transition of P in P-poor coastal sediment and how this transition is linked to the early diagenesis of iron (Fe), sulfur (S) and car...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2021-06, Vol.411, p.125078-125078, Article 125078
Hauptverfasser: Pan, Feng, Guo, Zhanrong, Cai, Yu, Fu, Yuyao, Wu, Xindi, Liu, Huatai, Wang, Xinhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 125078
container_issue
container_start_page 125078
container_title Journal of hazardous materials
container_volume 411
creator Pan, Feng
Guo, Zhanrong
Cai, Yu
Fu, Yuyao
Wu, Xindi
Liu, Huatai
Wang, Xinhong
description Sediment internal phosphorus (P) loading can be tightly associated with overlying water hypoxia. However, the effects of long-term seasonal hypoxia on the geochemical transition of P in P-poor coastal sediment and how this transition is linked to the early diagenesis of iron (Fe), sulfur (S) and carbon are still poorly understood. Here, we conducted a one-year monthly field investigation to study the (im)mobilization and migration of P among coastal sediment, porewater and overlying water. The coherent distribution of soluble Fe and mobile P and decoupled distribution of labile S (soluble sulfide) and mobile P in the depth profiles indicate that the redox cycling of Fe (but not S) dominates P mobility. Nevertheless, the monthly variation in the porewater soluble reactive P (SRP) presented significant positive correlations with that of the overlying water SRP. This finding highlights that hypoxia-fueled SRP migration from overlying water rather than weak diagenetic P mobilization due to deficient organic matter and solid labile P is the crucial factor responsible for internal P mobility over long time scales. Although SRP tends to migrate from overlying water to porewater, the potential risk of sediment labile P remobilization and reliberation to the overlying water is considerable. [Display omitted] •High-resolution temporal-spatial distributions of mobile P, Fe and S were explored.•Redox cycling of Fe but not S dominates sediment P mobility in sediment columns.•Hypoxia-fueled SRP migration dominates porewater P mobility over a long-time scale.•There is great risk of converting sediment into a P source for ocean in the future.
doi_str_mv 10.1016/j.jhazmat.2021.125078
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2480750613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030438942100042X</els_id><sourcerecordid>2480750613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-a21089a6c35028e2563164dd662e1ebce88402314238651b3a327dd5c54c38933</originalsourceid><addsrcrecordid>eNqFkEFvVCEQgInR2LX6EzQcvbwVGODRkzFNW5s0aWL0TFiYddm893gCq21_vWze6rWHmTnwzQzzEfKeszVnXH_ar_c79zS6uhZM8DUXivXmBVlx00MHAPolWTFgsgNzIc_Im1L2jDHeK_manAFIowXwFQnfcEybOMQnV2OaqJsC3T3O6SG6LuCMU8Cp0jH-zMt72tJ5l0qLfCjUVVp3SH1ypbqBFgxxbHz3x1XMNE4tb53Ht-TV1g0F353qOflxffX98mt3d39ze_nlrvOgVe2c4MxcOO1BMWFQKA1cyxC0Fshx49EYydqvpQCjFd-AA9GHoLySvl0JcE4-LnPnnH4dsFQ7xuJxGNyE6VCskIb1iml-RNWC-pxKybi1c46jy4-WM3sUbPf2JNgeBdtFcOv7cFpx2IwY_nf9M9qAzwuA7dDfEbMtPuLkm5qMvtqQ4jMr_gIcjI9m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480750613</pqid></control><display><type>article</type><title>Remobilization and hypoxia-dependent migration of phosphorus at the coastal sediment-water interface</title><source>Elsevier ScienceDirect Journals</source><creator>Pan, Feng ; Guo, Zhanrong ; Cai, Yu ; Fu, Yuyao ; Wu, Xindi ; Liu, Huatai ; Wang, Xinhong</creator><creatorcontrib>Pan, Feng ; Guo, Zhanrong ; Cai, Yu ; Fu, Yuyao ; Wu, Xindi ; Liu, Huatai ; Wang, Xinhong</creatorcontrib><description>Sediment internal phosphorus (P) loading can be tightly associated with overlying water hypoxia. However, the effects of long-term seasonal hypoxia on the geochemical transition of P in P-poor coastal sediment and how this transition is linked to the early diagenesis of iron (Fe), sulfur (S) and carbon are still poorly understood. Here, we conducted a one-year monthly field investigation to study the (im)mobilization and migration of P among coastal sediment, porewater and overlying water. The coherent distribution of soluble Fe and mobile P and decoupled distribution of labile S (soluble sulfide) and mobile P in the depth profiles indicate that the redox cycling of Fe (but not S) dominates P mobility. Nevertheless, the monthly variation in the porewater soluble reactive P (SRP) presented significant positive correlations with that of the overlying water SRP. This finding highlights that hypoxia-fueled SRP migration from overlying water rather than weak diagenetic P mobilization due to deficient organic matter and solid labile P is the crucial factor responsible for internal P mobility over long time scales. Although SRP tends to migrate from overlying water to porewater, the potential risk of sediment labile P remobilization and reliberation to the overlying water is considerable. [Display omitted] •High-resolution temporal-spatial distributions of mobile P, Fe and S were explored.