Comparative evaluation of intracranial oligodendroglioma and astrocytoma of similar grades using conventional and T1-weighted DCE-MRI

Purpose This retrospective study was performed on a 3T MRI to determine the unique conventional MR imaging and T1-weighted DCE-MRI features of oligodendroglioma and astrocytoma and investigate the utility of machine learning algorithms in their differentiation. Methods Histologically confirmed, 81 t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroradiology 2021-08, Vol.63 (8), p.1227-1239
Hauptverfasser: Gupta, Mamta, Gupta, Abhinav, Yadav, Virendra, Parvaze, Suhail P., Singh, Anup, Saini, Jitender, Patir, Rana, Vaishya, Sandeep, Ahlawat, Sunita, Gupta, Rakesh Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1239
container_issue 8
container_start_page 1227
container_title Neuroradiology
container_volume 63
creator Gupta, Mamta
Gupta, Abhinav
Yadav, Virendra
Parvaze, Suhail P.
Singh, Anup
Saini, Jitender
Patir, Rana
Vaishya, Sandeep
Ahlawat, Sunita
Gupta, Rakesh Kumar
description Purpose This retrospective study was performed on a 3T MRI to determine the unique conventional MR imaging and T1-weighted DCE-MRI features of oligodendroglioma and astrocytoma and investigate the utility of machine learning algorithms in their differentiation. Methods Histologically confirmed, 81 treatment-naïve patients were classified into two groups as per WHO 2016 classification: oligodendroglioma ( n = 16; grade II, n = 25; grade III) and astrocytoma ( n = 10; grade II, n = 30; grade III). The differences in tumor morphology characteristics were evaluated using Z-test. T1-weighted DCE-MRI data were analyzed using an in-house built MATLAB program. The mean 90th percentile of relative cerebral blood flow, relative cerebral blood volume corrected, volume transfer rate from plasma to extracellular extravascular space, and extravascular extracellular space volume values were evaluated using independent Student’s t test. Support vector machine (SVM) classifier was constructed to differentiate two groups across grade II, grade III, and grade II+III based on statistically significant features. Results Z-test signified only calcification among conventional MR features to categorize oligodendroglioma and astrocytoma across grade III and grade II+III tumors. No statistical significance was found in the perfusion parameters between two groups and its subtypes. SVM trained on calcification also provided moderate accuracy to differentiate oligodendroglioma from astrocytoma. Conclusion We conclude that conventional MR features except calcification and the quantitative T1-weighted DCE-MRI parameters fail to discriminate between oligodendroglioma and astrocytoma. The SVM could not further aid in their differentiation. The study also suggests that the presence of more than 50% T2-FLAIR mismatch may be considered as a more conclusive sign for differentiation of IDH mutant astrocytoma.
doi_str_mv 10.1007/s00234-021-02636-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2479420524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479420524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-94d0164686f091fbccce94753c3b828e1fc7012ff903b12b5f273b042381da373</originalsourceid><addsrcrecordid>eNp9kU1LHTEUhkOp1FvbP9CFBLrpJu3Jx3xkKVfbChZB7DpkMsk0MpNck5lb_AH-b3O9toILF4dzwnneNxxehD5R-EoBmm8ZgHFBgNFSNa9J-watqOCMUMngLVqVfUu4FHCI3ud8AwC84c07dMi5qGUt-Qrdr-O00UnPfmux3epxKWMMODrsw5y0STp4PeI4-iH2NvQpDqOPk8Y69FjnOUVzN-_eRZH95Eed8JB0bzNesg8DNjFsbdiZFpud6JqSv9YPf2bb49P1Gfl1df4BHTg9ZvvxqR-h39_Prtc_ycXlj_P1yQUxvKlmIkUPtBZ1WzuQ1HXGGCtFU3HDu5a1ljrTAGXOSeAdZV3lWMM7EIy3tNfl9iP0Ze-7SfF2sXlWk8_GjqMONi5ZMdFIwaBioqCfX6A3cUnlhkJVFa-pLFUotqdMijkn69Qm-UmnO0VB7UJS-5BUCUk9hqTaIjp-sl66yfb_Jf9SKQDfA7mswmDT89-v2D4AXJOdeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553619361</pqid></control><display><type>article</type><title>Comparative evaluation of intracranial oligodendroglioma and astrocytoma of similar grades using conventional and T1-weighted DCE-MRI</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gupta, Mamta ; Gupta, Abhinav ; Yadav, Virendra ; Parvaze, Suhail P. ; Singh, Anup ; Saini, Jitender ; Patir, Rana ; Vaishya, Sandeep ; Ahlawat, Sunita ; Gupta, Rakesh Kumar</creator><creatorcontrib>Gupta, Mamta ; Gupta, Abhinav ; Yadav, Virendra ; Parvaze, Suhail P. ; Singh, Anup ; Saini, Jitender ; Patir, Rana ; Vaishya, Sandeep ; Ahlawat, Sunita ; Gupta, Rakesh Kumar</creatorcontrib><description>Purpose This retrospective study was performed on a 3T MRI to