High-energy quasiparticle injection into mesoscopic superconductors

At non-zero temperatures, superconductors contain excitations known as Bogoliubov quasiparticles (QPs). The mesoscopic dynamics of QPs inform the design of quantum information processors, among other devices. Knowledge of these dynamics stems from experiments in which QPs are injected in a controlle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2021-04, Vol.16 (4), p.404-408
Hauptverfasser: Alegria, Loren D., Bøttcher, Charlotte G. L., Saydjari, Andrew K., Pierce, Andrew T., Lee, Seung Hwan, Harvey, Shannon P., Vool, Uri, Yacoby, Amir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 408
container_issue 4
container_start_page 404
container_title Nature nanotechnology
container_volume 16
creator Alegria, Loren D.
Bøttcher, Charlotte G. L.
Saydjari, Andrew K.
Pierce, Andrew T.
Lee, Seung Hwan
Harvey, Shannon P.
Vool, Uri
Yacoby, Amir
description At non-zero temperatures, superconductors contain excitations known as Bogoliubov quasiparticles (QPs). The mesoscopic dynamics of QPs inform the design of quantum information processors, among other devices. Knowledge of these dynamics stems from experiments in which QPs are injected in a controlled fashion, typically at energies comparable to the pairing energy 1 – 5 . Here we perform tunnel spectroscopy of a mesoscopic superconductor under high electric fields. We observe QP injection due to field-emitted electrons with 10 6 times the pairing energy, an unexplored regime of QP dynamics. Upon application of a gate voltage, the QP injection decreases the critical current and, at sufficiently high electric field, a field-emission current (
doi_str_mv 10.1038/s41565-020-00834-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2479043495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479043495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-99eac0879db01054ae2bdb9cb170c1f6cce2472537976ca92d5d705118c8b5e33</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EoqXwAgwoEgtLwL-xPaIKKFIlFpitxLktqZI4tZOhb49LSpEYmHwln--7Vweha4LvCWbqIXAiMpFiilOMFeOpOkFTIrlKGdPi9DgrOUEXIWwwFlRTfo4mjPGMcqqmaL6o1p8ptODXu2Q75KHqct9Xtoakajdg-8q1cepd0kBwwbquskkYOvDWteVge-fDJTpb5XWAq8M7Qx_PT-_zRbp8e3mdPy5Ty6ToU60ht1hJXRaYYMFzoEVZaFsQiS1ZZdYC5ZIKJrXMbK5pKUqJBSHKqkIAYzN0N_Z23m0HCL1pqmChrvMW3BBMTGvMGdciord_0I0bfBuvM1QQyhTnUkWKjpT1LgQPK9P5qsn9zhBs9orNqNhExeZbsdmHbg7VQ9FAeYz8OI0AG4EQv9o1-N_d_9R-Aa44hr4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512384478</pqid></control><display><type>article</type><title>High-energy quasiparticle injection into mesoscopic superconductors</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Alegria, Loren D. ; Bøttcher, Charlotte G. L. ; Saydjari, Andrew K. ; Pierce, Andrew T. ; Lee, Seung Hwan ; Harvey, Shannon P. ; Vool, Uri ; Yacoby, Amir</creator><creatorcontrib>Alegria, Loren D. ; Bøttcher, Charlotte G. L. ; Saydjari, Andrew K. ; Pierce, Andrew T. ; Lee, Seung Hwan ; Harvey, Shannon P. ; Vool, Uri ; Yacoby, Amir</creatorcontrib><description>At non-zero temperatures, superconductors contain excitations known as Bogoliubov quasiparticles (QPs). The mesoscopic dynamics of QPs inform the design of quantum information processors, among other devices. Knowledge of these dynamics stems from experiments in which QPs are injected in a controlled fashion, typically at energies comparable to the pairing energy 1 – 5 . Here we perform tunnel spectroscopy of a mesoscopic superconductor under high electric fields. We observe QP injection due to field-emitted electrons with 10 6 times the pairing energy, an unexplored regime of QP dynamics. Upon application of a gate voltage, the QP injection decreases the critical current and, at sufficiently high electric field, a field-emission current (&lt;0.1 nA in our device) switches the mesoscopic superconductor into the normal state, consistent with earlier observations 6 . We expect that high-energy injection will be useful for developing QP-tolerant quantum information processors, will allow rapid control of resonator quality factors and will enable the design of electric-field-controlled superconducting devices with new functionality. Typically, quasiparticles are injected into superconductors at energies comparable to the pairing energy in order to gain insights into quasiparticle dynamics. Tunnelling spectroscopy of a mesoscopic superconductor under high electric field now provides insights into a regime where electrons impinge with 10 6 times the pairing energy.