•Redox cycling of Fe but not S dominates sediment P mobility in sediment columns.•Hypoxia-fueled SRP migration dominates porewater P mobility over a long-time scale.•There is great risk of converting sediment into a P source for ocean in the future.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2021.125078</identifier><identifier>PMID: 33486231</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Coastal sediment ; Hypoxia ; P mobility ; Redox cycling of Fe and S ; Spatiotemporal variation</subject><ispartof>Journal of hazardous materials, 2021-06, Vol.411, p.125078-125078, Article 125078</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright © 2021 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-a21089a6c35028e2563164dd662e1ebce88402314238651b3a327dd5c54c38933</citedby><cites>FETCH-LOGICAL-c365t-a21089a6c35028e2563164dd662e1ebce88402314238651b3a327dd5c54c38933</cites><orcidid>0000-0001-9831-5411 ; 0000-0003-4217-4570</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S030438942100042X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65308</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33486231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Feng</creatorcontrib><creatorcontrib>Guo, Zhanrong</creatorcontrib><creatorcontrib>Cai, Yu</creatorcontrib><creatorcontrib>Fu, Yuyao</creatorcontrib><creatorcontrib>Wu, Xindi</creatorcontrib><creatorcontrib>Liu, Huatai</creatorcontrib><creatorcontrib>Wang, Xinhong</creatorcontrib><title>Remobilization and hypoxia-dependent migration of phosphorus at the coastal sediment-water interface</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>Sediment internal phosphorus (P) loading can be tightly associated with overlying water hypoxia. However, the effects of long-term seasonal hypoxia on the geochemical transition of P in P-poor coastal sediment and how this transition is linked to the early diagenesis of iron (Fe), sulfur (S) and carbon are still poorly understood. Here, we conducted a one-year monthly field investigation to study the (im)mobilization and migration of P among coastal sediment, porewater and overlying water. The coherent distribution of soluble Fe and mobile P and decoupled distribution of labile S (soluble sulfide) and mobile P in the depth profiles indicate that the redox cycling of Fe (but not S) dominates P mobility. Nevertheless, the monthly variation in the porewater soluble reactive P (SRP) presented significant positive correlations with that of the overlying water SRP. This finding highlights that hypoxia-fueled SRP migration from overlying water rather than weak diagenetic P mobilization due to deficient organic matter and solid labile P is the crucial factor responsible for internal P mobility over long time scales. Although SRP tends to migrate from overlying water to porewater, the potential risk of sediment labile P remobilization and reliberation to the overlying water is considerable. [Display omitted] •High-resolution temporal-spatial distributions of mobile P, Fe and S were explored.•Redox cycling of Fe but not S dominates sediment P mobility in sediment columns.•Hypoxia-fueled SRP migration dominates porewater P mobility over a long-time scale.•There is great risk of converting sediment into a P source for ocean in the future.</description><subject>Coastal sediment</subject><subject>Hypoxia</subject><subject>P mobility</subject><subject>Redox cycling of Fe and S</subject><subject>Spatiotemporal variation</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEFvVCEQgInR2LX6EzQcvbwVGODRkzFNW5s0aWL0TFiYddm893gCq21_vWze6rWHmTnwzQzzEfKeszVnXH_ar_c79zS6uhZM8DUXivXmBVlx00MHAPolWTFgsgNzIc_Im1L2jDHeK_manAFIowXwFQnfcEybOMQnV2OaqJsC3T3O6SG6LuCMU8Cp0jH-zMt72tJ5l0qLfCjUVVp3SH1ypbqBFgxxbHz3x1XMNE4tb53Ht-TV1g0F353qOflxffX98mt3d39ze_nlrvOgVe2c4MxcOO1BMWFQKA1cyxC0Fshx49EYydqvpQCjFd-AA9GHoLySvl0JcE4-LnPnnH4dsFQ7xuJxGNyE6VCskIb1iml-RNWC-pxKybi1c46jy4-WM3sUbPf2JNgeBdtFcOv7cFpx2IwY_nf9M9qAzwuA7dDfEbMtPuLkm5qMvtqQ4jMr_gIcjI9m</recordid><startdate>20210605</startdate><enddate>20210605</enddate><creator>Pan, Feng</creator><creator>Guo, Zhanrong</creator><creator>Cai, Yu</creator><creator>Fu, Yuyao</creator><creator>Wu, Xindi</creator><creator>Liu, Huatai</creator><creator>Wang, Xinhong</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9831-5411</orcidid><orcidid>https://orcid.org/0000-0003-4217-4570</orcidid></search><sort><creationdate>20210605</creationdate><title>Remobilization