determine the unique conventional MR imaging and T1-weighted DCE-MRI features of oligodendroglioma and astrocytoma and investigate the utility of machine learning algorithms in their differentiation. Methods Histologically confirmed, 81 treatment-naïve patients were classified into two groups as per WHO 2016 classification: oligodendroglioma ( n = 16; grade II, n = 25; grade III) and astrocytoma ( n = 10; grade II, n = 30; grade III). The differences in tumor morphology characteristics were evaluated using Z-test. T1-weighted DCE-MRI data were analyzed using an in-house built MATLAB program. The mean 90th percentile of relative cerebral blood flow, relative cerebral blood volume corrected, volume transfer rate from plasma to extracellular extravascular space, and extravascular extracellular space volume values were evaluated using independent Student’s t test. Support vector machine (SVM) classifier was constructed to differentiate two groups across grade II, grade III, and grade II+III based on statistically significant features. Results Z-test signified only calcification among conventional MR features to categorize oligodendroglioma and astrocytoma across grade III and grade II+III tumors. No statistical significance was found in the perfusion parameters between two groups and its subtypes. SVM trained on calcification also provided moderate accuracy to differentiate oligodendroglioma from astrocytoma. Conclusion We conclude that conventional MR features except calcification and the quantitative T1-weighted DCE-MRI parameters fail to discriminate between oligodendroglioma and astrocytoma. The SVM could not further aid in their differentiation. The study also suggests that the presence of more than 50% T2-FLAIR mismatch may be considered as a more conclusive sign for differentiation of IDH mutant astrocytoma.</description><identifier>ISSN: 0028-3940</identifier><identifier>EISSN: 1432-1920</identifier><identifier>DOI: 10.1007/s00234-021-02636-8</identifier><identifier>PMID: 33469693</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Astrocytoma ; Blood flow ; Blood volume ; Brain cancer ; Calcification ; Cerebral blood flow ; Diagnostic Neuroradiology ; Differentiation ; Evaluation ; Imaging ; Learning algorithms ; Machine learning ; Magnetic resonance imaging ; Medicine ; Medicine &amp; Public Health ; Morphology ; Neurology ; Neuroradiology ; Neurosciences ; Neurosurgery ; Oligodendroglioma ; Parameters ; Perfusion ; Physical characteristics ; Radiology ; Statistical analysis ; Support vector machines ; Tumors</subject><ispartof>Neuroradiology, 2021-08, Vol.63 (8), p.1227-1239</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-94d0164686f091fbccce94753c3b828e1fc7012ff903b12b5f273b042381da373</citedby><cites>FETCH-LOGICAL-c375t-94d0164686f091fbccce94753c3b828e1fc7012ff903b12b5f273b042381da373</cites><orcidid>0000-0001-6047-3115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00234-021-02636-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00234-021-02636-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33469693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, Mamta</creatorcontrib><creatorcontrib>Gupta, Abhinav</creatorcontrib><creatorcontrib>Yadav, Virendra</creatorcontrib><creatorcontrib>Parvaze, Suhail P.</creatorcontrib><creatorcontrib>Singh, Anup</creatorcontrib><creatorcontrib>Saini, Jitender</creatorcontrib><creatorcontrib>Patir, Rana</creatorcontrib><creatorcontrib>Vaishya, Sandeep</creatorcontrib><creatorcontrib>Ahlawat, Sunita</creatorcontrib><creatorcontrib>Gupta, Rakesh Kumar</creatorcontrib><title>Comparative evaluation of intracranial oligodendroglioma and astrocytoma of similar grades using conventional and T1-weighted DCE-MRI</title><title>Neuroradiology</title><addtitle>Neuroradiology</addtitle><addtitle>Neuroradiology</addtitle><description>Purpose This retrospective study was performed on a 3T MRI to determine the unique conventional MR imaging and T1-weighted DCE-MRI features of oligodendroglioma and astrocytoma and investigate the utility of machine learning algorithms in their differentiation. Methods Histologically confirmed, 81 treatment-naïve patients were classified into two groups as per WHO 2016 classification: oligodendroglioma ( n = 16; grade II, n = 25; grade III) and astrocytoma ( n = 10; grade II, n = 30; grade III). The differences in tumor morphology characteristics were evaluated using Z-test. T1-weighted DCE-MRI data were analyzed using an in-house built MATLAB program. The mean 