Regional Embedding Enables High-Level Quantum Chemistry for Surface Science

Compared to common density functionals, ab initio wave function methods can provide greater reliability and accuracy, which could prove useful when modeling adsorbates or defects of otherwise periodic systems. However, the breaking of translational symmetry necessitates large supercells that are oft...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2021-01, Vol.12 (3), p.1104-1109
Hauptverfasser: Lau, Bryan T. G, Knizia, Gerald, Berkelbach, Timothy C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1109
container_issue 3
container_start_page 1104
container_title The journal of physical chemistry letters
container_volume 12
creator Lau, Bryan T. G
Knizia, Gerald
Berkelbach, Timothy C
description Compared to common density functionals, ab initio wave function methods can provide greater reliability and accuracy, which could prove useful when modeling adsorbates or defects of otherwise periodic systems. However, the breaking of translational symmetry necessitates large supercells that are often prohibitive for correlated wave function methods. As an alternative, this paper introduces the regional embedding approach, which enables correlated wave function treatments of only a target fragment of interest through small, fragment-localized orbital spaces constructed using a simple overlap criterion. Applications to the adsorption of water on lithium hydride, hexagonal boron nitride, and graphene substrates show that regional embedding combined with focal-point corrections can provide converged CCSD­(T) (coupled-cluster) adsorption energies with very small fragment sizes.
doi_str_mv 10.1021/acs.jpclett.0c03274
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2479726838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479726838</sourcerecordid><originalsourceid>FETCH-LOGICAL-a390t-259d8d2207dc34354e085a1216e2d4a80528d50ec7f13cfa3bd9ea04f056636e3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBUjISzYpfiV2lqgqFFEJQWFtOfakTZVHsROk_j2BBsSK1czi3Dujg9AlJVNKGL0xNky3O1tC206JJZxJcYTGNBUqklTFx3_2EToLYUtIkhIlT9GIcyFjnrAxenyBddHUpsTzKgPninqN57XJSgh4Uaw30RI-oMTPnanbrsKzDVRFaP0e543Hq87nxgJe2QJqC-foJDdlgIthTtDb3fx1toiWT_cPs9tlZHhK2ojFqVOOMSKd5YLHAoiKDWU0AeaEUSRmysUErMwpt7nhmUvBEJGTOEl4AnyCrg-9O9-8dxBa3f9koSxNDU0XNBMylSxRXPUoP6DWNyF4yPXOF5Xxe02J_rKoe4t6sKgHi33qajjQZRW438yPth64OQDf6abzvcDwb-UnJo-ACA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479726838</pqid></control><display><type>article</type><title>Regional Embedding Enables High-Level Quantum Chemistry for Surface Science</title><source>ACS Publications</source><creator>Lau, Bryan T. G ; Knizia, Gerald ; Berkelbach, Timothy C</creator><creatorcontrib>Lau, Bryan T. G ; Knizia, Gerald ; Berkelbach, Timothy C</creatorcontrib><description>Compared to common density functionals, ab initio wave function methods can provide greater reliability and accuracy, which could prove useful when modeling adsorbates or defects of otherwise periodic systems. However, the breaking of translational symmetry necessitates large supercells that are often prohibitive for correlated wave function methods. As an alternative, this paper introduces the regional embedding approach, which enables correlated wave function treatments of only a target fragment of interest through small, fragment-localized orbital spaces constructed using a simple overlap criterion. Applications to the adsorption of water on lithium hydride, hexagonal boron nitride, and graphene substrates show that regional embedding combined with focal-point corrections can provide converged CCSD­(T) (coupled-cluster) adsorption energies with very small fragment sizes.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.0c03274</identifier><identifier>PMID: 33475362</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Physical Insights into Chemistry, Catalysis, and Interfaces</subject><ispartof>The journal of physical chemistry letters, 2021-01, Vol.12 (3), p.1104-1109</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a390t-259d8d2207dc34354e085a1216e2d4a80528d50ec7f13cfa3bd9ea04f056636e3</citedby><cites>FETCH-LOGICAL-a390t-259d8d2207dc34354e085a1216e2d4a80528d50ec7f13cfa3bd9ea04f056636e3</cites><orcidid>0000-0002-7163-4823 ; 0000-0002-7445-2136 ; 0000-0003-1182-1237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.0c03274$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.0c03274$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33475362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lau, Bryan T. G</creatorcontrib><creatorcontrib>Knizia, Gerald</creatorcontrib><creatorcontrib>Berkelbach, Timothy C</creatorcontrib><title>Regional Embedding Enables High-Level Quantum Chemistry for Surface Science</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Compared to common