Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells

Polymer passivation layers can improve the open-circuit voltage of perovskite solar cells when inserted at the perovskite-charge transport layer interfaces. Unfortunately, many such layers are poor conductors, leading to a trade-off between passivation quality (voltage) and series resistance (fill f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2021-01, Vol.371 (6527), p.390-395
Hauptverfasser: Peng, Jun, Walter, Daniel, Ren, Yuhao, Tebyetekerwa, Mike, Wu, Yiliang, Duong, The, Lin, Qiaoling, Li, Juntao, Lu, Teng, Mahmud, Md Arafat, Lem, Olivier Lee Cheong, Zhao, Shenyou, Liu, Wenzhu, Liu, Yun, Shen, Heping, Li, Li, Kremer, Felipe, Nguyen, Hieu T, Choi, Duk-Yong, Weber, Klaus J, Catchpole, Kylie R, White, Thomas P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 395
container_issue 6527
container_start_page 390
container_title Science (American Association for the Advancement of Science)
container_volume 371
creator Peng, Jun
Walter, Daniel
Ren, Yuhao
Tebyetekerwa, Mike
Wu, Yiliang
Duong, The
Lin, Qiaoling
Li, Juntao
Lu, Teng
Mahmud, Md Arafat
Lem, Olivier Lee Cheong
Zhao, Shenyou
Liu, Wenzhu
Liu, Yun
Shen, Heping
Li, Li
Kremer, Felipe
Nguyen, Hieu T
Choi, Duk-Yong
Weber, Klaus J
Catchpole, Kylie R
White, Thomas P
description Polymer passivation layers can improve the open-circuit voltage of perovskite solar cells when inserted at the perovskite-charge transport layer interfaces. Unfortunately, many such layers are poor conductors, leading to a trade-off between passivation quality (voltage) and series resistance (fill factor, FF). Here, we introduce a nanopatterned electron transport layer that overcomes this trade-off by modifying the spatial distribution of the passivation layer to form nanoscale localized charge transport pathways through an otherwise passivated interface, thereby providing both effective passivation and excellent charge extraction. By combining the nanopatterned electron transport layer with a dopant-free hole transport layer, we achieved a certified power conversion efficiency of 21.6% for a 1-square-centimeter cell with FF of 0.839, and demonstrate an encapsulated cell that retains ~91.7% of its initial efficiency after 1000 hours of damp heat exposure.
doi_str_mv 10.1126/science.abb8687
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2480401116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2481216313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-85a51d84097cb423e903a28faa2bafde803f738984f38e7eef5c54cebc2022913</originalsourceid><addsrcrecordid>eNpdkL1PwzAUxC0EoqUwsyFLLCxp_ZE0zogQX1IFC8yR4z5TFzcOfmml8tfjqoWB6aT3fnc6HSGXnI05F9MJGgetgbFuGjVV5REZclYVWSWYPCZDxuQ0U6wsBuQMcclY-lXylAykzMuKF3xI6hfdBjTaA_UhifuGOTWh7bXpkdoQ6cJ9LKh13lObbiEidS3tgt-uIGadRnQb3SdTBzFs8NP1QDF4HakB7_GcnFjtES4OOiLvD_dvd0_Z7PXx-e52lplcij5ThS74XOWsKk2TCwkVk1ooq7VotJ2DYtKWUlUqt1JBCWALU-QGGiOYEBWXI3Kzz-1i-FoD9vXK4a6BbiGssRa5YjnjnE8Tev0PXYZ1bFO7HcVFQrhM1GRPmRgQI9i6i26l47bmrN5tXx-2rw_bJ8fVIXfdrGD-x_-OLX8A7qiC4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481216313</pqid></control><display><type>article</type><title>Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells</title><source>American Association for the Advancement of Science</source><creator>Peng, Jun ; Walter, Daniel ; Ren, Yuhao ; Tebyetekerwa, Mike ; Wu, Yiliang ; Duong, The ; Lin, Qiaoling ; Li, Juntao ; Lu, Teng ; Mahmud, Md Arafat ; Lem, Olivier Lee Cheong ; Zhao, Shenyou ; Liu, Wenzhu ; Liu, Yun ; Shen, Heping ; Li, Li ; Kremer, Felipe ; Nguyen, Hieu T ; Choi, Duk-Yong ; Weber, Klaus J ; Catchpole, Kylie R ; White, Thomas P</creator><creatorcontrib>Peng, Jun ; Walter, Daniel ; Ren, Yuhao ; Tebyetekerwa, Mike ; Wu, Yiliang ; Duong, The ; Lin, Qiaoling ; Li, Juntao ; Lu, Teng ; Mahmud, Md Arafat ; Lem, Olivier Lee Cheong ; Zhao, Shenyou ; Liu, Wenzhu ; Liu, Yun ; Shen, Heping ; Li, Li ; Kremer, Felipe ; Nguyen, Hieu T ; Choi, Duk-Yong ; Weber, Klaus J ; Catchpole, Kylie R ; White, Thomas P</creatorcontrib><description>Polymer passivation layers can improve the open-circuit voltage of perovskite solar cells when inserted at the perovskite-charge transport layer interfaces. Unfortunately, many such layers are poor conductors, leading to a trade-off between passivation quality (voltage) and series resistance (fill factor, FF). Here, we introduce a nanopatterned electron transport layer that overcomes this trade-off by modifying the spatial distribution of the passivation layer to form nanoscale localized charge transport pathways through an otherwise passivated interface, thereby providing both effective passivation and excellent charge extraction. By combining the nanopatterned electron transport layer with a dopant-free hole transport layer, we achieved a certified power conversion efficiency of 21.6% for a 1-square-centimeter cell with FF of 0.839, and demonstrate an encapsulated cell that retains ~91.7% of its initial efficiency after 1000 hours of damp heat exposure.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abb8687</identifier><identifier>PMID: 33479151</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Charge transport ; Conductors ; Efficiency ; Electron transport ; Energy conversion efficiency ; Interfaces ; Open circuit voltage ; Passivity ; Perovskites ; Photovoltaic cells ; Polymers ; Resistance factors ; Solar cells ; Spatial distribution ; Titanium oxide ; Titanium oxides ; Tradeoffs ; Voltage</subject><ispartof>Science (American Association for the Advancement of Science), 2021-01, Vol.371 (6527), p.390-395</ispartof><rights>Copyright © 2021, American Association for the Advancement of Science.</rights><rights>Copyright © 2021, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-85a51d84097cb423e903a28faa2bafde803f738984f38e7eef5c54cebc2022913</citedby><cites>FETCH-LOGICAL-c432t-85a51d84097cb423e903a28faa2bafde803f738984f38e7eef5c54cebc2022913</cites><orcidid>0000-0002-7538-0680 ; 0000-0002-1298-4743 ; 0000-0002-7866-1859 ; 0000-0002-8409-8839 ; 0000-0003-4066-2298 ; 0000-0001-6263-7806 ; 0000-0002-4622-1912 ; 0000-0003-1399-9792 ; 0000-0003-4858-1820 ; 0000-0003-1667-1135 ; 0000-0002-5369-2130 ; 0000-0002-1044-8744 ; 0000-0001-5915-4651 ; 0000-0002-5404-3909 ; 0000-0002-4243-6043 ; 0000-0001-8493-9450 ; 0000-0002-5221-2924 ; 0000-0002-2421-6178 ; 0000-0002-5339-3085 ; 0000-0003-1633-0293</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33479151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Jun</creatorcontrib><creatorcontrib>Walter, Daniel</creatorcontrib><creatorcontrib>Ren, Yuhao</creatorcontrib><creatorcontrib>Tebyetekerwa, Mike</creatorcontrib><creatorcontrib>Wu, Yiliang</creatorcontrib><creatorcontrib>Duong, The</creatorcontrib><creatorcontrib>Lin, Qiaoling</creatorcontrib><creatorcontrib>Li, Juntao</creatorcontrib><creatorcontrib>Lu, Teng</creatorcontrib><creatorcontrib>Mahmud, Md Arafat</creatorcontrib><creatorcontrib>Lem, Olivier Lee