90th percentile of relative cerebral blood flow, relative cerebral blood volume corrected, volume transfer rate from plasma to extracellular extravascular space, and extravascular extracellular space volume values were evaluated using independent Student’s t test. Support vector machine (SVM) classifier was constructed to differentiate two groups across grade II, grade III, and grade II+III based on statistically significant features. Results Z-test signified only calcification among conventional MR features to categorize oligodendroglioma and astrocytoma across grade III and grade II+III tumors. No statistical significance was found in the perfusion parameters between two groups and its subtypes. SVM trained on calcification also provided moderate accuracy to differentiate oligodendroglioma from astrocytoma. Conclusion We conclude that conventional MR features except calcification and the quantitative T1-weighted DCE-MRI parameters fail to discriminate between oligodendroglioma and astrocytoma. The SVM could not further aid in their differentiation. The study also suggests that the presence of more than 50% T2-FLAIR mismatch may be considered as a more conclusive sign for differentiation of IDH mutant astrocytoma.</description><subject>Algorithms</subject><subject>Astrocytoma</subject><subject>Blood flow</subject><subject>Blood volume</subject><subject>Brain cancer</subject><subject>Calcification</subject><subject>Cerebral blood flow</subject><subject>Diagnostic Neuroradiology</subject><subject>Differentiation</subject><subject>Evaluation</subject><subject>Imaging</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Morphology</subject><subject>Neurology</subject><subject>Neuroradiology</subject><subject>Neurosciences</subject><subject>Neurosurgery</subject><subject>Oligodendroglioma</subject><subject>Parameters</subject><subject>Perfusion</subject><subject>Physical characteristics</subject><subject>Radiology</subject><subject>Statistical analysis</subject><subject>Support vector machines</subject><subject>Tumors</subject><issn>0028-3940</issn><issn>1432-1920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1LHTEUhkOp1FvbP9CFBLrpJu3Jx3xkKVfbChZB7DpkMsk0MpNck5lb_AH-b3O9toILF4dzwnneNxxehD5R-EoBmm8ZgHFBgNFSNa9J-watqOCMUMngLVqVfUu4FHCI3ud8AwC84c07dMi5qGUt-Qrdr-O00UnPfmux3epxKWMMODrsw5y0STp4PeI4-iH2NvQpDqOPk8Y69FjnOUVzN-_eRZH95Eed8JB0bzNesg8DNjFsbdiZFpud6JqSv9YPf2bb49P1Gfl1df4BHTg9ZvvxqR-h39_Prtc_ycXlj_P1yQUxvKlmIkUPtBZ1WzuQ1HXGGCtFU3HDu5a1ljrTAGXOSeAdZV3lWMM7EIy3tNfl9iP0Ze-7SfF2sXlWk8_GjqMONi5ZMdFIwaBioqCfX6A3cUnlhkJVFa-pLFUotqdMijkn69Qm-UmnO0VB7UJS-5BUCUk9hqTaIjp-sl66yfb_Jf9SKQDfA7mswmDT89-v2D4AXJOdeQ</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Gupta, Mamta</creator><creator>Gupta, Abhinav</creator><creator>Yadav, Virendra</creator><creator>Parvaze, Suhail P.</creator><creator>Singh, Anup</creator><creator>Saini, Jitender</creator><creator>Patir, Rana</creator><creator>Vaishya, Sandeep</creator><creator>Ahlawat, Sunita</creator><creator>Gupta, Rakesh Kumar</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6047-3115</orcidid></search><sort><creationdate>20210801</creationdate><title>Comparative evaluation of intracranial oligodendroglioma and astrocytoma of similar grades using conventional and T1-weighted DCE-MRI</title><author>Gupta, Mamta ; Gupta, Abhinav ; Yadav, Virendra ; Parvaze, Suhail P. ; Singh, Anup ; Saini, Jitender ; Patir, Rana ; Vaishya, Sandeep ; Ahlawat, Sunita ; Gupta, Rakesh Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-94d0164686f091fbccce94753c3b828e1fc7012ff903b12b5f273b042381da373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Astrocytoma</topic><topic>Blood flow</topic><topic>Blood volume</topic><topic>Brain cancer</topic><topic>Calcification</topic><topic>Cerebral blood flow</topic><topic>Diagnostic Neuroradiology</topic><topic>Differentiation</topic><topic>Evaluation</topic><topic>Imaging</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Morphology</topic><topic>Neurology</topic><topic>Neuroradiology</topic><topic>Neurosciences</topic><topic>Neurosurgery</topic><topic>Oligodendroglioma</topic><topic>Parameters</topic><topic>Perfusion</topic><topic>Physical characteristics</topic><topic>Radiology</topic><topic>Statistical analysis</topic><topic>Support vector machines</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Mamta</creatorcontrib><creatorcontrib>Gupta, Abhinav</creatorcontrib><creatorcontrib>Yadav, Virendra</creatorcontrib><creatorcontrib>Parvaze, Suhail P.