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-020-00834-8</identifier><identifier>PMID: 33462428</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005/1007 ; 639/766/1130/1064 ; 639/766/119/1003 ; 639/766/483/2802 ; 639/925/927/1064 ; Chemistry and Materials Science ; Critical current (superconductivity) ; Dynamics ; Electric fields ; Electrons ; Elementary excitations ; Energy ; Information processing ; Injection ; Letter ; Materials Science ; Mesoscopic superconductors ; Nanotechnology ; Nanotechnology and Microengineering ; Processors ; Q factors ; Quantum phenomena ; Spectroscopy ; Spectrum analysis ; Superconducting devices ; Switches</subject><ispartof>Nature nanotechnology, 2021-04, Vol.16 (4), p.404-408</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-99eac0879db01054ae2bdb9cb170c1f6cce2472537976ca92d5d705118c8b5e33</citedby><cites>FETCH-LOGICAL-c375t-99eac0879db01054ae2bdb9cb170c1f6cce2472537976ca92d5d705118c8b5e33</cites><orcidid>0000-0001-8960-2937 ; 0000-0002-7272-3609 ; 0000-0002-6561-9002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33462428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alegria, Loren D.</creatorcontrib><creatorcontrib>Bøttcher, Charlotte G. L.</creatorcontrib><creatorcontrib>Saydjari, Andrew K.</creatorcontrib><creatorcontrib>Pierce, Andrew T.</creatorcontrib><creatorcontrib>Lee, Seung Hwan</creatorcontrib><creatorcontrib>Harvey, Shannon P.</creatorcontrib><creatorcontrib>Vool, Uri</creatorcontrib><creatorcontrib>Yacoby, Amir</creatorcontrib><title>High-energy quasiparticle injection into mesoscopic superconductors</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>At non-zero temperatures, superconductors contain excitations known as Bogoliubov quasiparticles (QPs). The mesoscopic dynamics of QPs inform the design of quantum information processors, among other devices. Knowledge of these dynamics stems from experiments in which QPs are injected in a controlled fashion, typically at energies comparable to the pairing energy 1 – 5 . Here we perform tunnel spectroscopy of a mesoscopic superconductor under high electric fields. We observe QP injection due to field-emitted electrons with 10 6 times the pairing energy, an unexplored regime of QP dynamics. Upon application of a gate voltage, the QP injection decreases the critical current and, at sufficiently high electric field, a field-emission current (&lt;0.1 nA in our device) switches the mesoscopic superconductor into the normal state, consistent with earlier observations 6 . We expect that high-energy injection will be useful for developing QP-tolerant quantum information processors, will allow rapid control of resonator quality factors and will enable the design of electric-field-controlled superconducting devices with new functionality. Typically, quasiparticles are injected into superconductors at energies comparable to the pairing energy in order to gain insights into quasiparticle dynamics. Tunnelling spectroscopy of a mesoscopic superconductor under high electric field now provides insights into a regime where electrons impinge with 10 6 times the pairing energy.</description><subject>639/301/1005/1007</subject><subject>639/766/1130/1064</subject><subject>639/766/119/1003</subject><subject>639/766/483/2802</subject><subject>639/925/927/1064</subject><subject>Chemistry and Materials Science</subject><subject>Critical current (superconductivity)</subject><subject>Dynamics</subject><subject>Electric fields</subject><subject>Electrons</subject><subject>Elementary excitations</subject><subject>Energy</subject><subject>Information processing</subject><subject>Injection</subject><subject>Letter</subject><subject>Materials Science</subject><subject>Mesoscopic superconductors</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Processors</subject><subject>Q factors</subject><subject>Quantum phenomena</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Superconducting devices</subject><subject>Switches</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kL1OwzAURi0EoqXwAgwoEgtLwL-xPaIKKFIlFpitxLktqZI4tZOhb49LSpEYmHwln--7Vweha4LvCWbqIXAiMpFiilOMFeOpOkFTIrlKGdPi9DgrOUEXIWwwFlRTfo4mjPGMcqqmaL6o1p8ptODXu2Q75KHqct9Xtoakajdg-8q1cepd0kBwwbquskkYOvDWteVge-fDJTpb5XWAq8M7Qx_PT-_zRbp8e3mdPy5Ty6ToU60ht1hJXRaYYMFzoEVZaFsQiS1ZZdYC5ZIKJrXMbK5pKUqJBSHKqkIAYzN0N_Z23m0HCL1pqmChrvMW3BBMTGvMGdciord_0I0bfBuvM1QQyhTnUkWKjpT1LgQPK9P5qsn9zhBs9orNqNhExeZbsdmHbg7VQ9FAeYz8OI0AG4EQv9o1-N_d_9R-Aa44hr4</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Alegria, Loren D.</creator><creator>Bøttcher, Charlotte G. L.</creator><creator>Saydjari, Andrew K.</creator><creator>Pierce, Andrew T.</creator><creator>Lee, Seung Hwan</creator><creator>Harvey, Shannon P.