Comparative evaluation of intracranial oligodendroglioma and astrocytoma of similar grades using conventional and T1-weighted DCE-MRI
Purpose This retrospective study was performed on a 3T MRI to determine the unique conventional MR imaging and T1-weighted DCE-MRI features of oligodendroglioma and astrocytoma and investigate the utility of machine learning algorithms in their differentiation. Methods Histologically confirmed, 81 t...
Gespeichert in:
Veröffentlicht in: | Neuroradiology 2021-08, Vol.63 (8), p.1227-1239 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1239 |
---|---|
container_issue | 8 |
container_start_page | 1227 |
container_title | Neuroradiology |
container_volume | 63 |
creator | Gupta, Mamta Gupta, Abhinav Yadav, Virendra Parvaze, Suhail P. Singh, Anup Saini, Jitender Patir, Rana Vaishya, Sandeep Ahlawat, Sunita Gupta, Rakesh Kumar |
description | Purpose
This retrospective study was performed on a 3T MRI to determine the unique conventional MR imaging and T1-weighted DCE-MRI features of oligodendroglioma and astrocytoma and investigate the utility of machine learning algorithms in their differentiation.
Methods
Histologically confirmed, 81 treatment-naïve patients were classified into two groups as per WHO 2016 classification: oligodendroglioma (
n
= 16; grade II,
n
= 25; grade III) and astrocytoma (
n
= 10; grade II,
n
= 30; grade III). The differences in tumor morphology characteristics were evaluated using Z-test. T1-weighted DCE-MRI data were analyzed using an in-house built MATLAB program. The mean 90th percentile of relative cerebral blood flow, relative cerebral blood volume corrected, volume transfer rate from plasma to extracellular extravascular space, and extravascular extracellular space volume values were evaluated using independent Student’s
t
test. Support vector machine (SVM) classifier was constructed to differentiate two groups across grade II, grade III, and grade II+III based on statistically significant features.
Results
Z-test signified only calcification among conventional MR features to categorize oligodendroglioma and astrocytoma across grade III and grade II+III tumors. No statistical significance was found in the perfusion parameters between two groups and its subtypes. SVM trained on calcification also provided moderate accuracy to differentiate oligodendroglioma from astrocytoma.
Conclusion
We conclude that conventional MR features except calcification and the quantitative T1-weighted DCE-MRI parameters fail to discriminate between oligodendroglioma and astrocytoma. The SVM could not further aid in their differentiation. The study also suggests that the presence of more than 50% T2-FLAIR mismatch may be considered as a more conclusive sign for differentiation of IDH mutant astrocytoma. |
doi_str_mv | 10.1007/s00234-021-02636-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2479420524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479420524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-94d0164686f091fbccce94753c3b828e1fc7012ff903b12b5f273b042381da373</originalsourceid><addsrcrecordid>eNp9kU1LHTEUhkOp1FvbP9CFBLrpJu3Jx3xkKVfbChZB7DpkMsk0MpNck5lb_AH-b3O9toILF4dzwnneNxxehD5R-EoBmm8ZgHFBgNFSNa9J-watqOCMUMngLVqVfUu4FHCI3ud8AwC84c07dMi5qGUt-Qrdr-O00UnPfmux3epxKWMMODrsw5y0STp4PeI4-iH2NvQpDqOPk8Y69FjnOUVzN-_eRZH95Eed8JB0bzNesg8DNjFsbdiZFpud6JqSv9YPf2bb49P1Gfl1df4BHTg9ZvvxqR-h39_Prtc_ycXlj_P1yQUxvKlmIkUPtBZ1WzuQ1HXGGCtFU3HDu5a1ljrTAGXOSeAdZV3lWMM7EIy3tNfl9iP0Ze-7SfF2sXlWk8_GjqMONi5ZMdFIwaBioqCfX6A3cUnlhkJVFa-pLFUotqdMijkn69Qm-UmnO0VB7UJS-5BUCUk9hqTaIjp-sl66yfb_Jf9SKQDfA7mswmDT89-v2D4AXJOdeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553619361</pqid></control><display><type>article</type><title>Comparative evaluation of intracranial oligodendroglioma and astrocytoma of similar grades using conventional and T1-weighted DCE-MRI</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gupta, Mamta ; Gupta, Abhinav ; Yadav, Virendra ; Parvaze, Suhail P. ; Singh, Anup ; Saini, Jitender ; Patir, Rana ; Vaishya, Sandeep ; Ahlawat, Sunita ; Gupta, Rakesh Kumar</creator><creatorcontrib>Gupta, Mamta ; Gupta, Abhinav ; Yadav, Virendra ; Parvaze, Suhail P. ; Singh, Anup ; Saini, Jitender ; Patir, Rana ; Vaishya, Sandeep ; Ahlawat, Sunita ; Gupta, Rakesh Kumar</creatorcontrib><description>Purpose
This retrospective study was performed on a 3T MRI to determine the unique conventional MR imaging and T1-weighted DCE-MRI features of oligodendroglioma and astrocytoma and investigate the utility of machine learning algorithms in their differentiation.