</creatorcontrib><creatorcontrib>Singh, Anup</creatorcontrib><creatorcontrib>Saini, Jitender</creatorcontrib><creatorcontrib>Patir, Rana</creatorcontrib><creatorcontrib>Vaishya, Sandeep</creatorcontrib><creatorcontrib>Ahlawat, Sunita</creatorcontrib><creatorcontrib>Gupta, Rakesh Kumar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroradiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Mamta</au><au>Gupta, Abhinav</au><au>Yadav, Virendra</au><au>Parvaze, Suhail P.</au><au>Singh, Anup</au><au>Saini, Jitender</au><au>Patir, Rana</au><au>Vaishya, Sandeep</au><au>Ahlawat, Sunita</au><au>Gupta, Rakesh Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative evaluation of intracranial oligodendroglioma and astrocytoma of similar grades using conventional and T1-weighted DCE-MRI</atitle><jtitle>Neuroradiology</jtitle><stitle>Neuroradiology</stitle><addtitle>Neuroradiology</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>63</volume><issue>8</issue><spage>1227</spage><epage>1239</epage><pages>1227-1239</pages><issn>0028-3940</issn><eissn>1432-1920</eissn><abstract>Purpose This retrospective study was performed on a 3T MRI to determine the unique conventional MR imaging and T1-weighted DCE-MRI features of oligodendroglioma and astrocytoma and investigate the utility of machine learning algorithms in their differentiation. Methods Histologically confirmed, 81 treatment-naïve patients were classified into two groups as per WHO 2016 classification: oligodendroglioma ( n = 16; grade II, n = 25; grade III) and astrocytoma ( n = 10; grade II, n = 30; grade III). The differences in tumor morphology characteristics were evaluated using Z-test. T1-weighted DCE-MRI data were analyzed using an in-house built MATLAB program. The mean 90th percentile of relative cerebral blood flow, relative cerebral blood volume corrected, volume transfer rate from plasma to extracellular extravascular space, and extravascular extracellular space volume values were evaluated using independent Student’s t test. Support vector machine (SVM) classifier was constructed to differentiate two groups across grade II, grade III, and grade II+III based on statistically significant features. Results Z-test signified only calcification among conventional MR features to categorize oligodendroglioma and astrocytoma across grade III and grade II+III tumors. No statistical significance was found in the perfusion parameters between two groups and its subtypes. SVM trained on calcification also provided moderate accuracy to differentiate oligodendroglioma from astrocytoma. Conclusion We conclude that conventional MR features except calcification and the quantitative T1-weighted DCE-MRI parameters fail to discriminate between oligodendroglioma and astrocytoma. The SVM could not further aid in their differentiation. The study also suggests that the presence of more than 50% T2-FLAIR mismatch may be considered as a more conclusive sign for differentiation of IDH mutant astrocytoma.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33469693</pmid><doi>10.1007/s00234-021-02636-8</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6047-3115</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-3940
ispartof Neuroradiology, 2021-08, Vol.63 (8), p.1227-1239
issn 0028-3940
1432-1920
language eng
recordid cdi_proquest_miscellaneous_2479420524
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Astrocytoma
Blood flow
Blood volume
Brain cancer
Calcification
Cerebral blood flow
Diagnostic Neuroradiology
Differentiation
Evaluation
Imaging
Learning algorithms
Machine learning
Magnetic resonance imaging
Medicine
Medicine & Public Health
Morphology
Neurology
Neuroradiology
Neurosciences
Neurosurgery
Oligodendroglioma
Parameters
Perfusion
Physical characteristics
Radiology
Statistical analysis
Support vector machines
Tumors
title Comparative evaluation of intracranial oligodendroglioma and astrocytoma of similar grades using conventional and T1-weighted DCE-MRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20evaluation%20of%20intracranial%20oligodendroglioma%20and%20astrocytoma%20of%20similar%20grades%20using%20conventional%20and%20T1-weighted%20DCE-MRI&rft.jtitle=Neuroradiology&rft.au=Gupta,%20Mamta&rft.date=2021-08-01&rft.volume=63&rft.issue=8&rft.spage=1227&rft.epage=1239&rft.pages=1227-1239&rft.issn=0028-3940&rft.eissn=1432-1920&rft_id=info:doi/10.1007/s00234-021-02636-8&rft_dat=%3Cproquest_cross%3E2479420524%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553619361&rft_id=info:pmid/33469693&rfr_iscdi=true