density functionals, ab initio wave function methods can provide greater reliability and accuracy, which could prove useful when modeling adsorbates or defects of otherwise periodic systems. However, the breaking of translational symmetry necessitates large supercells that are often prohibitive for correlated wave function methods. As an alternative, this paper introduces the regional embedding approach, which enables correlated wave function treatments of only a target fragment of interest through small, fragment-localized orbital spaces constructed using a simple overlap criterion. Applications to the adsorption of water on lithium hydride, hexagonal boron nitride, and graphene substrates show that regional embedding combined with focal-point corrections can provide converged CCSD­(T) (coupled-cluster) adsorption energies with very small fragment sizes.</description><subject>Physical Insights into Chemistry, Catalysis, and Interfaces</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EoqXwBUjISzYpfiV2lqgqFFEJQWFtOfakTZVHsROk_j2BBsSK1czi3Dujg9AlJVNKGL0xNky3O1tC206JJZxJcYTGNBUqklTFx3_2EToLYUtIkhIlT9GIcyFjnrAxenyBddHUpsTzKgPninqN57XJSgh4Uaw30RI-oMTPnanbrsKzDVRFaP0e543Hq87nxgJe2QJqC-foJDdlgIthTtDb3fx1toiWT_cPs9tlZHhK2ojFqVOOMSKd5YLHAoiKDWU0AeaEUSRmysUErMwpt7nhmUvBEJGTOEl4AnyCrg-9O9-8dxBa3f9koSxNDU0XNBMylSxRXPUoP6DWNyF4yPXOF5Xxe02J_rKoe4t6sKgHi33qajjQZRW438yPth64OQDf6abzvcDwb-UnJo-ACA</recordid><startdate>20210128</startdate><enddate>20210128</enddate><creator>Lau, Bryan T. G</creator><creator>Knizia, Gerald</creator><creator>Berkelbach, Timothy C</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7163-4823</orcidid><orcidid>https://orcid.org/0000-0002-7445-2136</orcidid><orcidid>https://orcid.org/0000-0003-1182-1237</orcidid></search><sort><creationdate>20210128</creationdate><title>Regional Embedding Enables High-Level Quantum Chemistry for Surface Science</title><author>Lau, Bryan T. G ; Knizia, Gerald ; Berkelbach, Timothy C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a390t-259d8d2207dc34354e085a1216e2d4a80528d50ec7f13cfa3bd9ea04f056636e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Physical Insights into Chemistry, Catalysis, and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lau, Bryan T. G</creatorcontrib><creatorcontrib>Knizia, Gerald</creatorcontrib><creatorcontrib>Berkelbach, Timothy C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lau, Bryan T. G</au><au>Knizia, Gerald</au><au>Berkelbach, Timothy C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regional Embedding Enables High-Level Quantum Chemistry for Surface Science</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2021-01-28</date><risdate>2021</risdate><volume>12</volume><issue>3</issue><spage>1104</spage><epage>1109</epage><pages>1104-1109</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Compared to common density functionals, ab initio wave function methods can provide greater reliability and accuracy, which could prove useful when modeling adsorbates or defects of otherwise periodic systems. However, the breaking of translational symmetry necessitates large supercells that are often prohibitive for correlated wave function methods. As an alternative, this paper introduces the regional embedding approach, which enables correlated wave function treatments of only a target fragment of interest through small, fragment-localized orbital spaces constructed using a simple overlap criterion. Applications to the adsorption of water on lithium hydride, hexagonal boron nitride, and graphene substrates show that regional embedding combined with focal-point corrections can provide converged CCSD­(T) (coupled-cluster) adsorption energies with very small fragment sizes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33475362</pmid><doi>10.1021/acs.jpclett.0c03274</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7163-4823</orcidid><orcidid>https://orcid.org/0000-0002-7445-2136</orcidid><orcidid>https://orcid.org/0000-0003-1182-1237</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2021-01, Vol.12 (3), p.1104-1109
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2479726838
source ACS Publications
subjects Physical Insights into Chemistry, Catalysis, and Interfaces
title Regional Embedding Enables High-Level Quantum Chemistry for Surface Science
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regional%20Embedding%20Enables%20High-Level%20Quantum%20Chemistry%20for%20Surface%20Science&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Lau,%20Bryan%20T.%20G&rft.date=2021-01-28&rft.volume=12&rft.issue=3&rft.spage=1104&rft.epage=1109&rft.pages=1104-1109&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.0c03274&rft_dat=%3Cproquest_cross%3E2479726838%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479726838&rft_id=info:pmid/33475362&rfr_iscdi=true