Wetting regulates autophagy of phase-separated compartments and the cytosol

Compartmentalization of cellular material in droplet-like structures is a hallmark of liquid–liquid phase separation 1 , 2 , but the mechanisms of droplet removal are poorly understood. Evidence suggests that droplets can be degraded by autophagy 3 , 4 , a highly conserved degradation system in whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2021-03, Vol.591 (7848), p.142-146
Hauptverfasser: Agudo-Canalejo, Jaime, Schultz, Sebastian W., Chino, Haruka, Migliano, Simona M., Saito, Chieko, Koyama-Honda, Ikuko, Stenmark, Harald, Brech, Andreas, May, Alexander I., Mizushima, Noboru, Knorr, Roland L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 146
container_issue 7848
container_start_page 142
container_title Nature (London)
container_volume 591
creator Agudo-Canalejo, Jaime
Schultz, Sebastian W.
Chino, Haruka
Migliano, Simona M.
Saito, Chieko
Koyama-Honda, Ikuko
Stenmark, Harald
Brech, Andreas
May, Alexander I.
Mizushima, Noboru
Knorr, Roland L.
description Compartmentalization of cellular material in droplet-like structures is a hallmark of liquid–liquid phase separation 1 , 2 , but the mechanisms of droplet removal are poorly understood. Evidence suggests that droplets can be degraded by autophagy 3 , 4 , a highly conserved degradation system in which membrane sheets bend to isolate portions of the cytoplasm within double-membrane autophagosomes 5 – 7 . Here we examine how autophagosomes sequester droplets that contain the protein p62 (also known as SQSTM1) in living cells, and demonstrate that double-membrane, autophagosome-like vesicles form at the surface of protein-free droplets in vitro through partial wetting. A minimal physical model shows that droplet surface tension supports the formation of membrane sheets. The model also predicts that bending sheets either divide droplets for piecemeal sequestration or sequester entire droplets. We find that autophagosomal sequestration is robust to variations in the droplet-sheet adhesion strength. However, the two sides of partially wetted sheets are exposed to different environments, which can determine the bending direction of autophagosomal sheets. Our discovery of this interplay between the material properties of droplets and membrane sheets enables us to elucidate the mechanisms that underpin droplet autophagy, or ‘fluidophagy’. Furthermore, we uncover a switching mechanism that allows droplets to act as liquid assembly platforms for cytosol-degrading autophagosomes 8 or as specific autophagy substrates 9 – 11 . We propose that droplet-mediated autophagy represents a previously undescribed class of processes that are driven by elastocapillarity, highlighting the importance of wetting in cytosolic organization. A theoretical model, in vitro reconstitution and in vivo experimentation show that competition between droplet surface tension and membrane sheet instability dictates the form and function of autophagosomal membranes.
doi_str_mv 10.1038/s41586-020-2992-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2479744637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479744637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-823ba1b3ddb14df411e83112ac02114dccc0adcdf451a7eba938abc70c6500c43</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EoqXwA1hQRhaDvxK7I6r4EpVYQIyW47ykrZI42M7Qf4-rFEYmP_med6V3ELqm5I4Sru6DoLkqMGEEs-WSYX6C5lTIAotCyVM0J4QpTBQvZugihB0hJKdSnKMZ50JyRuUcvX1BjNu-yTw0Y2sihMyM0Q0b0-wzV2dpCIADDMansMqs69IYO-hjIvsqixvI7D664NpLdFabNsDV8V2gz6fHj9ULXr8_v64e1tgKISNWjJeGlryqSiqqWlAKilPKjCWMph9rLTGVTUlOjYTSLLkypZXEFjkhVvAFup16B---RwhRd9tgoW1ND24Mmgm5lEIUXCaUTqj1LgQPtR78tjN-rynRB4d6cqiTQ31wqHnauTnWj2UH1d_Gr7QEsAkIKeob8HrnRt-nk_9p_QGG_n2o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479744637</pqid></control><display><type>article</type><title>Wetting regulates autophagy of phase-separated compartments and the cytosol</title><source>MEDLINE</source><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>Agudo-Canalejo, Jaime ; Schultz, Sebastian W. ; Chino, Haruka ; Migliano, Simona M. ; Saito, Chieko ; Koyama-Honda, Ikuko ; Stenmark, Harald ; Brech, Andreas ; May, Alexander I. ; Mizushima, Noboru ; Knorr, Roland L.</creator><creatorcontrib>Agudo-Canalejo, Jaime ; Schultz, Sebastian W. ; Chino, Haruka ; Migliano, Simona M. ; Saito, Chieko ; Koyama-Honda, Ikuko ; Stenmark, Harald ; Brech, Andreas ; May, Alexander I. ; Mizushima, Noboru ; Knorr, Roland L.