Coupling urban 3‐D information and circuit theory to advance the development of urban ecological networks

Ongoing, rapid urban growth accompanied by habitat fragmentation and loss challenges biodiversity conservation and leads to decreases in ecosystem services. Application of the concept of ecological networks in the preservation and restoration of connections among isolated patches of natural areas is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Conservation biology 2021-08, Vol.35 (4), p.1140-1150
Hauptverfasser: Kong, Fanhua, Wang, Ding, Yin, Haiwei, Dronova, Iryna, Fei, Fan, Chen, Jiayu, Pu, Yingxia, Li, Manchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1150
container_issue 4
container_start_page 1140
container_title Conservation biology
container_volume 35
creator Kong, Fanhua
Wang, Ding
Yin, Haiwei
Dronova, Iryna
Fei, Fan
Chen, Jiayu
Pu, Yingxia
Li, Manchun
description Ongoing, rapid urban growth accompanied by habitat fragmentation and loss challenges biodiversity conservation and leads to decreases in ecosystem services. Application of the concept of ecological networks in the preservation and restoration of connections among isolated patches of natural areas is a powerful conservation strategy. However, previous approaches often failed to objectively consider the impacts of complex 3‐D city environments on ecological niches. We used airborne lidar‐derived information on the 3‐D structure of the built environment and vegetation and detailed land use and cover data to characterize habitat quality, niche diversity, and human disturbance and to predict habitat connectivity among 38 identified habitat core areas (HCAs) in Nanjing, China. We used circuit theory and Linkage Mapper to create a landscape resistance layer, simulate habitat connectivity, and identify and prioritize important corridors. We mapped 64 links by using current flow centrality to evaluate each HCA's contribution and the links that facilitate intact connectivity. Values were highest for HCA links located in the west, south, and northeast of the study area, where natural forests with complex 3‐D structures predominate. Two smaller HCA areas had high centrality scores relative to their extents, which means they could act as important stepping stones in connectivity planning. The mapped pinch‐point regions had narrow and fragile links among the HCAs, suggesting they require special protection. The barriers with the highest impact scores were mainly located at the HCA connections to Purple Mountain and, based on these high scores, are more likely to indicate important locations that can be restored to improve potential connections. Our novel framework allowed us to sufficiently convey spatially explicit information to identify targets for habitat restoration and potential pathways for species movement and dispersal. Such information is critical for assessing existing or potential habitats and corridors and developing strategic plans to balance habitat conservation and other land uses based on scientifically informed connectivity planning and implementation. Acoplamiento de la Información Urbana en 3‐D y la Teoría de Circuitos para Avanzar el Desarrollo de las Redes Ecológicas Urbanas Resumen El rápido crecimiento urbano en curso acompañado por la fragmentación y pérdida de hábitats obstaculizan la conservación de la biodiversidad y llevan a una disminución
doi_str_mv 10.1111/cobi.13682
