Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells
Polymer passivation layers can improve the open-circuit voltage of perovskite solar cells when inserted at the perovskite-charge transport layer interfaces. Unfortunately, many such layers are poor conductors, leading to a trade-off between passivation quality (voltage) and series resistance (fill f...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2021-01, Vol.371 (6527), p.390-395 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 395 |
---|---|
container_issue | 6527 |
container_start_page | 390 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 371 |
creator | Peng, Jun Walter, Daniel Ren, Yuhao Tebyetekerwa, Mike Wu, Yiliang Duong, The Lin, Qiaoling Li, Juntao Lu, Teng Mahmud, Md Arafat Lem, Olivier Lee Cheong Zhao, Shenyou Liu, Wenzhu Liu, Yun Shen, Heping Li, Li Kremer, Felipe Nguyen, Hieu T Choi, Duk-Yong Weber, Klaus J Catchpole, Kylie R White, Thomas P |
description | Polymer passivation layers can improve the open-circuit voltage of perovskite solar cells when inserted at the perovskite-charge transport layer interfaces. Unfortunately, many such layers are poor conductors, leading to a trade-off between passivation quality (voltage) and series resistance (fill factor, FF). Here, we introduce a nanopatterned electron transport layer that overcomes this trade-off by modifying the spatial distribution of the passivation layer to form nanoscale localized charge transport pathways through an otherwise passivated interface, thereby providing both effective passivation and excellent charge extraction. By combining the nanopatterned electron transport layer with a dopant-free hole transport layer, we achieved a certified power conversion efficiency of 21.6% for a 1-square-centimeter cell with FF of 0.839, and demonstrate an encapsulated cell that retains ~91.7% of its initial efficiency after 1000 hours of damp heat exposure. |
doi_str_mv | 10.1126/science.abb8687 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2480401116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2481216313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-85a51d84097cb423e903a28faa2bafde803f738984f38e7eef5c54cebc2022913</originalsourceid><addsrcrecordid>eNpdkL1PwzAUxC0EoqUwsyFLLCxp_ZE0zogQX1IFC8yR4z5TFzcOfmml8tfjqoWB6aT3fnc6HSGXnI05F9MJGgetgbFuGjVV5REZclYVWSWYPCZDxuQ0U6wsBuQMcclY-lXylAykzMuKF3xI6hfdBjTaA_UhifuGOTWh7bXpkdoQ6cJ9LKh13lObbiEidS3tgt-uIGadRnQb3SdTBzFs8NP1QDF4HakB7_GcnFjtES4OOiLvD_dvd0_Z7PXx-e52lplcij5ThS74XOWsKk2TCwkVk1ooq7VotJ2DYtKWUlUqt1JBCWALU-QGGiOYEBWXI3Kzz-1i-FoD9vXK4a6BbiGssRa5YjnjnE8Tev0PXYZ1bFO7HcVFQrhM1GRPmRgQI9i6i26l47bmrN5tXx-2rw_bJ8fVIXfdrGD-x_-OLX8A7qiC4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481216313</pqid></control><display><type>article</type><title>Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells</title><source>American Association for the Advancement of Science</source><creator>Peng, Jun ; Walter, Daniel ; Ren, Yuhao ; Tebyetekerwa, Mike ; Wu, Yiliang ; Duong, The ; Lin, Qiaoling ; Li, Juntao ; Lu, Teng ; Mahmud, Md Arafat ; Lem, Olivier Lee Cheong ; Zhao, Shenyou ; Liu, Wenzhu ; Liu, Yun ; Shen, Heping ; Li, Li ; Kremer, Felipe ; Nguyen, Hieu T ; Choi, Duk-Yong ; Weber, Klaus J ; Catchpole, Kylie R ; White, Thomas P</creator><creatorcontrib>Peng, Jun ; Walter, Daniel ; Ren, Yuhao ; Tebyetekerwa, Mike ; Wu, Yiliang ; Duong, The ; Lin, Qiaoling ; Li, Juntao ; Lu, Teng ; Mahmud, Md