</creatorcontrib><description>Compartmentalization of cellular material in droplet-like structures is a hallmark of liquid–liquid phase separation 1 , 2 , but the mechanisms of droplet removal are poorly understood. Evidence suggests that droplets can be degraded by autophagy 3 , 4 , a highly conserved degradation system in which membrane sheets bend to isolate portions of the cytoplasm within double-membrane autophagosomes 5 – 7 . Here we examine how autophagosomes sequester droplets that contain the protein p62 (also known as SQSTM1) in living cells, and demonstrate that double-membrane, autophagosome-like vesicles form at the surface of protein-free droplets in vitro through partial wetting. A minimal physical model shows that droplet surface tension supports the formation of membrane sheets. The model also predicts that bending sheets either divide droplets for piecemeal sequestration or sequester entire droplets. We find that autophagosomal sequestration is robust to variations in the droplet-sheet adhesion strength. However, the two sides of partially wetted sheets are exposed to different environments, which can determine the bending direction of autophagosomal sheets. Our discovery of this interplay between the material properties of droplets and membrane sheets enables us to elucidate the mechanisms that underpin droplet autophagy, or ‘fluidophagy’. Furthermore, we uncover a switching mechanism that allows droplets to act as liquid assembly platforms for cytosol-degrading autophagosomes 8 or as specific autophagy substrates 9 – 11 . We propose that droplet-mediated autophagy represents a previously undescribed class of processes that are driven by elastocapillarity, highlighting the importance of wetting in cytosolic organization. A theoretical model, in vitro reconstitution and in vivo experimentation show that competition between droplet surface tension and membrane sheet instability dictates the form and function of autophagosomal membranes.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-2992-3</identifier><identifier>PMID: 33473217</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/19 ; 14/28 ; 631/57/2270 ; 631/80/39 ; 639/301/923 ; 639/766/747 ; Adhesiveness ; Autophagosomes - chemistry ; Autophagosomes - metabolism ; Autophagy ; Cell Compartmentation ; Cell Line ; Cytosol - chemistry ; Cytosol - metabolism ; Humanities and Social Sciences ; Humans ; Intracellular Membranes - chemistry ; Intracellular Membranes - metabolism ; multidisciplinary ; Science ; Science (multidisciplinary) ; Sequestosome-1 Protein - metabolism ; Surface Tension ; Wettability</subject><ispartof>Nature (London), 2021-03, Vol.591 (7848), p.142-146</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-823ba1b3ddb14df411e83112ac02114dccc0adcdf451a7eba938abc70c6500c43</citedby><cites>FETCH-LOGICAL-c447t-823ba1b3ddb14df411e83112ac02114dccc0adcdf451a7eba938abc70c6500c43</cites><orcidid>0000-0002-1888-5332 ; 0000-0001-9677-6054 ; 0000-0002-1971-4252 ; 0000-0002-4374-5120 ; 0000-0002-3661-2178 ; 0000-0002-6258-6444 ; 0000-0001-9321-9682 ; 0000-0002-9803-1774 ; 0000-0002-6747-0088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-020-2992-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-020-2992-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33473217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Agudo-Canalejo, Jaime</creatorcontrib><creatorcontrib>Schultz, Sebastian W.</creatorcontrib><creatorcontrib>Chino, Haruka</creatorcontrib><creatorcontrib>Migliano, Simona M.</creatorcontrib><creatorcontrib>Saito, Chieko</creatorcontrib><creatorcontrib>Koyama-Honda, Ikuko</creatorcontrib><creatorcontrib>Stenmark, Harald</creatorcontrib><creatorcontrib>Brech, Andreas</creatorcontrib><creatorcontrib>May, Alexander I.</creatorcontrib><creatorcontrib>Mizushima, Noboru</creatorcontrib><creatorcontrib>Knorr, Roland L.</creatorcontrib><title>Wetting regulates autophagy of phase-separated compartments and the cytosol</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Compartmentalization of cellular material in droplet-like structures is a hallmark of liquid–liquid phase separation 1 , 2 , but the mechanisms of droplet removal are poorly understood. Evidence suggests that droplets can be degraded by autophagy 3 , 4 , a highly conserved degradation system in which membrane sheets bend to isolate portions of the cytoplasm within double-membrane autophagosomes 5 – 7 . Here we examine how autophagosomes sequester droplets that contain the protein p62 (also known as SQSTM1) in living cells, and demonstrate that double-membrane, autophagosome-like vesicles form at the surface of protein-free droplets in vitro through partial wetting. A minimal physical model shows that droplet surface tension supports the formation of membrane sheets. The model also predicts that bending sheets either divide droplets for piecemeal sequestration or sequester entire droplets. We find that autophagosomal sequestration is robust to variations in the droplet-sheet