Cheong</creatorcontrib><creatorcontrib>Zhao, Shenyou</creatorcontrib><creatorcontrib>Liu, Wenzhu</creatorcontrib><creatorcontrib>Liu, Yun</creatorcontrib><creatorcontrib>Shen, Heping</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Kremer, Felipe</creatorcontrib><creatorcontrib>Nguyen, Hieu T</creatorcontrib><creatorcontrib>Choi, Duk-Yong</creatorcontrib><creatorcontrib>Weber, Klaus J</creatorcontrib><creatorcontrib>Catchpole, Kylie R</creatorcontrib><creatorcontrib>White, Thomas P</creatorcontrib><title>Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Polymer passivation layers can improve the open-circuit voltage of perovskite solar cells when inserted at the perovskite-charge transport layer interfaces. Unfortunately, many such layers are poor conductors, leading to a trade-off between passivation quality (voltage) and series resistance (fill factor, FF). Here, we introduce a nanopatterned electron transport layer that overcomes this trade-off by modifying the spatial distribution of the passivation layer to form nanoscale localized charge transport pathways through an otherwise passivated interface, thereby providing both effective passivation and excellent charge extraction. By combining the nanopatterned electron transport layer with a dopant-free hole transport layer, we achieved a certified power conversion efficiency of 21.6% for a 1-square-centimeter cell with FF of 0.839, and demonstrate an encapsulated cell that retains ~91.7% of its initial efficiency after 1000 hours of damp heat exposure.</description><subject>Charge transport</subject><subject>Conductors</subject><subject>Efficiency</subject><subject>Electron transport</subject><subject>Energy conversion efficiency</subject><subject>Interfaces</subject><subject>Open circuit voltage</subject><subject>Passivity</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Polymers</subject><subject>Resistance factors</subject><subject>Solar cells</subject><subject>Spatial distribution</subject><subject>Titanium oxide</subject><subject>Titanium oxides</subject><subject>Tradeoffs</subject><subject>Voltage</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkL1PwzAUxC0EoqUwsyFLLCxp_ZE0zogQX1IFC8yR4z5TFzcOfmml8tfjqoWB6aT3fnc6HSGXnI05F9MJGgetgbFuGjVV5REZclYVWSWYPCZDxuQ0U6wsBuQMcclY-lXylAykzMuKF3xI6hfdBjTaA_UhifuGOTWh7bXpkdoQ6cJ9LKh13lObbiEidS3tgt-uIGadRnQb3SdTBzFs8NP1QDF4HakB7_GcnFjtES4OOiLvD_dvd0_Z7PXx-e52lplcij5ThS74XOWsKk2TCwkVk1ooq7VotJ2DYtKWUlUqt1JBCWALU-QGGiOYEBWXI3Kzz-1i-FoD9vXK4a6BbiGssRa5YjnjnE8Tev0PXYZ1bFO7HcVFQrhM1GRPmRgQI9i6i26l47bmrN5tXx-2rw_bJ8fVIXfdrGD-x_-OLX8A7qiC4A</recordid><startdate>20210122</startdate><enddate>20210122</enddate><creator>Peng, Jun</creator><creator>Walter, Daniel</creator><creator>Ren, Yuhao</creator><creator>Tebyetekerwa, Mike</creator><creator>Wu, Yiliang</creator><creator>Duong, The</creator><creator>Lin, Qiaoling</creator><creator>Li, Juntao</creator><creator>Lu, Teng</creator><creator>Mahmud, Md Arafat</creator><creator>Lem, Olivier Lee Cheong</creator><creator>Zhao, Shenyou</creator><creator>Liu, Wenzhu</creator><creator>Liu, Yun</creator><creator>Shen, Heping</creator><creator>Li, Li</creator><creator>Kremer, Felipe</creator><creator>Nguyen, Hieu T</creator><creator>Choi, Duk-Yong</creator><creator>Weber, Klaus J</creator><creator>Catchpole, Kylie R</creator><creator>White, Thomas