Methods
Histologically confirmed, 81 treatment-naïve patients were classified into two groups as per WHO 2016 classification: oligodendroglioma (
n
= 16; grade II,
n
= 25; grade III) and astrocytoma (
n
= 10; grade II,
n
= 30; grade III). The differences in tumor morphology characteristics were evaluated using Z-test. T1-weighted DCE-MRI data were analyzed using an in-house built MATLAB program. The mean 90th percentile of relative cerebral blood flow, relative cerebral blood volume corrected, volume transfer rate from plasma to extracellular extravascular space, and extravascular extracellular space volume values were evaluated using independent Student’s
t
test. Support vector machine (SVM) classifier was constructed to differentiate two groups across grade II, grade III, and grade II+III based on statistically significant features.
Results
Z-test signified only calcification among conventional MR features to categorize oligodendroglioma and astrocytoma across grade III and grade II+III tumors. No statistical significance was found in the perfusion parameters between two groups and its subtypes. SVM trained on calcification also provided moderate accuracy to differentiate oligodendroglioma from astrocytoma.
Conclusion
We conclude that conventional MR features except calcification and the quantitative T1-weighted DCE-MRI parameters fail to discriminate between oligodendroglioma and astrocytoma. The SVM could not further aid in their differentiation. The study also suggests that the presence of more than 50% T2-FLAIR mismatch may be considered as a more conclusive sign for differentiation of IDH mutant astrocytoma.</description><identifier>ISSN: 0028-3940</identifier><identifier>EISSN: 1432-1920</identifier><identifier>DOI: 10.1007/s00234-021-02636-8</identifier><identifier>PMID: 33469693</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Astrocytoma ; Blood flow ; Blood volume ; Brain cancer ; Calcification ; Cerebral blood flow ; Diagnostic Neuroradiology ; Differentiation ; Evaluation ; Imaging ; Learning algorithms ; Machine learning ; Magnetic resonance imaging ; Medicine ; Medicine & Public Health ; Morphology ; Neurology ; Neuroradiology ; Neurosciences ; Neurosurgery ; Oligodendroglioma ; Parameters ; Perfusion ; Physical characteristics ; Radiology ; Statistical analysis ; Support vector machines ; Tumors</subject><ispartof>Neuroradiology, 2021-08, Vol.63 (8), p.1227-1239</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-94d0164686f091fbccce94753c3b828e1fc7012ff903b12b5f273b042381da373</citedby><cites>FETCH-LOGICAL-c375t-94d0164686f091fbccce94753c3b828e1fc7012ff903b12b5f273b042381da373</cites><orcidid>0000-0001-6047-3115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00234-021-02636-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00234-021-02636-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33469693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, Mamta</creatorcontrib><creatorcontrib>Gupta, Abhinav</creatorcontrib><creatorcontrib>Yadav, Virendra</creatorcontrib><creatorcontrib>Parvaze, Suhail P.</creatorcontrib><creatorcontrib>Singh, Anup</creatorcontrib><creatorcontrib>Saini, Jitender</creatorcontrib><creatorcontrib>Patir, Rana</creatorcontrib><creatorcontrib>Vaishya, Sandeep</creatorcontrib><creatorcontrib>Ahlawat, Sunita</creatorcontrib><creatorcontrib>Gupta, Rakesh Kumar</creatorcontrib><title>Comparative evaluation of intracranial oligodendroglioma and astrocytoma of similar grades using conventional and T1-weighted DCE-MRI</title><title>Neuroradiology</title><addtitle>Neuroradiology</addtitle><addtitle>Neuroradiology</addtitle><description>Purpose
This retrospective study was performed on a 3T MRI to determine the unique conventional MR imaging and T1-weighted DCE-MRI features of oligodendroglioma and astrocytoma and investigate the utility of machine learning algorithms in their differentiation.
Methods
Histologically confirmed, 81 treatment-naïve patients were classified into two groups as per WHO 2016 classification: oligodendroglioma (
n
= 16; grade II,
n
= 25; grade III) and astrocytoma (
n
= 10; grade II,
n
= 30; grade III). The differences in tumor morphology characteristics were evaluated using Z-test. T1-weighted DCE-MRI data were analyzed using an in-house built MATLAB program. The mean 90th percentile of relative cerebral blood flow, relative cerebral blood volume corrected, volume transfer rate from plasma to extracellular extravascular space, and extravascular extracellular space volume values were evaluated using independent Student’s
t
test. Support vector machine (SVM) classifier was constructed to differentiate two groups across grade II, grade III, and grade II+III based on statistically significant features.