adhesion strength. However, the two sides of partially wetted sheets are exposed to different environments, which can determine the bending direction of autophagosomal sheets. Our discovery of this interplay between the material properties of droplets and membrane sheets enables us to elucidate the mechanisms that underpin droplet autophagy, or ‘fluidophagy’. Furthermore, we uncover a switching mechanism that allows droplets to act as liquid assembly platforms for cytosol-degrading autophagosomes 8 or as specific autophagy substrates 9 – 11 . We propose that droplet-mediated autophagy represents a previously undescribed class of processes that are driven by elastocapillarity, highlighting the importance of wetting in cytosolic organization. A theoretical model, in vitro reconstitution and in vivo experimentation show that competition between droplet surface tension and membrane sheet instability dictates the form and function of autophagosomal membranes.</description><subject>14/19</subject><subject>14/28</subject><subject>631/57/2270</subject><subject>631/80/39</subject><subject>639/301/923</subject><subject>639/766/747</subject><subject>Adhesiveness</subject><subject>Autophagosomes - chemistry</subject><subject>Autophagosomes - metabolism</subject><subject>Autophagy</subject><subject>Cell Compartmentation</subject><subject>Cell Line</subject><subject>Cytosol - chemistry</subject><subject>Cytosol - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Intracellular Membranes - chemistry</subject><subject>Intracellular Membranes - metabolism</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sequestosome-1 Protein - metabolism</subject><subject>Surface Tension</subject><subject>Wettability</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAURS0EoqXwA1hQRhaDvxK7I6r4EpVYQIyW47ykrZI42M7Qf4-rFEYmP_med6V3ELqm5I4Sru6DoLkqMGEEs-WSYX6C5lTIAotCyVM0J4QpTBQvZugihB0hJKdSnKMZ50JyRuUcvX1BjNu-yTw0Y2sihMyM0Q0b0-wzV2dpCIADDMansMqs69IYO-hjIvsqixvI7D664NpLdFabNsDV8V2gz6fHj9ULXr8_v64e1tgKISNWjJeGlryqSiqqWlAKilPKjCWMph9rLTGVTUlOjYTSLLkypZXEFjkhVvAFup16B---RwhRd9tgoW1ND24Mmgm5lEIUXCaUTqj1LgQPtR78tjN-rynRB4d6cqiTQ31wqHnauTnWj2UH1d_Gr7QEsAkIKeob8HrnRt-nk_9p_QGG_n2o</recordid><startdate>20210304</startdate><enddate>20210304</enddate><creator>Agudo-Canalejo, Jaime</creator><creator>Schultz, Sebastian W.</creator><creator>Chino, Haruka</creator><creator>Migliano, Simona M.</creator><creator>Saito, Chieko</creator><creator>Koyama-Honda, Ikuko</creator><creator>Stenmark, Harald</creator><creator>Brech, Andreas</creator><creator>May, Alexander I.</creator><creator>Mizushima, Noboru</creator><creator>Knorr, Roland L.</creator><general>Nature Publishing Group UK</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1888-5332</orcidid><orcidid>https://orcid.org/0000-0001-9677-6054</orcidid><orcidid>https://orcid.org/0000-0002-1971-4252</orcidid><orcidid>https://orcid.org/0000-0002-4374-5120</orcidid><orcidid>https://orcid.org/0000-0002-3661-2178</orcidid><orcidid>https://orcid.org/0000-0002-6258-6444</orcidid><orcidid>https://orcid.org/0000-0001-9321-9682</orcidid><orcidid>https://orcid.org/0000-0002-9803-1774</orcidid><orcidid>https://orcid.org/0000-0002-6747-0088</orcidid></search><sort><creationdate>20210304</creationdate><title>Wetting regulates autophagy of phase-separated compartments and the cytosol</title><author>Agudo-Canalejo, Jaime ; Schultz, Sebastian W. ; Chino, Haruka ; Migliano, Simona M. ; Saito, Chieko ; Koyama-Honda, Ikuko ; Stenmark, Harald ; Brech, Andreas ; May, Alexander I. ; Mizushima, Noboru ; Knorr, Roland L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-823ba1b3ddb14df411e83112ac02114dccc0adcdf451a7eba938abc70c6500c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14/19</topic><topic>14/28</topic><topic>631/57/2270</topic><topic>631/80/39</topic><topic>639/301/923</topic><topic>639/766/747</topic><topic>Adhesiveness</topic><topic>Autophagosomes - chemistry</topic><topic>Autophagosomes - metabolism</topic><topic>Autophagy</topic><topic>Cell Compartmentation</topic><topic>Cell Line</topic><topic>Cytosol - chemistry</topic><topic>Cytosol - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Intracellular Membranes - chemistry</topic><topic>Intracellular Membranes - metabolism</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sequestosome-1 Protein - metabolism</topic><topic>Surface Tension</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agudo-Canalejo, Jaime</creatorcontrib><creatorcontrib>Schultz, Sebastian W.</creatorcontrib><creatorcontrib>Chino, Haruka</creatorcontrib><creatorcontrib>Migliano, Simona M.</creatorcontrib><creatorcontrib>Saito, Chieko</creatorcontrib><creatorcontrib>Koyama-Honda, Ikuko</creatorcontrib><creatorcontrib>Stenmark, Harald</creatorcontrib><creatorcontrib>Brech, Andreas</creatorcontrib><creatorcontrib>May, Alexander I.