</creator><creator>Vool, Uri</creator><creator>Yacoby, Amir</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8960-2937</orcidid><orcidid>https://orcid.org/0000-0002-7272-3609</orcidid><orcidid>https://orcid.org/0000-0002-6561-9002</orcidid></search><sort><creationdate>20210401</creationdate><title>High-energy quasiparticle injection into mesoscopic superconductors</title><author>Alegria, Loren D. ; Bøttcher, Charlotte G. L. ; Saydjari, Andrew K. ; Pierce, Andrew T. ; Lee, Seung Hwan ; Harvey, Shannon P. ; Vool, Uri ; Yacoby, Amir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-99eac0879db01054ae2bdb9cb170c1f6cce2472537976ca92d5d705118c8b5e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301/1005/1007</topic><topic>639/766/1130/1064</topic><topic>639/766/119/1003</topic><topic>639/766/483/2802</topic><topic>639/925/927/1064</topic><topic>Chemistry and Materials Science</topic><topic>Critical current (superconductivity)</topic><topic>Dynamics</topic><topic>Electric fields</topic><topic>Electrons</topic><topic>Elementary excitations</topic><topic>Energy</topic><topic>Information processing</topic><topic>Injection</topic><topic>Letter</topic><topic>Materials Science</topic><topic>Mesoscopic superconductors</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Processors</topic><topic>Q factors</topic><topic>Quantum phenomena</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Superconducting devices</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alegria, Loren D.</creatorcontrib><creatorcontrib>Bøttcher, Charlotte G. L.</creatorcontrib><creatorcontrib>Saydjari, Andrew K.</creatorcontrib><creatorcontrib>Pierce, Andrew T.</creatorcontrib><creatorcontrib>Lee, Seung Hwan</creatorcontrib><creatorcontrib>Harvey, Shannon P.</creatorcontrib><creatorcontrib>Vool, Uri</creatorcontrib><creatorcontrib>Yacoby, Amir</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alegria, Loren D.</au><au>Bøttcher, Charlotte G. L.</au><au>Saydjari, Andrew K.</au><au>Pierce, Andrew T.</au><au>Lee, Seung Hwan</au><au>Harvey, Shannon P.</au><au>Vool, Uri</au><au>Yacoby, Amir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-energy quasiparticle injection into mesoscopic superconductors</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>16</volume><issue>4</issue><spage>404</spage><epage>408</epage><pages>404-408</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>At non-zero temperatures, superconductors contain excitations known as Bogoliubov quasiparticles (QPs). The mesoscopic dynamics of QPs inform the design of quantum information processors, among other devices. Knowledge of these dynamics stems from experiments in which QPs are injected in a controlled fashion, typically at energies comparable to the pairing energy 1 – 5 . Here we perform tunnel spectroscopy of a mesoscopic superconductor under high electric fields. We observe QP injection due to field-emitted electrons with 10 6 times the pairing energy, an unexplored regime of QP dynamics. Upon application of a gate voltage, the QP injection decreases the critical current and, at sufficiently high electric field, a field-emission current (&lt;0.1 nA in our device) switches the mesoscopic superconductor into the normal state, consistent with earlier observations 6 . We expect that high-energy injection will be useful for developing QP-tolerant quantum information processors, will allow rapid control of resonator quality factors and will enable the design of electric-field-controlled superconducting devices with new functionality. Typically, quasiparticles are injected into superconductors at energies comparable to the pairing energy in order to gain insights into quasiparticle dynamics. Tunnelling spectroscopy of a mesoscopic superconductor under high electric field now provides insights into a regime where electrons impinge with 10 6 times the pairing energy.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33462428</pmid><doi>10.1038/s41565-020-00834-8</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8960-2937</orcidid><orcidid>https://orcid.org/0000-0002-7272-3609</orcidid><orcidid>https://orcid.org/0000-0002-6561-9002</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2021-04, Vol.16 (4), p.404-408
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_miscellaneous_2479043495
source Nature; Alma/SFX Local Collection
subjects 639/301/1005/1007
639/766/1130/1064
639/766/119/1003
639/766/483/2802
639/925/927/1064
Chemistry and Materials Science
Critical current (superconductivity)
Dynamics
Electric fields
Electrons
Elementary excitations
Energy
Information processing
Injection
Letter
Materials Science
Mesoscopic superconductors
Nanotechnology
Nanotechnology and Microengineering
Processors
Q factors
Quantum phenomena
Spectroscopy
Spectrum analysis
Superconducting devices
Switches
title High-energy quasiparticle injection into mesoscopic superconductors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A27%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-energy%20quasiparticle%20injection%20into%20mesoscopic%20superconductors&rft.jtitle=Nature%20nanotechnology&rft.au=Alegria,%20Loren%20D.&rft.date=2021-04-01&rft.volume=16&rft.issue=4&rft.spage=404&rft.epage=408&rft.pages=404-408&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-020-00834-8&rft_dat=%3Cproquest_cross%3E2479043495%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512384478&rft_id=info:pmid/33462428&rfr_iscdi=true