Results
Z-test signified only calcification among conventional MR features to categorize oligodendroglioma and astrocytoma across grade III and grade II+III tumors. No statistical significance was found in the perfusion parameters between two groups and its subtypes. SVM trained on calcification also provided moderate accuracy to differentiate oligodendroglioma from astrocytoma.
Conclusion
We conclude that conventional MR features except calcification and the quantitative T1-weighted DCE-MRI parameters fail to discriminate between oligodendroglioma and astrocytoma. The SVM could not further aid in their differentiation. The study also suggests that the presence of more than 50% T2-FLAIR mismatch may be considered as a more conclusive sign for differentiation of IDH mutant astrocytoma.</description><subject>Algorithms</subject><subject>Astrocytoma</subject><subject>Blood flow</subject><subject>Blood volume</subject><subject>Brain cancer</subject><subject>Calcification</subject><subject>Cerebral blood flow</subject><subject>Diagnostic Neuroradiology</subject><subject>Differentiation</subject><subject>Evaluation</subject><subject>Imaging</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Morphology</subject><subject>Neurology</subject><subject>Neuroradiology</subject><subject>Neurosciences</subject><subject>Neurosurgery</subject><subject>Oligodendroglioma</subject><subject>Parameters</subject><subject>Perfusion</subject><subject>Physical characteristics</subject><subject>Radiology</subject><subject>Statistical analysis</subject><subject>Support vector machines</subject><subject>Tumors</subject><issn>0028-3940</issn><issn>1432-1920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1LHTEUhkOp1FvbP9CFBLrpJu3Jx3xkKVfbChZB7DpkMsk0MpNck5lb_AH-b3O9toILF4dzwnneNxxehD5R-EoBmm8ZgHFBgNFSNa9J-watqOCMUMngLVqVfUu4FHCI3ud8AwC84c07dMi5qGUt-Qrdr-O00UnPfmux3epxKWMMODrsw5y0STp4PeI4-iH2NvQpDqOPk8Y69FjnOUVzN-_eRZH95Eed8JB0bzNesg8DNjFsbdiZFpud6JqSv9YPf2bb49P1Gfl1df4BHTg9ZvvxqR-h39_Prtc_ycXlj_P1yQUxvKlmIkUPtBZ1WzuQ1HXGGCtFU3HDu5a1ljrTAGXOSeAdZV3lWMM7EIy3tNfl9iP0Ze-7SfF2sXlWk8_GjqMONi5ZMdFIwaBioqCfX6A3cUnlhkJVFa-pLFUotqdMijkn69Qm-UmnO0VB7UJS-5BUCUk9hqTaIjp-sl66yfb_Jf9SKQDfA7mswmDT89-v2D4AXJOdeQ</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Gupta, Mamta</creator><creator>Gupta, Abhinav</creator><creator>Yadav, Virendra</creator><creator>Parvaze, Suhail P.</creator><creator>Singh, Anup</creator><creator>Saini, Jitender</creator><creator>Patir, Rana</creator><creator>Vaishya, Sandeep</creator><creator>Ahlawat, Sunita</creator><creator>Gupta, Rakesh Kumar</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6047-3115</orcidid></search><sort><creationdate>20210801</creationdate><title>Comparative evaluation of intracranial oligodendroglioma and astrocytoma of similar grades using conventional and T1-weighted DCE-MRI</title><author>Gupta, Mamta ; Gupta, Abhinav ; Yadav, Virendra ; Parvaze, Suhail P. ; Singh, Anup ; Saini, Jitender ; Patir, Rana ; Vaishya, Sandeep ; Ahlawat, Sunita ; Gupta, Rakesh Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-94d0164686f091fbccce94753c3b828e1fc7012ff903b12b5f273b042381da373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Astrocytoma</topic><topic>Blood flow</topic><topic>Blood volume</topic><topic>Brain cancer</topic><topic>Calcification</topic><topic>Cerebral blood flow</topic><topic>Diagnostic Neuroradiology</topic><topic>Differentiation</topic><topic>Evaluation</topic><topic>Imaging</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Morphology</topic><topic>Neurology</topic><topic>Neuroradiology</topic><topic>Neurosciences</topic><topic>Neurosurgery</topic><topic>Oligodendroglioma</topic><topic>Parameters</topic><topic>Perfusion</topic><topic>Physical characteristics</topic><topic>Radiology</topic><topic>Statistical analysis</topic><topic>Support vector machines</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Mamta</creatorcontrib><creatorcontrib>Gupta, Abhinav</creatorcontrib><creatorcontrib>Yadav, Virendra</creatorcontrib><creatorcontrib>Parvaze, Suhail P.</creatorcontrib><creatorcontrib>Singh, Anup</creatorcontrib><creatorcontrib>Saini, Jitender</creatorcontrib><creatorcontrib>Patir, Rana</creatorcontrib><creatorcontrib>Vaishya, Sandeep</creatorcontrib><creatorcontrib>Ahlawat, Sunita</creatorcontrib><creatorcontrib>Gupta, Rakesh Kumar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroradiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Mamta</au><au>Gupta, Abhinav</au><au>Yadav, Virendra</au><au>Parvaze, Suhail P.