Arafat ; Lem, Olivier Lee Cheong ; Zhao, Shenyou ; Liu, Wenzhu ; Liu, Yun ; Shen, Heping ; Li, Li ; Kremer, Felipe ; Nguyen, Hieu T ; Choi, Duk-Yong ; Weber, Klaus J ; Catchpole, Kylie R ; White, Thomas P</creatorcontrib><description>Polymer passivation layers can improve the open-circuit voltage of perovskite solar cells when inserted at the perovskite-charge transport layer interfaces. Unfortunately, many such layers are poor conductors, leading to a trade-off between passivation quality (voltage) and series resistance (fill factor, FF). Here, we introduce a nanopatterned electron transport layer that overcomes this trade-off by modifying the spatial distribution of the passivation layer to form nanoscale localized charge transport pathways through an otherwise passivated interface, thereby providing both effective passivation and excellent charge extraction. By combining the nanopatterned electron transport layer with a dopant-free hole transport layer, we achieved a certified power conversion efficiency of 21.6% for a 1-square-centimeter cell with FF of 0.839, and demonstrate an encapsulated cell that retains ~91.7% of its initial efficiency after 1000 hours of damp heat exposure.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abb8687</identifier><identifier>PMID: 33479151</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Charge transport ; Conductors ; Efficiency ; Electron transport ; Energy conversion efficiency ; Interfaces ; Open circuit voltage ; Passivity ; Perovskites ; Photovoltaic cells ; Polymers ; Resistance factors ; Solar cells ; Spatial distribution ; Titanium oxide ; Titanium oxides ; Tradeoffs ; Voltage</subject><ispartof>Science (American Association for the Advancement of Science), 2021-01, Vol.371 (6527), p.390-395</ispartof><rights>Copyright © 2021, American Association for the Advancement of Science.</rights><rights>Copyright © 2021, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-85a51d84097cb423e903a28faa2bafde803f738984f38e7eef5c54cebc2022913</citedby><cites>FETCH-LOGICAL-c432t-85a51d84097cb423e903a28faa2bafde803f738984f38e7eef5c54cebc2022913</cites><orcidid>0000-0002-7538-0680 ; 0000-0002-1298-4743 ; 0000-0002-7866-1859 ; 0000-0002-8409-8839 ; 0000-0003-4066-2298 ; 0000-0001-6263-7806 ; 0000-0002-4622-1912 ; 0000-0003-1399-9792 ; 0000-0003-4858-1820 ; 0000-0003-1667-1135 ; 0000-0002-5369-2130 ; 0000-0002-1044-8744 ; 0000-0001-5915-4651 ; 0000-0002-5404-3909 ; 0000-0002-4243-6043 ; 0000-0001-8493-9450 ; 0000-0002-5221-2924 ; 0000-0002-2421-6178 ; 0000-0002-5339-3085 ; 0000-0003-1633-0293</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33479151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Jun</creatorcontrib><creatorcontrib>Walter, Daniel</creatorcontrib><creatorcontrib>Ren, Yuhao</creatorcontrib><creatorcontrib>Tebyetekerwa, Mike</creatorcontrib><creatorcontrib>Wu, Yiliang</creatorcontrib><creatorcontrib>Duong, The</creatorcontrib><creatorcontrib>Lin, Qiaoling</creatorcontrib><creatorcontrib>Li, Juntao</creatorcontrib><creatorcontrib>Lu, Teng</creatorcontrib><creatorcontrib>Mahmud, Md Arafat</creatorcontrib><creatorcontrib>Lem, Olivier Lee Cheong</creatorcontrib><creatorcontrib>Zhao, Shenyou</creatorcontrib><creatorcontrib>Liu, Wenzhu</creatorcontrib><creatorcontrib>Liu, Yun</creatorcontrib><creatorcontrib>Shen, Heping</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Kremer, Felipe</creatorcontrib><creatorcontrib>Nguyen, Hieu