Investigating Bias from Missing Data in an Electronic Health Records-Based Study of Weight Loss After Bariatric Surgery

Purpose Missing data is common in electronic health records (EHR)-based obesity research. To avoid bias, it is critical to understand mechanisms that underpin missingness. We conducted a survey among bariatric surgery patients in three integrated health systems to (i) investigate predictors of disen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Obesity surgery 2021-05, Vol.31 (5), p.2125-2135
Hauptverfasser: Koffman, Lily, Levis, Alexander W., Arterburn, David, Coleman, Karen J., Herrinton, Lisa J., Cooper, Julie, Ewing, John, Fischer, Heidi, Fraser, James R., Johnson, Eric, Taylor, Brianna, Theis, Mary Kay, Liu, Liyan, Courcoulas, Anita, Li, Robert, Fisher, David P., Amsden, Laura, Haneuse, Sebastien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2135
container_issue 5
container_start_page 2125
container_title Obesity surgery
container_volume 31
creator Koffman, Lily
Levis, Alexander W.
Arterburn, David
Coleman, Karen J.
Herrinton, Lisa J.
Cooper, Julie
Ewing, John
Fischer, Heidi
Fraser, James R.
Johnson, Eric
Taylor, Brianna
Theis, Mary Kay
Liu, Liyan
Courcoulas, Anita
Li, Robert
Fisher, David P.
Amsden, Laura
Haneuse, Sebastien
description Purpose Missing data is common in electronic health records (EHR)-based obesity research. To avoid bias, it is critical to understand mechanisms that underpin missingness. We conducted a survey among bariatric surgery patients in three integrated health systems to (i) investigate predictors of disenrollment and (ii) examine differences in weight between disenrollees and enrollees at 5 years. Materials and Methods We identified 2883 patients who had bariatric surgery between 11/2013 and 08/2014. Patients who disenrolled before their 5-year anniversary were invited to participate in a survey to ascertain reasons for disenrollment and current weight. Logistic regression was used to investigate predictors of disenrollment. Five-year percent weight change distributions were estimated using inverse-probability weighting to adjust for (un)availability of EHR weight data at 5 years among enrollees and survey (non-)response among disenrollees. Results Among 536 disenrolled patients, 104 (19%) completed the survey. Among 2347 patients who maintained enrollment, 384 (16%) had no weight measurement in the EHR near 5 years. Insurance, age, Hispanic ethnicity, and site predicted disenrollment. Disenrollees had slightly greater weight loss than enrollees. Conclusion We found little evidence of weight loss differences by enrollment status. Collecting information through surveys can be an effective tool to investigate and adjust for missingness in EHR-based studies.
doi_str_mv 10.1007/s11695-021-05226-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2479043118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2511578905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-d06fcf8bb0a7420277719f08c9778b9013c68d338df1982b2e2ce947f2b729ce3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EokPhBVggS2zYBK6vk9hedkpLKw2q1IJYWo5jT11lkmI7oLx9XaYtEgtWlq6_c-7PIeQtg48MQHxKjLWqqQBZBQ1iWy3PyIoJkBXUKJ-TFagWKqmQH5BXKd1AIVvEl-SA87rFVsCK_D4ff7mUw9bkMG7pOphEfZx29GtI6b7y2WRDw0jNSE8GZ3OcxmDpmTNDvqaXzk6xT9XaJNfTqzz3C508_eHC9jrTzZQSPfLZRbo2MZgci_JqjlsXl9fkhTdDcm8e3kPy_fTk2_FZtbn4cn58tKksF02uemi99bLrwIgaAYUQTHmQVgkhOwWM21b2nMveMyWxQ4fWqVp47AQq6_gh-bD3vY3Tz7lsqnchWTcMZnTTnDTWQkHNGZMFff8PejPNcSzTaWwYa4RU0BQK95SNZb3ovL6NYWfiohno-1j0PhZdjq3_xKKXInr3YD13O9c_SR5zKADfA6l8jeVAf3v_x_YO1syYBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511578905</pqid></control><display><type>article</type><title>Investigating Bias from Missing Data in an Electronic Health Records-Based Study of Weight Loss After Bariatric Surgery</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Koffman, Lily ; Levis, Alexander W. ; Arterburn, David ; Coleman, Karen J. ; Herrinton, Lisa J. ; Cooper, Julie ; Ewing, John ; Fischer, Heidi ; Fraser, James R. ; Johnson, Eric ; Taylor, Brianna ; Theis, Mary Kay ; Liu, Liyan ; Courcoulas, Anita ; Li, Robert ; Fisher, David P. ; Amsden, Laura ; Haneuse, Sebastien</creator><creatorcontrib>Koffman, Lily ; Levis, Alexander