Regional Embedding Enables High-Level Quantum Chemistry for Surface Science
Compared to common density functionals, ab initio wave function methods can provide greater reliability and accuracy, which could prove useful when modeling adsorbates or defects of otherwise periodic systems. However, the breaking of translational symmetry necessitates large supercells that are oft...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2021-01, Vol.12 (3), p.1104-1109 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1109 |
---|---|
container_issue | 3 |
container_start_page | 1104 |
container_title | The journal of physical chemistry letters |
container_volume | 12 |
creator | Lau, Bryan T. G Knizia, Gerald Berkelbach, Timothy C |
description | Compared to common density functionals, ab initio wave function methods can provide greater reliability and accuracy, which could prove useful when modeling adsorbates or defects of otherwise periodic systems. However, the breaking of translational symmetry necessitates large supercells that are often prohibitive for correlated wave function methods. As an alternative, this paper introduces the regional embedding approach, which enables correlated wave function treatments of only a target fragment of interest through small, fragment-localized orbital spaces constructed using a simple overlap criterion. Applications to the adsorption of water on lithium hydride, hexagonal boron nitride, and graphene substrates show that regional embedding combined with focal-point corrections can provide converged CCSD(T) (coupled-cluster) adsorption energies with very small fragment sizes. |
doi_str_mv | 10.1021/acs.jpclett.0c03274 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2479726838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479726838</sourcerecordid><originalsourceid>FETCH-LOGICAL-a390t-259d8d2207dc34354e085a1216e2d4a80528d50ec7f13cfa3bd9ea04f056636e3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBUjISzYpfiV2lqgqFFEJQWFtOfakTZVHsROk_j2BBsSK1czi3Dujg9AlJVNKGL0xNky3O1tC206JJZxJcYTGNBUqklTFx3_2EToLYUtIkhIlT9GIcyFjnrAxenyBddHUpsTzKgPninqN57XJSgh4Uaw30RI-oMTPnanbrsKzDVRFaP0e543Hq87nxgJe2QJqC-foJDdlgIthTtDb3fx1toiWT_cPs9tlZHhK2ojFqVOOMSKd5YLHAoiKDWU0AeaEUSRmysUErMwpt7nhmUvBEJGTOEl4AnyCrg-9O9-8dxBa3f9koSxNDU0XNBMylSxRXPUoP6DWNyF4yPXOF5Xxe02J_rKoe4t6sKgHi33qajjQZRW438yPth64OQDf6abzvcDwb-UnJo-ACA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479726838</pqid></control><display><type>article</type><title>Regional Embedding Enables High-Level Quantum Chemistry for Surface Science</title><source>ACS Publications</source><creator>Lau, Bryan T. G ; Knizia, Gerald ; Berkelbach, Timothy C</creator><creatorcontrib>Lau, Bryan T. G ; Knizia, Gerald ; Berkelbach, Timothy C</creatorcontrib><description>Compared to common density functionals, ab initio wave function methods can provide greater reliability and accuracy, which could prove useful when modeling adsorbates or defects of otherwise periodic systems. However, the breaking of translational symmetry necessitates large supercells that are often prohibitive for correlated wave function methods. As an alternative, this paper introduces the regional embedding approach, which enables correlated wave function treatments of only a target fragment of interest through small, fragment-localized orbital spaces constructed using a simple overlap criterion. Applications to the adsorption of water on lithium hydride, hexagonal boron nitride, and graphene substrates show that regional embedding combined with focal-point corrections can provide converged CCSD(T) (coupled-cluster) adsorption energies with very small fragment sizes.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.0c03274</identifier><identifier>PMID: 33475362</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Physical Insights into Chemistry, Catalysis, and Interfaces</subject><ispartof>The journal of physical chemistry letters, 2021-01, Vol.12 (3), p.1104-1109</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a390t-259d8d2207dc34354e085a1216e2d4a80528d50ec7f13cfa3bd9ea04f056636e3</citedby><cites>FETCH-LOGICAL-a390t-259d8d2207dc34354e085a1216e2d4a80528d50ec7f13cfa3bd9ea04f056636e3</cites><orcidid>0000-0002-7163-4823 ; 0000-0002-7445-2136 ; 0000-0003-1182-1237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.0c03274$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.0c03274$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33475362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lau, Bryan T. G</creatorcontrib><creatorcontrib>Knizia, Gerald</creatorcontrib><creatorcontrib>Berkelbach, Timothy C</creatorcontrib><title>Regional Embedding Enables High-Level Quantum Chemistry for Surface Science</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Compared to common density functionals, ab initio wave