T</creatorcontrib><creatorcontrib>Choi, Duk-Yong</creatorcontrib><creatorcontrib>Weber, Klaus J</creatorcontrib><creatorcontrib>Catchpole, Kylie R</creatorcontrib><creatorcontrib>White, Thomas P</creatorcontrib><title>Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Polymer passivation layers can improve the open-circuit voltage of perovskite solar cells when inserted at the perovskite-charge transport layer interfaces. Unfortunately, many such layers are poor conductors, leading to a trade-off between passivation quality (voltage) and series resistance (fill factor, FF). Here, we introduce a nanopatterned electron transport layer that overcomes this trade-off by modifying the spatial distribution of the passivation layer to form nanoscale localized charge transport pathways through an otherwise passivated interface, thereby providing both effective passivation and excellent charge extraction. By combining the nanopatterned electron transport layer with a dopant-free hole transport layer, we achieved a certified power conversion efficiency of 21.6% for a 1-square-centimeter cell with FF of 0.839, and demonstrate an encapsulated cell that retains ~91.7% of its initial efficiency after 1000 hours of damp heat exposure.</description><subject>Charge transport</subject><subject>Conductors</subject><subject>Efficiency</subject><subject>Electron transport</subject><subject>Energy conversion efficiency</subject><subject>Interfaces</subject><subject>Open circuit voltage</subject><subject>Passivity</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Polymers</subject><subject>Resistance factors</subject><subject>Solar cells</subject><subject>Spatial distribution</subject><subject>Titanium oxide</subject><subject>Titanium oxides</subject><subject>Tradeoffs</subject><subject>Voltage</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkL1PwzAUxC0EoqUwsyFLLCxp_ZE0zogQX1IFC8yR4z5TFzcOfmml8tfjqoWB6aT3fnc6HSGXnI05F9MJGgetgbFuGjVV5REZclYVWSWYPCZDxuQ0U6wsBuQMcclY-lXylAykzMuKF3xI6hfdBjTaA_UhifuGOTWh7bXpkdoQ6cJ9LKh13lObbiEidS3tgt-uIGadRnQb3SdTBzFs8NP1QDF4HakB7_GcnFjtES4OOiLvD_dvd0_Z7PXx-e52lplcij5ThS74XOWsKk2TCwkVk1ooq7VotJ2DYtKWUlUqt1JBCWALU-QGGiOYEBWXI3Kzz-1i-FoD9vXK4a6BbiGssRa5YjnjnE8Tev0PXYZ1bFO7HcVFQrhM1GRPmRgQI9i6i26l47bmrN5tXx-2rw_bJ8fVIXfdrGD-x_-OLX8A7qiC4A</recordid><startdate>20210122</startdate><enddate>20210122</enddate><creator>Peng, Jun</creator><creator>Walter, Daniel</creator><creator>Ren, Yuhao</creator><creator>Tebyetekerwa, Mike</creator><creator>Wu, Yiliang</creator><creator>Duong, The</creator><creator>Lin, Qiaoling</creator><creator>Li, Juntao</creator><creator>Lu, Teng</creator><creator>Mahmud, Md Arafat</creator><creator>Lem, Olivier Lee Cheong</creator><creator>Zhao, Shenyou</creator><creator>Liu, Wenzhu</creator><creator>Liu, Yun</creator><creator>Shen, Heping</creator><creator>Li, Li</creator><creator>Kremer, Felipe</creator><creator>Nguyen, Hieu T</creator><creator>Choi, Duk-Yong</creator><creator>Weber, Klaus J</creator><creator>Catchpole, Kylie R</creator><creator>White, Thomas