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2480521759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480521759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3572-e3647ba7d68bcbd2d8fdf7c398cf6f69334618e8570bd6678e88df319646fa503</originalsourceid><addsrcrecordid>eNp9kUtOHDEQhq0oKExINjlAZCkbFKmJH-3XEoYQkJDYJGvL7QcxdNsTuxs0O47AGXOS9DADCxapTZVKnz6V6gfgE0ZHeK5vNnfxCFMuyRuwwIzQBguq3oIFklI2UiqyD97XeoMQUgy378A-pa0QWKkFuF3madXHdA2n0pkE6d-Hx1MYU8hlMGPMCZrkoI3FTnGE42-fyxqOGRp3Z5L1mw10_s73eTX4NMIcdiJvc5-vozU9TH68z-W2fgB7wfTVf9z1A_Dr7PvP5XlzefXjYnl82VjKBGk85a3ojHBcdrZzxMnggrBUSRt44Go-nmPpJROoc5yLeZQuUKx4y4NhiB6Aw613VfKfyddRD7Fa3_cm-TxVTVqJGMGCqRn98gq9yVNJ83WaMMYUx4q0M_V1S9mSay0-6FWJgylrjZHeRKA3EeinCGb48045dYN3L-jzz2cAb4H72Pv1f1R6eXVysZX-A0dmknE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555961924</pqid></control><display><type>article</type><title>Coupling urban 3‐D information and circuit theory to advance the development of urban ecological networks</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kong, Fanhua ; Wang, Ding ; Yin, Haiwei ; Dronova, Iryna ; Fei, Fan ; Chen, Jiayu ; Pu, Yingxia ; Li, Manchun</creator><creatorcontrib>Kong, Fanhua ; Wang, Ding ; Yin, Haiwei ; Dronova, Iryna ; Fei, Fan ; Chen, Jiayu ; Pu, Yingxia ; Li, Manchun</creatorcontrib><description>Ongoing, rapid urban growth accompanied by habitat fragmentation and loss challenges biodiversity conservation and leads to decreases in ecosystem services. Application of the concept of ecological networks in the preservation and restoration of connections among isolated patches of natural areas is a powerful conservation strategy. However, previous approaches often failed to objectively consider the impacts of complex 3‐D city environments on ecological niches. We used airborne lidar‐derived information on the 3‐D structure of the built environment and vegetation and detailed land use and cover data to characterize habitat quality, niche diversity, and human disturbance and to predict habitat connectivity among 38 identified habitat core areas (HCAs) in Nanjing, China. We used circuit theory and Linkage Mapper to create a landscape resistance layer, simulate habitat connectivity, and identify and prioritize important corridors. We mapped 64 links by using current flow centrality to evaluate each HCA's contribution and the links that facilitate intact connectivity. Values were highest for HCA links located in the west, south, and northeast of the study area, where natural forests with complex 3‐D structures predominate. Two smaller HCA areas had high centrality scores relative to their extents, which means they could act as important stepping stones in connectivity planning. The mapped pinch‐point regions had narrow and fragile links among the HCAs, suggesting they require special protection. The barriers with the highest impact scores were mainly located at the HCA connections to Purple Mountain and, based on these high scores, are more likely to indicate important locations that can be restored to improve potential connections. Our novel framework allowed us to sufficiently convey spatially explicit information to identify targets for habitat restoration and potential pathways for species movement and dispersal. Such information is critical for assessing existing or potential habitats and corridors and developing strategic plans to balance habitat conservation and other land uses based on scientifically informed connectivity planning and implementation. Acoplamiento de la Información Urbana en 3‐D y la Teoría de Circuitos para Avanzar el Desarrollo de las Redes Ecológicas Urbanas Resumen El rápido crecimiento urbano en curso acompañado por la fragmentación y pérdida de hábitats obstaculizan la conservación de la biodiversidad y llevan a una disminución de los servicios ambientales. La aplicación del concepto de redes ecológicas en la preservación y restauración de las conexiones entre los fragmentos aislados de áreas naturales es una estrategia poderosa para la conservación. Sin embargo, las estrategias previas con frecuencia han fallado al no considerar de manera objetiva los impactos del ambiente complejo y tridimensional que tienen las ciudades sobre los nichos ecológicos. Usamos información derivada de lidar aéreos sobre la estructura tridimensional del ambiente construido y de la vegetación y detallamos la información sobre el uso y la cobertura del suelo para caracterizar la calidad del hábitat, la diversidad