P</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7538-0680</orcidid><orcidid>https://orcid.org/0000-0002-1298-4743</orcidid><orcidid>https://orcid.org/0000-0002-7866-1859</orcidid><orcidid>https://orcid.org/0000-0002-8409-8839</orcidid><orcidid>https://orcid.org/0000-0003-4066-2298</orcidid><orcidid>https://orcid.org/0000-0001-6263-7806</orcidid><orcidid>https://orcid.org/0000-0002-4622-1912</orcidid><orcidid>https://orcid.org/0000-0003-1399-9792</orcidid><orcidid>https://orcid.org/0000-0003-4858-1820</orcidid><orcidid>https://orcid.org/0000-0003-1667-1135</orcidid><orcidid>https://orcid.org/0000-0002-5369-2130</orcidid><orcidid>https://orcid.org/0000-0002-1044-8744</orcidid><orcidid>https://orcid.org/0000-0001-5915-4651</orcidid><orcidid>https://orcid.org/0000-0002-5404-3909</orcidid><orcidid>https://orcid.org/0000-0002-4243-6043</orcidid><orcidid>https://orcid.org/0000-0001-8493-9450</orcidid><orcidid>https://orcid.org/0000-0002-5221-2924</orcidid><orcidid>https://orcid.org/0000-0002-2421-6178</orcidid><orcidid>https://orcid.org/0000-0002-5339-3085</orcidid><orcidid>https://orcid.org/0000-0003-1633-0293</orcidid></search><sort><creationdate>20210122</creationdate><title>Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells</title><author>Peng, Jun ; Walter, Daniel ; Ren, Yuhao ; Tebyetekerwa, Mike ; Wu, Yiliang ; Duong, The ; Lin, Qiaoling ; Li, Juntao ; Lu, Teng ; Mahmud, Md Arafat ; Lem, Olivier Lee Cheong ; Zhao, Shenyou ; Liu, Wenzhu ; Liu, Yun ; Shen, Heping ; Li, Li ; Kremer, Felipe ; Nguyen, Hieu T ; Choi, Duk-Yong ; Weber, Klaus J ; Catchpole, Kylie R ; White, Thomas P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-85a51d84097cb423e903a28faa2bafde803f738984f38e7eef5c54cebc2022913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Charge transport</topic><topic>Conductors</topic><topic>Efficiency</topic><topic>Electron transport</topic><topic>Energy conversion efficiency</topic><topic>Interfaces</topic><topic>Open circuit voltage</topic><topic>Passivity</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Polymers</topic><topic>Resistance factors</topic><topic>Solar cells</topic><topic>Spatial distribution</topic><topic>Titanium oxide</topic><topic>Titanium oxides</topic><topic>Tradeoffs</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Jun</creatorcontrib><creatorcontrib>Walter, Daniel</creatorcontrib><creatorcontrib>Ren, Yuhao</creatorcontrib><creatorcontrib>Tebyetekerwa, Mike</creatorcontrib><creatorcontrib>Wu, Yiliang</creatorcontrib><creatorcontrib>Duong, The</creatorcontrib><creatorcontrib>Lin, Qiaoling</creatorcontrib><creatorcontrib>Li, Juntao</creatorcontrib><creatorcontrib>Lu, Teng</creatorcontrib><creatorcontrib>Mahmud, Md Arafat</creatorcontrib><creatorcontrib>Lem, Olivier Lee Cheong</creatorcontrib><creatorcontrib>Zhao, Shenyou</creatorcontrib><creatorcontrib>Liu, Wenzhu</creatorcontrib><creatorcontrib>Liu, Yun</creatorcontrib><creatorcontrib>Shen, Heping</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Kremer, Felipe</creatorcontrib><creatorcontrib>Nguyen, Hieu T</creatorcontrib><creatorcontrib>Choi, Duk-Yong</creatorcontrib><creatorcontrib>Weber, Klaus J</creatorcontrib><creatorcontrib>Catchpole, Kylie R</creatorcontrib><creatorcontrib>White, Thomas P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Jun</au><au>Walter, Daniel</au><au>Ren, Yuhao</au><au>Tebyetekerwa, Mike</au><au>Wu, Yiliang</au><au>Duong, The</au><au>Lin, Qiaoling</au><au>Li, Juntao</au><au>Lu, Teng</au><au>Mahmud, Md Arafat</au><au>Lem, Olivier Lee Cheong</au><au>Zhao, Shenyou</au><au>Liu, Wenzhu</au><au>Liu, Yun</au><au>Shen, Heping</au><au>Li, Li</au><au>Kremer, Felipe</au><au>Nguyen, Hieu T</au><au>Choi, Duk-Yong</au><au>Weber, Klaus J</au><au>Catchpole, Kylie R</au><au>White, Thomas