</au><au>Singh, Anup</au><au>Saini, Jitender</au><au>Patir, Rana</au><au>Vaishya, Sandeep</au><au>Ahlawat, Sunita</au><au>Gupta, Rakesh Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative evaluation of intracranial oligodendroglioma and astrocytoma of similar grades using conventional and T1-weighted DCE-MRI</atitle><jtitle>Neuroradiology</jtitle><stitle>Neuroradiology</stitle><addtitle>Neuroradiology</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>63</volume><issue>8</issue><spage>1227</spage><epage>1239</epage><pages>1227-1239</pages><issn>0028-3940</issn><eissn>1432-1920</eissn><abstract>Purpose
This retrospective study was performed on a 3T MRI to determine the unique conventional MR imaging and T1-weighted DCE-MRI features of oligodendroglioma and astrocytoma and investigate the utility of machine learning algorithms in their differentiation.
Methods
Histologically confirmed, 81 treatment-naïve patients were classified into two groups as per WHO 2016 classification: oligodendroglioma (
n
= 16; grade II,
n
= 25; grade III) and astrocytoma (
n
= 10; grade II,
n
= 30; grade III). The differences in tumor morphology characteristics were evaluated using Z-test. T1-weighted DCE-MRI data were analyzed using an in-house built MATLAB program. The mean 90th percentile of relative cerebral blood flow, relative cerebral blood volume corrected, volume transfer rate from plasma to extracellular extravascular space, and extravascular extracellular space volume values were evaluated using independent Student’s
t
test. Support vector machine (SVM) classifier was constructed to differentiate two groups across grade II, grade III, and grade II+III based on statistically significant features.
Results
Z-test signified only calcification among conventional MR features to categorize oligodendroglioma and astrocytoma across grade III and grade II+III tumors. No statistical significance was found in the perfusion parameters between two groups and its subtypes. SVM trained on calcification also provided moderate accuracy to differentiate oligodendroglioma from astrocytoma.
Conclusion
We conclude that conventional MR features except calcification and the quantitative T1-weighted DCE-MRI parameters fail to discriminate between oligodendroglioma and astrocytoma. The SVM could not further aid in their differentiation. The study also suggests that the presence of more than 50% T2-FLAIR mismatch may be considered as a more conclusive sign for differentiation of IDH mutant astrocytoma.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33469693</pmid><doi>10.1007/s00234-021-02636-8</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6047-3115</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-3940 |
ispartof | Neuroradiology, 2021-08, Vol.63 (8), p.1227-1239 |
issn | 0028-3940 1432-1920 |
language | eng |
recordid | cdi_proquest_miscellaneous_2479420524 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Astrocytoma Blood flow Blood volume Brain cancer Calcification Cerebral blood flow Diagnostic Neuroradiology Differentiation Evaluation Imaging Learning algorithms Machine learning Magnetic resonance imaging Medicine Medicine & Public Health Morphology Neurology Neuroradiology Neurosciences Neurosurgery Oligodendroglioma Parameters Perfusion Physical characteristics Radiology Statistical analysis Support vector machines Tumors |
title | Comparative evaluation of intracranial oligodendroglioma and astrocytoma of similar grades using conventional and T1-weighted DCE-MRI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20evaluation%20of%20intracranial%20oligodendroglioma%20and%20astrocytoma%20of%20similar%20grades%20using%20conventional%20and%20T1-weighted%20DCE-MRI&rft.jtitle=Neuroradiology&rft.au=Gupta,%20Mamta&rft.date=2021-08-01&rft.volume=63&rft.issue=8&rft.spage=1227&rft.epage=1239&rft.pages=1227-1239&rft.issn=0028-3940&rft.eissn=1432-1920&rft_id=info:doi/10.1007/s00234-021-02636-8&rft_dat=%3Cproquest_cross%3E2479420524%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553619361&rft_id=info:pmid/33469693&rfr_iscdi=true |