de nichos y la perturbación humana y así predecir la conectividad de hábitat entre 38 áreas nucleares de hábitat (ANHs) en Nanjing, China. Usamos la teoría de circuitos y el programa Linkage Mapper para crear una capa de resistencia de paisaje, simular la conectividad de hábitat e identificar y priorizar los corredores importantes. Mapeamos 64 conexiones mediante la centralidad del flujo de corriente para evaluar la contribución de cada ANH y las conexiones que facilitan la conectividad intacta. Los valores más altos fueron para las conexiones de ANH ubicadas en el oeste, sur y norte del área de estudio, en donde predominan los bosques naturales con estructuras tridimensionales complejas. Dos áreas más pequeñas de ANH tuvieron puntajes altos de centralidad en relación con sus extensiones, lo que significa que podrían fungir como pasos intermedios importantes en la planeación de la conectividad. Las regiones mapeadas de los puntos de fijación tuvieron conexiones estrechas y frágiles entre las ANHs, lo que sugiere que requieren de protección especial. Las barreras con los puntajes más elevados de impacto estuvieron localizadas principalmente en las conexiones entre las ANH y la Tierra de las Montañas Púrpuras. Con base en estos puntajes elevados hay mayor probabilidad de que indiquen localidades importantes que pueden ser restauradas para mejorar el potencial de las conexiones. Nuestro novedoso marco de trabajo nos permitió transmitir adecuadamente la información espacialmente explícita para identificar los objetivos de la restauración de hábitat y los caminos potenciales para el movimiento y la dispersión de las especies. Tal información es crítica para el análisis de los hábitats y corredores existentes o potenciales y para el desarrollo de planes estratégicos para equilibrar la conservación del hábitat y otros usos de suelo con base en la planeación e implementación de la conectividad científicamente informada. 摘要 城市的持续快速扩展, 伴随着栖息地的破碎和丧失, 使生物多样性保护面临严峻挑战并导致生态系统服务减少。将生态网络概念应用于保护与修复自然区域孤立斑块之间的连接, 是一种强有力的生物多样性保护策略。但是, 以往生态网络构建方法通常无法客观考虑复杂的三维城市环境对生态位的影响。我们应用机载激光雷达(Lidar)获取的中国南京市建成环境与植被的三维结构信息和详细的土地利用和覆盖数据分析了研究区生境质量、生态位多样性和人为干扰强度, 进而模拟构建了 38 个核心生境 (HCAs) 间的生态网络。我们首先运用电路理论和 Linkage Mapper 创建景观阻力面, 模拟生境的连通性, 评价连接廊道优先级; 然后利用电流中心性评估了每个 HCA 和每一条连接廊道对整个生态网络的贡献, 最终绘制了 64 条连接廊道。从模拟绘制的生态网络中可以发现: 中心性值最高的 HCAs 主要位于研究区域西部, 南部和东北部, 这些区域以天然林为主, 三维植被冠层结构复杂; 但面积较小的 HCA, 例如 HCAs 14 和 19 相对于其他生境而言中心性值也较高, 表明其在研究区生态网络中具有重要的踏脚石作用。 HCAs 34 、 8 和 22 之间的连接出现明显的夹点, 表明这些区域是比较狭窄且脆弱的连接区域, 需要特殊保护。 HCAs 34 和30 (紫金山) 跟其他 HCAs连接的区域出现明显障碍点, 表明这些区域是改善生态网络连接需要修复的重要位置。本研究提出了耦合三维城市景观与电路理论构建城市生态网络的新框架方法, 这使得构建的生态网络能够明晰的传达空间信息, 利于识别物种迁移或扩散过程中需要重点修复的潜在栖息地或廊道; 同时这些信息对于评估现有或潜在栖息地和廊道, 制定策略性规划以平衡栖息地保护与其他土地利用之间的矛盾, 科学地进行城市生态网络规划和建设也至关重要。 Article impact statement : Incorporating 3‐D structures of the built environment advances connectivity modeling of urban areas and thus informs policy and planning.</description><identifier>ISSN: 0888-8892</identifier><identifier>EISSN: 1523-1739</identifier><identifier>DOI: 10.1111/cobi.13682</identifier><identifier>PMID: 33477199</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>airborne lidar ; biodiversidad urbana ; Biodiversity ; Built environment ; Circuits ; Conservation ; Corridors ; Dispersal ; Dispersion ; Ecological distribution ; Ecological niches ; Ecology ; Ecosystem services ; Environmental quality ; Environmental restoration ; Habitat connectivity ; Habitat fragmentation ; Habitat loss ; Habitats ; human disturbance ; Land conservation ; Land use ; least‐cost path ; Lidar ; lidar aéreo ; linkage mapper ; Links ; Mountains ; Niches ; perturbación humana ; Restoration ; Target recognition ; urban biodiversity ; Urban development ; Urban environments ; Urban sprawl ; vía de menor costo ; Wildlife conservation</subject><ispartof>Conservation biology, 2021-08, Vol.35 (4), p.1140-1150</ispartof><rights>2021 Society for Conservation Biology</rights><rights>2021 Society for Conservation Biology.