W. ; Arterburn, David ; Coleman, Karen J. ; Herrinton, Lisa J. ; Cooper, Julie ; Ewing, John ; Fischer, Heidi ; Fraser, James R. ; Johnson, Eric ; Taylor, Brianna ; Theis, Mary Kay ; Liu, Liyan ; Courcoulas, Anita ; Li, Robert ; Fisher, David P. ; Amsden, Laura ; Haneuse, Sebastien</creatorcontrib><description>Purpose Missing data is common in electronic health records (EHR)-based obesity research. To avoid bias, it is critical to understand mechanisms that underpin missingness. We conducted a survey among bariatric surgery patients in three integrated health systems to (i) investigate predictors of disenrollment and (ii) examine differences in weight between disenrollees and enrollees at 5 years. Materials and Methods We identified 2883 patients who had bariatric surgery between 11/2013 and 08/2014. Patients who disenrolled before their 5-year anniversary were invited to participate in a survey to ascertain reasons for disenrollment and current weight. Logistic regression was used to investigate predictors of disenrollment. Five-year percent weight change distributions were estimated using inverse-probability weighting to adjust for (un)availability of EHR weight data at 5 years among enrollees and survey (non-)response among disenrollees. Results Among 536 disenrolled patients, 104 (19%) completed the survey. Among 2347 patients who maintained enrollment, 384 (16%) had no weight measurement in the EHR near 5 years. Insurance, age, Hispanic ethnicity, and site predicted disenrollment. Disenrollees had slightly greater weight loss than enrollees. Conclusion We found little evidence of weight loss differences by enrollment status. Collecting information through surveys can be an effective tool to investigate and adjust for missingness in EHR-based studies.</description><identifier>ISSN: 0960-8923</identifier><identifier>EISSN: 1708-0428</identifier><identifier>DOI: 10.1007/s11695-021-05226-y</identifier><identifier>PMID: 33462670</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bariatric Surgery ; Bias ; Electronic Health Records ; Gastrointestinal surgery ; Humans ; Medicine ; Medicine &amp; Public Health ; Missing data ; Obesity, Morbid - surgery ; Original Contributions ; Surgery ; Weight Loss</subject><ispartof>Obesity surgery, 2021-05, Vol.31 (5), p.2125-2135</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-d06fcf8bb0a7420277719f08c9778b9013c68d338df1982b2e2ce947f2b729ce3</citedby><cites>FETCH-LOGICAL-c375t-d06fcf8bb0a7420277719f08c9778b9013c68d338df1982b2e2ce947f2b729ce3</cites><orcidid>0000-0003-1543-2896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11695-021-05226-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11695-021-05226-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33462670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koffman, Lily</creatorcontrib><creatorcontrib>Levis, Alexander W.</creatorcontrib><creatorcontrib>Arterburn, David</creatorcontrib><creatorcontrib>Coleman, Karen J.</creatorcontrib><creatorcontrib>Herrinton, Lisa J.</creatorcontrib><creatorcontrib>Cooper, Julie</creatorcontrib><creatorcontrib>Ewing, John</creatorcontrib><creatorcontrib>Fischer, Heidi</creatorcontrib><creatorcontrib>Fraser, James R.</creatorcontrib><creatorcontrib>Johnson, Eric</creatorcontrib><creatorcontrib>Taylor, Brianna</creatorcontrib><creatorcontrib>Theis, Mary Kay</creatorcontrib><creatorcontrib>Liu, Liyan</creatorcontrib><creatorcontrib>Courcoulas, Anita</creatorcontrib><creatorcontrib>Li, Robert</creatorcontrib><creatorcontrib>Fisher, David P.</creatorcontrib><creatorcontrib>Amsden, Laura</creatorcontrib><creatorcontrib>Haneuse, Sebastien</creatorcontrib><title>Investigating Bias from Missing Data in an Electronic Health Records-Based Study of Weight Loss After Bariatric Surgery</title><title>Obesity surgery</title><addtitle>OBES SURG</addtitle><addtitle>Obes Surg</addtitle><description>Purpose Missing data is common in electronic health records (EHR)-based obesity research. To avoid bias, it is critical to understand mechanisms that underpin missingness. We conducted a survey among bariatric surgery patients in three integrated health systems to (i) investigate predictors of disenrollment and (ii) examine differences in weight between