function methods can provide greater reliability and accuracy, which could prove useful when modeling adsorbates or defects of otherwise periodic systems. However, the breaking of translational symmetry necessitates large supercells that are often prohibitive for correlated wave function methods. As an alternative, this paper introduces the regional embedding approach, which enables correlated wave function treatments of only a target fragment of interest through small, fragment-localized orbital spaces constructed using a simple overlap criterion. Applications to the adsorption of water on lithium hydride, hexagonal boron nitride, and graphene substrates show that regional embedding combined with focal-point corrections can provide converged CCSD(T) (coupled-cluster) adsorption energies with very small fragment sizes.</description><subject>Physical Insights into Chemistry, Catalysis, and Interfaces</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EoqXwBUjISzYpfiV2lqgqFFEJQWFtOfakTZVHsROk_j2BBsSK1czi3Dujg9AlJVNKGL0xNky3O1tC206JJZxJcYTGNBUqklTFx3_2EToLYUtIkhIlT9GIcyFjnrAxenyBddHUpsTzKgPninqN57XJSgh4Uaw30RI-oMTPnanbrsKzDVRFaP0e543Hq87nxgJe2QJqC-foJDdlgIthTtDb3fx1toiWT_cPs9tlZHhK2ojFqVOOMSKd5YLHAoiKDWU0AeaEUSRmysUErMwpt7nhmUvBEJGTOEl4AnyCrg-9O9-8dxBa3f9koSxNDU0XNBMylSxRXPUoP6DWNyF4yPXOF5Xxe02J_rKoe4t6sKgHi33qajjQZRW438yPth64OQDf6abzvcDwb-UnJo-ACA</recordid><startdate>20210128</startdate><enddate>20210128</enddate><creator>Lau, Bryan T. G</creator><creator>Knizia, Gerald</creator><creator>Berkelbach, Timothy C</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7163-4823</orcidid><orcidid>https://orcid.org/0000-0002-7445-2136</orcidid><orcidid>https://orcid.org/0000-0003-1182-1237</orcidid></search><sort><creationdate>20210128</creationdate><title>Regional Embedding Enables High-Level Quantum Chemistry for Surface Science</title><author>Lau, Bryan T. G ; Knizia, Gerald ; Berkelbach, Timothy C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a390t-259d8d2207dc34354e085a1216e2d4a80528d50ec7f13cfa3bd9ea04f056636e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Physical Insights into Chemistry, Catalysis, and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lau, Bryan T. G</creatorcontrib><creatorcontrib>Knizia, Gerald</creatorcontrib><creatorcontrib>Berkelbach, Timothy C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lau, Bryan T. G</au><au>Knizia, Gerald</au><au>Berkelbach, Timothy C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regional Embedding Enables High-Level Quantum Chemistry for Surface Science</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2021-01-28</date><risdate>2021</risdate><volume>12</volume><issue>3</issue><spage>1104</spage><epage>1109</epage><pages>1104-1109</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Compared to common density functionals, ab initio wave function methods can provide greater reliability and accuracy, which could prove useful when modeling adsorbates or defects of otherwise periodic systems. However, the breaking of translational symmetry necessitates large supercells that are often prohibitive for correlated wave function methods. As an alternative, this paper introduces the regional embedding approach, which enables correlated wave function treatments of only a target fragment of interest through small, fragment-localized orbital spaces constructed using a simple overlap criterion. Applications to the adsorption of water on lithium hydride, hexagonal boron nitride, and graphene substrates show that regional embedding combined with focal-point corrections can provide converged CCSD(T) (coupled-cluster) adsorption energies with very small fragment sizes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33475362</pmid><doi>10.1021/acs.jpclett.0c03274</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7163-4823</orcidid><orcidid>https://orcid.org/0000-0002-7445-2136</orcidid><orcidid>https://orcid.org/0000-0003-1182-1237</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2021-01, Vol.12 (3), p.1104-1109 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_proquest_miscellaneous_2479726838 |
source | ACS Publications |
subjects | Physical Insights into Chemistry, Catalysis, and Interfaces |
title | Regional Embedding Enables High-Level Quantum Chemistry for Surface Science |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regional%20Embedding%20Enables%20High-Level%20Quantum%20Chemistry%20for%20Surface%20Science&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Lau,%20Bryan%20T.%20G&rft.date=2021-01-28&rft.volume=12&rft.issue=3&rft.spage=1104&rft.epage=1109&rft.pages=1104-1109&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.0c03274&rft_dat=%3Cproquest_cross%3E2479726838%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479726838&rft_id=info:pmid/33475362&rfr_iscdi=true |