</rights><rights>2021, Society for Conservation Biology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3572-e3647ba7d68bcbd2d8fdf7c398cf6f69334618e8570bd6678e88df319646fa503</citedby><cites>FETCH-LOGICAL-c3572-e3647ba7d68bcbd2d8fdf7c398cf6f69334618e8570bd6678e88df319646fa503</cites><orcidid>0000-0002-4031-0519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcobi.13682$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcobi.13682$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33477199$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kong, Fanhua</creatorcontrib><creatorcontrib>Wang, Ding</creatorcontrib><creatorcontrib>Yin, Haiwei</creatorcontrib><creatorcontrib>Dronova, Iryna</creatorcontrib><creatorcontrib>Fei, Fan</creatorcontrib><creatorcontrib>Chen, Jiayu</creatorcontrib><creatorcontrib>Pu, Yingxia</creatorcontrib><creatorcontrib>Li, Manchun</creatorcontrib><title>Coupling urban 3‐D information and circuit theory to advance the development of urban ecological networks</title><title>Conservation biology</title><addtitle>Conserv Biol</addtitle><description>Ongoing, rapid urban growth accompanied by habitat fragmentation and loss challenges biodiversity conservation and leads to decreases in ecosystem services. Application of the concept of ecological networks in the preservation and restoration of connections among isolated patches of natural areas is a powerful conservation strategy. However, previous approaches often failed to objectively consider the impacts of complex 3‐D city environments on ecological niches. We used airborne lidar‐derived information on the 3‐D structure of the built environment and vegetation and detailed land use and cover data to characterize habitat quality, niche diversity, and human disturbance and to predict habitat connectivity among 38 identified habitat core areas (HCAs) in Nanjing, China. We used circuit theory and Linkage Mapper to create a landscape resistance layer, simulate habitat connectivity, and identify and prioritize important corridors. We mapped 64 links by using current flow centrality to evaluate each HCA's contribution and the links that facilitate intact connectivity. Values were highest for HCA links located in the west, south, and northeast of the study area, where natural forests with complex 3‐D structures predominate. Two smaller HCA areas had high centrality scores relative to their extents, which means they could act as important stepping stones in connectivity planning. The mapped pinch‐point regions had narrow and fragile links among the HCAs, suggesting they require special protection. The barriers with the highest impact scores were mainly located at the HCA connections to Purple Mountain and, based on these high scores, are more likely to indicate important locations that can be restored to improve potential connections. Our novel framework allowed us to sufficiently convey spatially explicit information to identify targets for habitat restoration and potential pathways for species movement and dispersal. Such information is critical for assessing existing or potential habitats and corridors and developing strategic plans to balance habitat conservation and other land uses based on scientifically informed connectivity planning and implementation. Acoplamiento de la Información Urbana en 3‐D y la Teoría de Circuitos para Avanzar el Desarrollo de las Redes Ecológicas Urbanas Resumen El rápido crecimiento urbano en curso acompañado por la fragmentación y pérdida de hábitats obstaculizan la conservación de la biodiversidad y llevan a una disminución de los servicios ambientales. La aplicación del concepto de redes ecológicas en la preservación y restauración de las conexiones entre los fragmentos aislados de áreas naturales es una estrategia poderosa para la conservación. Sin embargo, las estrategias previas con frecuencia han fallado al no considerar de manera objetiva los impactos del ambiente