disenrollees and enrollees at 5 years. Materials and Methods We identified 2883 patients who had bariatric surgery between 11/2013 and 08/2014. Patients who disenrolled before their 5-year anniversary were invited to participate in a survey to ascertain reasons for disenrollment and current weight. Logistic regression was used to investigate predictors of disenrollment. Five-year percent weight change distributions were estimated using inverse-probability weighting to adjust for (un)availability of EHR weight data at 5 years among enrollees and survey (non-)response among disenrollees. Results Among 536 disenrolled patients, 104 (19%) completed the survey. Among 2347 patients who maintained enrollment, 384 (16%) had no weight measurement in the EHR near 5 years. Insurance, age, Hispanic ethnicity, and site predicted disenrollment. Disenrollees had slightly greater weight loss than enrollees. Conclusion We found little evidence of weight loss differences by enrollment status. Collecting information through surveys can be an effective tool to investigate and adjust for missingness in EHR-based studies.</description><subject>Bariatric Surgery</subject><subject>Bias</subject><subject>Electronic Health Records</subject><subject>Gastrointestinal surgery</subject><subject>Humans</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Missing data</subject><subject>Obesity, Morbid - surgery</subject><subject>Original Contributions</subject><subject>Surgery</subject><subject>Weight Loss</subject><issn>0960-8923</issn><issn>1708-0428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc1u1DAUhS0EokPhBVggS2zYBK6vk9hedkpLKw2q1IJYWo5jT11lkmI7oLx9XaYtEgtWlq6_c-7PIeQtg48MQHxKjLWqqQBZBQ1iWy3PyIoJkBXUKJ-TFagWKqmQH5BXKd1AIVvEl-SA87rFVsCK_D4ff7mUw9bkMG7pOphEfZx29GtI6b7y2WRDw0jNSE8GZ3OcxmDpmTNDvqaXzk6xT9XaJNfTqzz3C508_eHC9jrTzZQSPfLZRbo2MZgci_JqjlsXl9fkhTdDcm8e3kPy_fTk2_FZtbn4cn58tKksF02uemi99bLrwIgaAYUQTHmQVgkhOwWM21b2nMveMyWxQ4fWqVp47AQq6_gh-bD3vY3Tz7lsqnchWTcMZnTTnDTWQkHNGZMFff8PejPNcSzTaWwYa4RU0BQK95SNZb3ovL6NYWfiohno-1j0PhZdjq3_xKKXInr3YD13O9c_SR5zKADfA6l8jeVAf3v_x_YO1syYBQ</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Koffman, Lily</creator><creator>Levis, Alexander W.</creator><creator>Arterburn, David</creator><creator>Coleman, Karen J.</creator><creator>Herrinton, Lisa J.</creator><creator>Cooper, Julie</creator><creator>Ewing, John</creator><creator>Fischer, Heidi</creator><creator>Fraser, James R.</creator><creator>Johnson, Eric</creator><creator>Taylor, Brianna</creator><creator>Theis, Mary Kay</creator><creator>Liu, Liyan</creator><creator>Courcoulas, Anita</creator><creator>Li, Robert</creator><creator>Fisher, David P.</creator><creator>Amsden, Laura</creator><creator>Haneuse, Sebastien</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1543-2896</orcidid></search><sort><creationdate>20210501</creationdate><title>Investigating Bias from Missing Data in an Electronic Health Records-Based Study of Weight Loss After Bariatric Surgery</title><author>Koffman, Lily ; Levis, Alexander W. ; Arterburn, David ; Coleman, Karen J. ; Herrinton, Lisa J. ; Cooper, Julie ; Ewing, John ; Fischer, Heidi ; Fraser, James R. ; Johnson, Eric ; Taylor, Brianna ; Theis, Mary Kay ; Liu, Liyan ; Courcoulas, Anita ; Li, Robert ; Fisher, David P. ; Amsden, Laura ; Haneuse, Sebastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-d06fcf8bb0a7420277719f08c9778b9013c68d338df1982b2e2ce947f2b729ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bariatric Surgery</topic><topic>Bias</topic><topic>Electronic Health Records</topic><topic>Gastrointestinal surgery</topic><topic>Humans</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Missing data</topic><topic>Obesity, Morbid - surgery</topic><topic>Original Contributions</topic><topic>Surgery</topic><topic>Weight Loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koffman, Lily</creatorcontrib><creatorcontrib>Levis, Alexander W.</creatorcontrib><creatorcontrib>Arterburn, David</creatorcontrib><creatorcontrib>Coleman, Karen J.</creatorcontrib><creatorcontrib>Herrinton, Lisa J.</creatorcontrib><creatorcontrib>Cooper, Julie</creatorcontrib><creatorcontrib>Ewing, John</creatorcontrib><creatorcontrib>Fischer, Heidi</creatorcontrib><creatorcontrib>Fraser, James R.