and hypoxia-dependent migration of phosphorus at the coastal sediment-water interface</title><author>Pan, Feng ; Guo, Zhanrong ; Cai, Yu ; Fu, Yuyao ; Wu, Xindi ; Liu, Huatai ; Wang, Xinhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-a21089a6c35028e2563164dd662e1ebce88402314238651b3a327dd5c54c38933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coastal sediment</topic><topic>Hypoxia</topic><topic>P mobility</topic><topic>Redox cycling of Fe and S</topic><topic>Spatiotemporal variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Feng</creatorcontrib><creatorcontrib>Guo, Zhanrong</creatorcontrib><creatorcontrib>Cai, Yu</creatorcontrib><creatorcontrib>Fu, Yuyao</creatorcontrib><creatorcontrib>Wu, Xindi</creatorcontrib><creatorcontrib>Liu, Huatai</creatorcontrib><creatorcontrib>Wang, Xinhong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Feng</au><au>Guo, Zhanrong</au><au>Cai, Yu</au><au>Fu, Yuyao</au><au>Wu, Xindi</au><au>Liu, Huatai</au><au>Wang, Xinhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remobilization and hypoxia-dependent migration of phosphorus at the coastal sediment-water interface</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2021-06-05</date><risdate>2021</risdate><volume>411</volume><spage>125078</spage><epage>125078</epage><pages>125078-125078</pages><artnum>125078</artnum><issn>0304-3894</issn><eissn>1873-3336</eissn><abstract>Sediment internal phosphorus (P) loading can be tightly associated with overlying water hypoxia. However, the effects of long-term seasonal hypoxia on the geochemical transition of P in P-poor coastal sediment and how this transition is linked to the early diagenesis of iron (Fe), sulfur (S) and carbon are still poorly understood. Here, we conducted a one-year monthly field investigation to study the (im)mobilization and migration of P among coastal sediment, porewater and overlying water. The coherent distribution of soluble Fe and mobile P and decoupled distribution of labile S (soluble sulfide) and mobile P in the depth profiles indicate that the redox cycling of Fe (but not S) dominates P mobility. Nevertheless, the monthly variation in the porewater soluble reactive P (SRP) presented significant positive correlations with that of the overlying water SRP. This finding highlights that hypoxia-fueled SRP migration from overlying water rather than weak diagenetic P mobilization due to deficient organic matter and solid labile P is the crucial factor responsible for internal P mobility over long time scales. Although SRP tends to migrate from overlying water to porewater, the potential risk of sediment labile P remobilization and reliberation to the overlying water is considerable. [Display omitted] •High-resolution temporal-spatial distributions of mobile P, Fe and S were explored.•Redox cycling of Fe but not S dominates sediment P mobility in sediment columns.•Hypoxia-fueled SRP migration dominates porewater P mobility over a long-time scale.•There is great risk of converting sediment into a P source for ocean in the future.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>33486231</pmid><doi>10.1016/j.jhazmat.2021.125078</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9831-5411</orcidid><orcidid>https://orcid.org/0000-0003-4217-4570</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2021-06, Vol.411, p.125078-125078, Article 125078
issn 0304-3894
1873-3336
language eng
recordid cdi_proquest_miscellaneous_2480750613
source Elsevier ScienceDirect Journals
subjects Coastal sediment
Hypoxia
P mobility
Redox cycling of Fe and S
Spatiotemporal variation
title Remobilization and hypoxia-dependent migration of phosphorus at the coastal sediment-water interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remobilization%20and%20hypoxia-dependent%20migration%20of%20phosphorus%20at%20the%20coastal%20sediment-water%20interface&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Pan,%20Feng&rft.date=2021-06-05&rft.volume=411&rft.spage=125078&rft.epage=125078&rft.pages=125078-125078&rft.artnum=125078&rft.issn=0304-3894&rft.eissn=1873-3336&rft_id=info:doi/10.1016/j.jhazmat.2021.125078&rft_dat=%3Cproquest_cross%3E2480750613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480750613&rft_id=info:pmid/33486231&rft_els_id=S030438942100042X&rfr_iscdi=true