complejo y tridimensional que tienen las ciudades sobre los nichos ecológicos. Usamos información derivada de lidar aéreos sobre la estructura tridimensional del ambiente construido y de la vegetación y detallamos la información sobre el uso y la cobertura del suelo para caracterizar la calidad del hábitat, la diversidad de nichos y la perturbación humana y así predecir la conectividad de hábitat entre 38 áreas nucleares de hábitat (ANHs) en Nanjing, China. Usamos la teoría de circuitos y el programa Linkage Mapper para crear una capa de resistencia de paisaje, simular la conectividad de hábitat e identificar y priorizar los corredores importantes. Mapeamos 64 conexiones mediante la centralidad del flujo de corriente para evaluar la contribución de cada ANH y las conexiones que facilitan la conectividad intacta. Los valores más altos fueron para las conexiones de ANH ubicadas en el oeste, sur y norte del área de estudio, en donde predominan los bosques naturales con estructuras tridimensionales complejas. Dos áreas más pequeñas de ANH tuvieron puntajes altos de centralidad en relación con sus extensiones, lo que significa que podrían fungir como pasos intermedios importantes en la planeación de la conectividad. Las regiones mapeadas de los puntos de fijación tuvieron conexiones estrechas y frágiles entre las ANHs, lo que sugiere que requieren de protección especial. Las barreras con los puntajes más elevados de impacto estuvieron localizadas principalmente en las conexiones entre las ANH y la Tierra de las Montañas Púrpuras. Con base en estos puntajes elevados hay mayor probabilidad de que indiquen localidades importantes que pueden ser restauradas para mejorar el potencial de las conexiones. Nuestro novedoso marco de trabajo nos permitió transmitir adecuadamente la información espacialmente explícita para identificar los objetivos de la restauración de hábitat y los caminos potenciales para el movimiento y la dispersión de las especies. Tal información es crítica para el análisis de los hábitats y corredores existentes o potenciales y para el desarrollo de planes estratégicos para equilibrar la conservación del hábitat y otros usos de suelo con base en la planeación e implementación de la conectividad científicamente informada. 摘要 城市的持续快速扩展, 伴随着栖息地的破碎和丧失, 使生物多样性保护面临严峻挑战并导致生态系统服务减少。将生态网络概念应用于保护与修复自然区域孤立斑块之间的连接, 是一种强有力的生物多样性保护策略。但是, 以往生态网络构建方法通常无法客观考虑复杂的三维城市环境对生态位的影响。我们应用机载激光雷达(Lidar)获取的中国南京市建成环境与植被的三维结构信息和详细的土地利用和覆盖数据分析了研究区生境质量、生态位多样性和人为干扰强度, 进而模拟构建了 38 个核心生境 (HCAs) 间的生态网络。我们首先运用电路理论和 Linkage Mapper 创建景观阻力面, 模拟生境的连通性, 评价连接廊道优先级; 然后利用电流中心性评估了每个 HCA 和每一条连接廊道对整个生态网络的贡献, 最终绘制了 64 条连接廊道。从模拟绘制的生态网络中可以发现: 中心性值最高的 HCAs 主要位于研究区域西部, 南部和东北部, 这些区域以天然林为主, 三维植被冠层结构复杂; 但面积较小的 HCA, 例如 HCAs 14 和 19 相对于其他生境而言中心性值也较高, 表明其在研究区生态网络中具有重要的踏脚石作用。 HCAs 34 、 8 和 22 之间的连接出现明显的夹点, 表明这些区域是比较狭窄且脆弱的连接区域, 需要特殊保护。 HCAs 34 和30 (紫金山) 跟其他 HCAs连接的区域出现明显障碍点, 表明这些区域是改善生态网络连接需要修复的重要位置。本研究提出了耦合三维城市景观与电路理论构建城市生态网络的新框架方法, 这使得构建的生态网络能够明晰的传达空间信息, 利于识别物种迁移或扩散过程中需要重点修复的潜在栖息地或廊道; 同时这些信息对于评估现有或潜在栖息地和廊道, 制定策略性规划以平衡栖息地保护与其他土地利用之间的矛盾, 科学地进行城市生态网络规划和建设也至关重要。 Article impact statement : Incorporating 3‐D structures of the built environment advances connectivity modeling of urban areas and thus informs policy and planning.</description><subject>airborne lidar</subject><subject>biodiversidad urbana</subject><subject>Biodiversity</subject><subject>Built environment</subject><subject>Circuits</subject><subject>Conservation</subject><subject>Corridors</subject><subject>Dispersal</subject><subject>Dispersion</subject><subject>Ecological distribution</subject><subject>Ecological niches</subject><subject>Ecology</subject><subject>Ecosystem services</subject><subject>Environmental quality</subject><subject>Environmental restoration</subject><subject>Habitat connectivity</subject><subject>Habitat fragmentation</subject><subject>Habitat loss</subject><subject>Habitats</subject><subject>human disturbance</subject><subject>Land conservation</subject><subject>Land