P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2021-01-22</date><risdate>2021</risdate><volume>371</volume><issue>6527</issue><spage>390</spage><epage>395</epage><pages>390-395</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Polymer passivation layers can improve the open-circuit voltage of perovskite solar cells when inserted at the perovskite-charge transport layer interfaces. Unfortunately, many such layers are poor conductors, leading to a trade-off between passivation quality (voltage) and series resistance (fill factor, FF). Here, we introduce a nanopatterned electron transport layer that overcomes this trade-off by modifying the spatial distribution of the passivation layer to form nanoscale localized charge transport pathways through an otherwise passivated interface, thereby providing both effective passivation and excellent charge extraction. By combining the nanopatterned electron transport layer with a dopant-free hole transport layer, we achieved a certified power conversion efficiency of 21.6% for a 1-square-centimeter cell with FF of 0.839, and demonstrate an encapsulated cell that retains ~91.7% of its initial efficiency after 1000 hours of damp heat exposure.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>33479151</pmid><doi>10.1126/science.abb8687</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7538-0680</orcidid><orcidid>https://orcid.org/0000-0002-1298-4743</orcidid><orcidid>https://orcid.org/0000-0002-7866-1859</orcidid><orcidid>https://orcid.org/0000-0002-8409-8839</orcidid><orcidid>https://orcid.org/0000-0003-4066-2298</orcidid><orcidid>https://orcid.org/0000-0001-6263-7806</orcidid><orcidid>https://orcid.org/0000-0002-4622-1912</orcidid><orcidid>https://orcid.org/0000-0003-1399-9792</orcidid><orcidid>https://orcid.org/0000-0003-4858-1820</orcidid><orcidid>https://orcid.org/0000-0003-1667-1135</orcidid><orcidid>https://orcid.org/0000-0002-5369-2130</orcidid><orcidid>https://orcid.org/0000-0002-1044-8744</orcidid><orcidid>https://orcid.org/0000-0001-5915-4651</orcidid><orcidid>https://orcid.org/0000-0002-5404-3909</orcidid><orcidid>https://orcid.org/0000-0002-4243-6043</orcidid><orcidid>https://orcid.org/0000-0001-8493-9450</orcidid><orcidid>https://orcid.org/0000-0002-5221-2924</orcidid><orcidid>https://orcid.org/0000-0002-2421-6178</orcidid><orcidid>https://orcid.org/0000-0002-5339-3085</orcidid><orcidid>https://orcid.org/0000-0003-1633-0293</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2021-01, Vol.371 (6527), p.390-395
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2480401116
source American Association for the Advancement of Science
subjects Charge transport
Conductors
Efficiency
Electron transport
Energy conversion efficiency
Interfaces
Open circuit voltage
Passivity
Perovskites
Photovoltaic cells
Polymers
Resistance factors
Solar cells
Spatial distribution
Titanium oxide
Titanium oxides
Tradeoffs
Voltage
title Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A25%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20localized%20contacts%20for%20high%20fill%20factors%20in%20polymer-passivated%20perovskite%20solar%20cells&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Peng,%20Jun&rft.date=2021-01-22&rft.volume=371&rft.issue=6527&rft.spage=390&rft.epage=395&rft.pages=390-395&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abb8687&rft_dat=%3Cproquest_cross%3E2481216313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481216313&rft_id=info:pmid/33479151&rfr_iscdi=true