</creatorcontrib><creatorcontrib>Johnson, Eric</creatorcontrib><creatorcontrib>Taylor, Brianna</creatorcontrib><creatorcontrib>Theis, Mary Kay</creatorcontrib><creatorcontrib>Liu, Liyan</creatorcontrib><creatorcontrib>Courcoulas, Anita</creatorcontrib><creatorcontrib>Li, Robert</creatorcontrib><creatorcontrib>Fisher, David P.</creatorcontrib><creatorcontrib>Amsden, Laura</creatorcontrib><creatorcontrib>Haneuse, Sebastien</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Obesity surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koffman, Lily</au><au>Levis, Alexander W.</au><au>Arterburn, David</au><au>Coleman, Karen J.</au><au>Herrinton, Lisa J.</au><au>Cooper, Julie</au><au>Ewing, John</au><au>Fischer, Heidi</au><au>Fraser, James R.</au><au>Johnson, Eric</au><au>Taylor, Brianna</au><au>Theis, Mary Kay</au><au>Liu, Liyan</au><au>Courcoulas, Anita</au><au>Li, Robert</au><au>Fisher, David P.</au><au>Amsden, Laura</au><au>Haneuse, Sebastien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating Bias from Missing Data in an Electronic Health Records-Based Study of Weight Loss After Bariatric Surgery</atitle><jtitle>Obesity surgery</jtitle><stitle>OBES SURG</stitle><addtitle>Obes Surg</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>31</volume><issue>5</issue><spage>2125</spage><epage>2135</epage><pages>2125-2135</pages><issn>0960-8923</issn><eissn>1708-0428</eissn><abstract>Purpose Missing data is common in electronic health records (EHR)-based obesity research. To avoid bias, it is critical to understand mechanisms that underpin missingness. We conducted a survey among bariatric surgery patients in three integrated health systems to (i) investigate predictors of disenrollment and (ii) examine differences in weight between disenrollees and enrollees at 5 years. Materials and Methods We identified 2883 patients who had bariatric surgery between 11/2013 and 08/2014. Patients who disenrolled before their 5-year anniversary were invited to participate in a survey to ascertain reasons for disenrollment and current weight. Logistic regression was used to investigate predictors of disenrollment. Five-year percent weight change distributions were estimated using inverse-probability weighting to adjust for (un)availability of EHR weight data at 5 years among enrollees and survey (non-)response among disenrollees. Results Among 536 disenrolled patients, 104 (19%) completed the survey. Among 2347 patients who maintained enrollment, 384 (16%) had no weight measurement in the EHR near 5 years. Insurance, age, Hispanic ethnicity, and site predicted disenrollment. Disenrollees had slightly greater weight loss than enrollees. Conclusion We found little evidence of weight loss differences by enrollment status. Collecting information through surveys can be an effective tool to investigate and adjust for missingness in EHR-based studies.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33462670</pmid><doi>10.1007/s11695-021-05226-y</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1543-2896</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-8923
ispartof Obesity surgery, 2021-05, Vol.31 (5), p.2125-2135
issn 0960-8923
1708-0428
language eng
recordid cdi_proquest_miscellaneous_2479043118
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Bariatric Surgery
Bias
Electronic Health Records
Gastrointestinal surgery
Humans
Medicine
Medicine & Public Health
Missing data
Obesity, Morbid - surgery
Original Contributions
Surgery
Weight Loss
title Investigating Bias from Missing Data in an Electronic Health Records-Based Study of Weight Loss After Bariatric Surgery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A44%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20Bias%20from%20Missing%20Data%20in%20an%20Electronic%20Health%20Records-Based%20Study%20of%20Weight%20Loss%20After%20Bariatric%20Surgery&rft.jtitle=Obesity%20surgery&rft.au=Koffman,%20Lily&rft.date=2021-05-01&rft.volume=31&rft.issue=5&rft.spage=2125&rft.epage=2135&rft.pages=2125-2135&rft.issn=0960-8923&rft.eissn=1708-0428&rft_id=info:doi/10.1007/s11695-021-05226-y&rft_dat=%3Cproquest_cross%3E2511578905%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511578905&rft_id=info:pmid/33462670&rfr_iscdi=true