use</subject><subject>least‐cost path</subject><subject>Lidar</subject><subject>lidar aéreo</subject><subject>linkage mapper</subject><subject>Links</subject><subject>Mountains</subject><subject>Niches</subject><subject>perturbación humana</subject><subject>Restoration</subject><subject>Target recognition</subject><subject>urban biodiversity</subject><subject>Urban development</subject><subject>Urban environments</subject><subject>Urban sprawl</subject><subject>vía de menor costo</subject><subject>Wildlife conservation</subject><issn>0888-8892</issn><issn>1523-1739</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kUtOHDEQhq0oKExINjlAZCkbFKmJH-3XEoYQkJDYJGvL7QcxdNsTuxs0O47AGXOS9DADCxapTZVKnz6V6gfgE0ZHeK5vNnfxCFMuyRuwwIzQBguq3oIFklI2UiqyD97XeoMQUgy378A-pa0QWKkFuF3madXHdA2n0pkE6d-Hx1MYU8hlMGPMCZrkoI3FTnGE42-fyxqOGRp3Z5L1mw10_s73eTX4NMIcdiJvc5-vozU9TH68z-W2fgB7wfTVf9z1A_Dr7PvP5XlzefXjYnl82VjKBGk85a3ojHBcdrZzxMnggrBUSRt44Go-nmPpJROoc5yLeZQuUKx4y4NhiB6Aw613VfKfyddRD7Fa3_cm-TxVTVqJGMGCqRn98gq9yVNJ83WaMMYUx4q0M_V1S9mSay0-6FWJgylrjZHeRKA3EeinCGb48045dYN3L-jzz2cAb4H72Pv1f1R6eXVysZX-A0dmknE</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Kong, Fanhua</creator><creator>Wang, Ding</creator><creator>Yin, Haiwei</creator><creator>Dronova, Iryna</creator><creator>Fei, Fan</creator><creator>Chen, Jiayu</creator><creator>Pu, Yingxia</creator><creator>Li, Manchun</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4031-0519</orcidid></search><sort><creationdate>202108</creationdate><title>Coupling urban 3‐D information and circuit theory to advance the development of urban ecological networks</title><author>Kong, Fanhua ; Wang, Ding ; Yin, Haiwei ; Dronova, Iryna ; Fei, Fan ; Chen, Jiayu ; Pu, Yingxia ; Li, Manchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3572-e3647ba7d68bcbd2d8fdf7c398cf6f69334618e8570bd6678e88df319646fa503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>airborne lidar</topic><topic>biodiversidad urbana</topic><topic>Biodiversity</topic><topic>Built environment</topic><topic>Circuits</topic><topic>Conservation</topic><topic>Corridors</topic><topic>Dispersal</topic><topic>Dispersion</topic><topic>Ecological distribution</topic><topic>Ecological niches</topic><topic>Ecology</topic><topic>Ecosystem services</topic><topic>Environmental quality</topic><topic>Environmental restoration</topic><topic>Habitat connectivity</topic><topic>Habitat fragmentation</topic><topic>Habitat loss</topic><topic>Habitats</topic><topic>human disturbance</topic><topic>Land conservation</topic><topic>Land use</topic><topic>least‐cost path</topic><topic>Lidar</topic><topic>lidar aéreo</topic><topic>linkage mapper</topic><topic>Links</topic><topic>Mountains</topic><topic>Niches</topic><topic>perturbación humana</topic><topic>Restoration</topic><topic>Target recognition</topic><topic>urban biodiversity</topic><topic>Urban development</topic><topic>Urban environments</topic><topic>Urban sprawl</topic><topic>vía de menor costo</topic><topic>Wildlife conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Fanhua</creatorcontrib><creatorcontrib>Wang, Ding</creatorcontrib><creatorcontrib>Yin, Haiwei</creatorcontrib><creatorcontrib>Dronova, Iryna</creatorcontrib><creatorcontrib>Fei, Fan</creatorcontrib><creatorcontrib>Chen, Jiayu</creatorcontrib><creatorcontrib>Pu, Yingxia</creatorcontrib><creatorcontrib>Li, Manchun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Conservation biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Fanhua</au><au>Wang, Ding</au><au>Yin, Haiwei</au><au>Dronova, Iryna</au><au>Fei, Fan</au><au>Chen, Jiayu</au><au>Pu, Yingxia</au><au>Li, Manchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling urban 3‐D information and circuit theory to advance the development of urban ecological networks</atitle><jtitle>Conservation biology</jtitle><addtitle>Conserv