</creatorcontrib><creatorcontrib>Mizushima, Noboru</creatorcontrib><creatorcontrib>Knorr, Roland L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agudo-Canalejo, Jaime</au><au>Schultz, Sebastian W.</au><au>Chino, Haruka</au><au>Migliano, Simona M.</au><au>Saito, Chieko</au><au>Koyama-Honda, Ikuko</au><au>Stenmark, Harald</au><au>Brech, Andreas</au><au>May, Alexander I.</au><au>Mizushima, Noboru</au><au>Knorr, Roland L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wetting regulates autophagy of phase-separated compartments and the cytosol</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-03-04</date><risdate>2021</risdate><volume>591</volume><issue>7848</issue><spage>142</spage><epage>146</epage><pages>142-146</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Compartmentalization of cellular material in droplet-like structures is a hallmark of liquid–liquid phase separation 1 , 2 , but the mechanisms of droplet removal are poorly understood. Evidence suggests that droplets can be degraded by autophagy 3 , 4 , a highly conserved degradation system in which membrane sheets bend to isolate portions of the cytoplasm within double-membrane autophagosomes 5 – 7 . Here we examine how autophagosomes sequester droplets that contain the protein p62 (also known as SQSTM1) in living cells, and demonstrate that double-membrane, autophagosome-like vesicles form at the surface of protein-free droplets in vitro through partial wetting. A minimal physical model shows that droplet surface tension supports the formation of membrane sheets. The model also predicts that bending sheets either divide droplets for piecemeal sequestration or sequester entire droplets. We find that autophagosomal sequestration is robust to variations in the droplet-sheet adhesion strength. However, the two sides of partially wetted sheets are exposed to different environments, which can determine the bending direction of autophagosomal sheets. Our discovery of this interplay between the material properties of droplets and membrane sheets enables us to elucidate the mechanisms that underpin droplet autophagy, or ‘fluidophagy’. Furthermore, we uncover a switching mechanism that allows droplets to act as liquid assembly platforms for cytosol-degrading autophagosomes 8 or as specific autophagy substrates 9 – 11 . We propose that droplet-mediated autophagy represents a previously undescribed class of processes that are driven by elastocapillarity, highlighting the importance of wetting in cytosolic organization. A theoretical model, in vitro reconstitution and in vivo experimentation show that competition between droplet surface tension and membrane sheet instability dictates the form and function of autophagosomal membranes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33473217</pmid><doi>10.1038/s41586-020-2992-3</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1888-5332</orcidid><orcidid>https://orcid.org/0000-0001-9677-6054</orcidid><orcidid>https://orcid.org/0000-0002-1971-4252</orcidid><orcidid>https://orcid.org/0000-0002-4374-5120</orcidid><orcidid>https://orcid.org/0000-0002-3661-2178</orcidid><orcidid>https://orcid.org/0000-0002-6258-6444</orcidid><orcidid>https://orcid.org/0000-0001-9321-9682</orcidid><orcidid>https://orcid.org/0000-0002-9803-1774</orcidid><orcidid>https://orcid.org/0000-0002-6747-0088</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2021-03, Vol.591 (7848), p.142-146
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2479744637
source MEDLINE; Nature; Springer Nature - Complete Springer Journals
subjects 14/19
14/28
631/57/2270
631/80/39
639/301/923
639/766/747
Adhesiveness
Autophagosomes - chemistry
Autophagosomes - metabolism
Autophagy
Cell Compartmentation
Cell Line
Cytosol - chemistry
Cytosol - metabolism
Humanities and Social Sciences
Humans
Intracellular Membranes - chemistry
Intracellular Membranes - metabolism
multidisciplinary
Science
Science (multidisciplinary)
Sequestosome-1 Protein - metabolism
Surface Tension
Wettability
title Wetting regulates autophagy of phase-separated compartments and the cytosol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A13%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wetting%20regulates%20autophagy%20of%20phase-separated%20compartments%20and%20the%20cytosol&rft.jtitle=Nature%20(London)&rft.au=Agudo-Canalejo,%20Jaime&rft.date=2021-03-04&rft.volume=591&rft.issue=7848&rft.spage=142&rft.epage=146&rft.pages=142-146&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-2992-3&rft_dat=%3Cproquest_cross%3E2479744637%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479744637&rft_id=info:pmid/33473217&rfr_iscdi=true