P</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7538-0680</orcidid><orcidid>https://orcid.org/0000-0002-1298-4743</orcidid><orcidid>https://orcid.org/0000-0002-7866-1859</orcidid><orcidid>https://orcid.org/0000-0002-8409-8839</orcidid><orcidid>https://orcid.org/0000-0003-4066-2298</orcidid><orcidid>https://orcid.org/0000-0001-6263-7806</orcidid><orcidid>https://orcid.org/0000-0002-4622-1912</orcidid><orcidid>https://orcid.org/0000-0003-1399-9792</orcidid><orcidid>https://orcid.org/0000-0003-4858-1820</orcidid><orcidid>https://orcid.org/0000-0003-1667-1135</orcidid><orcidid>https://orcid.org/0000-0002-5369-2130</orcidid><orcidid>https://orcid.org/0000-0002-1044-8744</orcidid><orcidid>https://orcid.org/0000-0001-5915-4651</orcidid><orcidid>https://orcid.org/0000-0002-5404-3909</orcidid><orcidid>https://orcid.org/0000-0002-4243-6043</orcidid><orcidid>https://orcid.org/0000-0001-8493-9450</orcidid><orcidid>https://orcid.org/0000-0002-5221-2924</orcidid><orcidid>https://orcid.org/0000-0002-2421-6178</orcidid><orcidid>https://orcid.org/0000-0002-5339-3085</orcidid><orcidid>https://orcid.org/0000-0003-1633-0293</orcidid></search><sort><creationdate>20210122</creationdate><title>Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells</title><author>Peng, Jun ; Walter, Daniel ; Ren, Yuhao ; Tebyetekerwa, Mike ; Wu, Yiliang ; Duong, The ; Lin, Qiaoling ; Li, Juntao ; Lu, Teng ; Mahmud, Md Arafat ; Lem, Olivier Lee Cheong ; Zhao, Shenyou ; Liu, Wenzhu ; Liu, Yun ; Shen, Heping ; Li, Li ; Kremer, Felipe ; Nguyen, Hieu T ; Choi, Duk-Yong ; Weber, Klaus J ; Catchpole, Kylie R ; White, Thomas P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-85a51d84097cb423e903a28faa2bafde803f738984f38e7eef5c54cebc2022913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Charge transport</topic><topic>Conductors</topic><topic>Efficiency</topic><topic>Electron transport</topic><topic>Energy conversion efficiency</topic><topic>Interfaces</topic><topic>Open circuit voltage</topic><topic>Passivity</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Polymers</topic><topic>Resistance factors</topic><topic>Solar cells</topic><topic>Spatial distribution</topic><topic>Titanium oxide</topic><topic>Titanium oxides</topic><topic>Tradeoffs</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Jun</creatorcontrib><creatorcontrib>Walter, Daniel</creatorcontrib><creatorcontrib>Ren, Yuhao</creatorcontrib><creatorcontrib>Tebyetekerwa, Mike</creatorcontrib><creatorcontrib>Wu, Yiliang</creatorcontrib><creatorcontrib>Duong, The</creatorcontrib><creatorcontrib>Lin, Qiaoling</creatorcontrib><creatorcontrib>Li, Juntao</creatorcontrib><creatorcontrib>Lu, Teng</creatorcontrib><creatorcontrib>Mahmud, Md Arafat</creatorcontrib><creatorcontrib>Lem, Olivier Lee Cheong</creatorcontrib><creatorcontrib>Zhao, Shenyou</creatorcontrib><creatorcontrib>Liu, Wenzhu</creatorcontrib><creatorcontrib>Liu, Yun</creatorcontrib><creatorcontrib>Shen, Heping</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Kremer, Felipe</creatorcontrib><creatorcontrib>Nguyen, Hieu T</creatorcontrib><creatorcontrib>Choi, Duk-Yong</creatorcontrib><creatorcontrib>Weber, Klaus J</creatorcontrib><creatorcontrib>Catchpole, Kylie R</creatorcontrib><creatorcontrib>White, Thomas P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Jun</au><au>Walter, Daniel</au><au>Ren, Yuhao</au><au>Tebyetekerwa, Mike</au><au>Wu, Yiliang</au><au>Duong, The</au><au>Lin, Qiaoling</au><au>Li, Juntao</au><au>Lu, Teng</au><au>Mahmud, Md Arafat</au><au>Lem, Olivier Lee Cheong</au><au>Zhao, Shenyou</au><au>Liu, Wenzhu</au><au>Liu, Yun</au><au>Shen, Heping</au><au>Li, Li</au><au>Kremer, Felipe</au><au>Nguyen, Hieu T</au><au>Choi, Duk-Yong</au><au>Weber, Klaus J</au><au>Catchpole, Kylie R</au><au>White, Thomas