Biol</addtitle><date>2021-08</date><risdate>2021</risdate><volume>35</volume><issue>4</issue><spage>1140</spage><epage>1150</epage><pages>1140-1150</pages><issn>0888-8892</issn><eissn>1523-1739</eissn><abstract>Ongoing, rapid urban growth accompanied by habitat fragmentation and loss challenges biodiversity conservation and leads to decreases in ecosystem services. Application of the concept of ecological networks in the preservation and restoration of connections among isolated patches of natural areas is a powerful conservation strategy. However, previous approaches often failed to objectively consider the impacts of complex 3‐D city environments on ecological niches. We used airborne lidar‐derived information on the 3‐D structure of the built environment and vegetation and detailed land use and cover data to characterize habitat quality, niche diversity, and human disturbance and to predict habitat connectivity among 38 identified habitat core areas (HCAs) in Nanjing, China. We used circuit theory and Linkage Mapper to create a landscape resistance layer, simulate habitat connectivity, and identify and prioritize important corridors. We mapped 64 links by using current flow centrality to evaluate each HCA's contribution and the links that facilitate intact connectivity. Values were highest for HCA links located in the west, south, and northeast of the study area, where natural forests with complex 3‐D structures predominate. Two smaller HCA areas had high centrality scores relative to their extents, which means they could act as important stepping stones in connectivity planning. The mapped pinch‐point regions had narrow and fragile links among the HCAs, suggesting they require special protection. The barriers with the highest impact scores were mainly located at the HCA connections to Purple Mountain and, based on these high scores, are more likely to indicate important locations that can be restored to improve potential connections. Our novel framework allowed us to sufficiently convey spatially explicit information to identify targets for habitat restoration and potential pathways for species movement and dispersal. Such information is critical for assessing existing or potential habitats and corridors and developing strategic plans to balance habitat conservation and other land uses based on scientifically informed connectivity planning and implementation. Acoplamiento de la Información Urbana en 3‐D y la Teoría de Circuitos para Avanzar el Desarrollo de las Redes Ecológicas Urbanas Resumen El rápido crecimiento urbano en curso acompañado por la fragmentación y pérdida de hábitats obstaculizan la conservación de la biodiversidad y llevan a una disminución de los servicios ambientales. La aplicación del concepto de redes ecológicas en la preservación y restauración de las conexiones entre los fragmentos aislados de áreas naturales es una estrategia poderosa para la conservación. Sin embargo, las estrategias previas con frecuencia han fallado al no considerar de manera objetiva los impactos del ambiente complejo y tridimensional que tienen las ciudades sobre los nichos ecológicos. Usamos información derivada de lidar aéreos sobre la estructura tridimensional del ambiente construido y de la vegetación y detallamos la información sobre el uso y la cobertura del suelo para caracterizar la calidad del hábitat, la diversidad de nichos y la perturbación humana y así predecir la conectividad de hábitat entre 38 áreas nucleares de hábitat (ANHs) en Nanjing, China. Usamos la teoría de circuitos y el programa Linkage Mapper para crear una capa de resistencia de paisaje, simular la conectividad de hábitat e identificar y priorizar los corredores importantes. Mapeamos 64 conexiones mediante la centralidad del flujo de corriente para evaluar la contribución de cada ANH y las conexiones que facilitan la conectividad intacta. Los valores más altos fueron para las conexiones de ANH ubicadas en el oeste, sur y norte del área de estudio, en donde predominan los bosques naturales con estructuras tridimensionales complejas. Dos áreas más pequeñas de ANH tuvieron puntajes altos de centralidad en relación con sus extensiones, lo que significa que podrían fungir como pasos intermedios importantes en la planeación de la conectividad. Las regiones mapeadas de los puntos de fijación tuvieron conexiones estrechas y frágiles entre las ANHs, lo que sugiere que requieren de protección especial. Las barreras con los puntajes más elevados de impacto estuvieron localizadas principalmente en las conexiones entre las ANH y la Tierra de las Montañas Púrpuras. Con base en estos puntajes elevados hay mayor probabilidad de que indiquen localidades importantes que pueden ser restauradas para mejorar el potencial de las conexiones. Nuestro novedoso marco de trabajo nos permitió transmitir adecuadamente la información espacialmente explícita para identificar los objetivos de la restauración de hábitat y los caminos potenciales para el movimiento y la dispersión de las especies. Tal información es crítica para el análisis de los hábitats y corredores existentes o potenciales y para el desarrollo de planes estratégicos para equilibrar la conservación del hábitat y otros usos de suelo con base en la planeación e implementación de la conectividad científicamente informada. 摘要 城市的持续快速扩展, 伴随着栖息地的破碎和丧失, 使生物多样性保护面临严峻挑战并导致生态系统服务减少。将生态网络概念应用于保护与修复自然区域孤立斑块之间的连接, 是一种强有力的生物多样性保护策略。但是, 以往生态网络构建方法通常无法客观考虑复杂的三维城市环境对生态位的影响。我们应用机载激光雷达(Lidar)获取的中国南京市建成环境与植被的三维结构信息和详细的土地利用和覆盖数据分析了研究区生境质量、生态位多样性和人为干扰强度, 进而模拟构建了 38 个核心生境 (HCAs) 间的生态网络。我们首先运用电路理论和 Linkage Mapper 创建景观阻力面, 模拟生境的连通性, 评价连接廊道优先级; 然后利用电流中心性评估了每个 HCA 和每一条连接廊道对整个生态网络的贡献, 最终绘制了 64 条连接廊道。从模拟绘制的生态网络中可以发现: 中心性值最高的 HCAs 主要位于研究区域西部, 南部和东北部, 这些区域以天然林为主, 三维植被冠层结构复杂; 但面积较小的 HCA, 例如 HCAs 14 和 19 相对于其他生境而言中心性值也较高, 表明其在研究区生态网络中具有重要的踏脚石作用。 HCAs 34 、 8 和 22 之间的连接出现明显的夹点, 表明这些区域是比较狭窄且脆弱的连接区域, 需要特殊保护。 HCAs 34 和30 (紫金山) 跟其他 HCAs连接的区域出现明显障碍点, 表明这些区域是改善生态网络连接需要修复的重要位置。本研究提出了耦合三维城市景观与电路理论构建城市生态网络的新框架方法, 这使得构建的生态网络能够明晰的传达空间信息, 利于识别物种迁移或扩散过程中需要重点修复的潜在栖息地或廊道; 同时这些信息对于评估现有或潜在栖息地和廊道, 制定策略性规划以平衡栖息地保护与其他土地利用之间的矛盾, 科学地进行城市生态网络规划和建设也至关重要。 Article impact statement : Incorporating 3‐D structures of the built environment advances connectivity modeling of urban areas and thus informs policy and planning.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>33477199</pmid><doi>10.1111/cobi.13682</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4031-0519</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-8892
ispartof Conservation biology, 2021-08, Vol.35 (4), p.1140-1150
issn 0888-8892
1523-1739
language eng
recordid cdi_proquest_miscellaneous_2480521759
source Wiley Online Library Journals Frontfile Complete
subjects airborne lidar
biodiversidad urbana
Biodiversity
Built environment
Circuits
Conservation
Corridors
Dispersal
Dispersion
Ecological distribution
Ecological niches
Ecology
Ecosystem services
Environmental quality
Environmental restoration
Habitat connectivity
Habitat fragmentation
Habitat loss
Habitats
human disturbance
Land conservation
Land use
least‐cost path
Lidar
lidar aéreo
linkage mapper
Links
Mountains
Niches
perturbación humana
Restoration
Target recognition
urban biodiversity
Urban development
Urban environments
Urban sprawl
vía de menor costo
Wildlife conservation
title Coupling urban 3‐D information and circuit theory to advance the development of urban ecological networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A23%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20urban%203%E2%80%90D%20information%20and%20circuit%20theory%20to%20advance%20the%20development%20of%20urban%20ecological%20networks&rft.jtitle=Conservation%20biology&rft.au=Kong,%20Fanhua&rft.date=2021-08&rft.volume=35&rft.issue=4&rft.spage=1140&rft.epage=1150&rft.pages=1140-1150&rft.issn=0888-8892&rft.eissn=1523-1739&rft_id=info:doi/10.1111/cobi.13682&rft_dat=%3Cproquest_cross%3E2480521759%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555961924&rft_id=info:pmid/33477199&rfr_iscdi=true