P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2021-01-22</date><risdate>2021</risdate><volume>371</volume><issue>6527</issue><spage>390</spage><epage>395</epage><pages>390-395</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Polymer passivation layers can improve the open-circuit voltage of perovskite solar cells when inserted at the perovskite-charge transport layer interfaces. Unfortunately, many such layers are poor conductors, leading to a trade-off between passivation quality (voltage) and series resistance (fill factor, FF). Here, we introduce a nanopatterned electron transport layer that overcomes this trade-off by modifying the spatial distribution of the passivation layer to form nanoscale localized charge transport pathways through an otherwise passivated interface, thereby providing both effective passivation and excellent charge extraction. By combining the nanopatterned electron transport layer with a dopant-free hole transport layer, we achieved a certified power conversion efficiency of 21.6% for a 1-square-centimeter cell with FF of 0.839, and demonstrate an encapsulated cell that retains ~91.7% of its initial efficiency after 1000 hours of damp heat exposure.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>33479151</pmid><doi>10.1126/science.abb8687</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7538-0680</orcidid><orcidid>https://orcid.org/0000-0002-1298-4743</orcidid><orcidid>https://orcid.org/0000-0002-7866-1859</orcidid><orcidid>https://orcid.org/0000-0002-8409-8839</orcidid><orcidid>https://orcid.org/0000-0003-4066-2298</orcidid><orcidid>https://orcid.org/0000-0001-6263-7806</orcidid><orcidid>https://orcid.org/0000-0002-4622-1912</orcidid><orcidid>https://orcid.org/0000-0003-1399-9792</orcidid><orcidid>https://orcid.org/0000-0003-4858-1820</orcidid><orcidid>https://orcid.org/0000-0003-1667-1135</orcidid><orcidid>https://orcid.org/0000-0002-5369-2130</orcidid><orcidid>https://orcid.org/0000-0002-1044-8744</orcidid><orcidid>https://orcid.org/0000-0001-5915-4651</orcidid><orcidid>https://orcid.org/0000-0002-5404-3909</orcidid><orcidid>https://orcid.org/0000-0002-4243-6043</orcidid><orcidid>https://orcid.org/0000-0001-8493-9450</orcidid><orcidid>https://orcid.org/0000-0002-5221-2924</orcidid><orcidid>https://orcid.org/0000-0002-2421-6178</orcidid><orcidid>https://orcid.org/0000-0002-5339-3085</orcidid><orcidid>https://orcid.org/0000-0003-1633-0293</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2021-01, Vol.371 (6527), p.390-395 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2480401116 |
source | American Association for the Advancement of Science |
subjects | Charge transport Conductors Efficiency Electron transport Energy conversion efficiency Interfaces Open circuit voltage Passivity Perovskites Photovoltaic cells Polymers Resistance factors Solar cells Spatial distribution Titanium oxide Titanium oxides Tradeoffs Voltage |
title | Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A25%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20localized%20contacts%20for%20high%20fill%20factors%20in%20polymer-passivated%20perovskite%20solar%20cells&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Peng,%20Jun&rft.date=2021-01-22&rft.volume=371&rft.issue=6527&rft.spage=390&rft.epage=395&rft.pages=390-395&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abb8687&rft_dat=%3Cproquest_cross%3E2481216313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481216313&rft_id=info:pmid/33479151&rfr_iscdi=true |