Identification of genetic variation for salt tolerance in Brassica napus using genome-wide association mapping

Soil salinity negatively impacts rapeseed ( Brassica napus ) crop production. In particular, high soil salinity is known to hinder seedling growth and establishment. Identifying natural genetic variation for high salt tolerance in Brassica napus seedlings is an effective way to breed for improved pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular genetics and genomics : MGG 2021-03, Vol.296 (2), p.391-408
Hauptverfasser: Wassan, Ghulam Mustafa, Khanzada, Hira, Zhou, Qinghong, Mason, Annaliese S., Keerio, Ayaz Ali, Khanzada, Saba, Solangi, Abdul Malik, Faheem, Muhammad, Fu, Donghui, He, Haohua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 408
container_issue 2
container_start_page 391
container_title Molecular genetics and genomics : MGG
container_volume 296
creator Wassan, Ghulam Mustafa
Khanzada, Hira
Zhou, Qinghong
Mason, Annaliese S.
Keerio, Ayaz Ali
Khanzada, Saba
Solangi, Abdul Malik
Faheem, Muhammad
Fu, Donghui
He, Haohua
description Soil salinity negatively impacts rapeseed ( Brassica napus ) crop production. In particular, high soil salinity is known to hinder seedling growth and establishment. Identifying natural genetic variation for high salt tolerance in Brassica napus seedlings is an effective way to breed for improved productivity under salt stress. To identify genetic variants involved in differential response to salt stress, we evaluated a diverse association panel of 228 Brasica napus accessions for four seedling traits under salt stress to establish stress susceptibility index (SSI) and stress tolerance index (STI) values, and performed genome-wide association studies (GWAS) using 201,817 high-quality single nucleotide polymorphic (SNP) markers. Our GWAS identified 142 significant SNP markers strongly associated with salt tolerance distributed across all rapeseed chromosomes, with 78 SNPs in the C genome and 64 SNPs in the A genome, and our analyses subsequently pinpointed both favorable alleles and elite cultivars. We identified 117 possible candidate genes associated with these SNPs: 95/117 were orthologous with Arabidopsis thaliana genes encoding transcription factors, aquaporins, and binding proteins. The expression level of ten candidate genes was validated by quantitative real-time PCR (qRT-PCR), and these genes were found to be differentially expressed between salt-tolerant and salt-susceptible lines under salt stress conditions. Our results provide new genetic resources and information for improving salt tolerance in rapeseed genotypes at the seed germination and seedling stages via genomic or marker-assisted selection, and for future functional characterization of putative gene candidates.
doi_str_mv 10.1007/s00438-020-01749-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2479041742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2491440192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-8814eae9c7010f813c37b7b9647ac4867d84eba0ed000fea25c457bb46365d173</originalsourceid><addsrcrecordid>eNp9kUtv3CAUhVHVqHm0f6CLCqmbbJxcDAZ72YyahxQpm2SNML4eMbLBBbtV_n2ZepJKWWQFuuc7B3QPIV8ZXDAAdZkABK8LKKEApkRT1B_ICZNMFUKW_OPrnVXH5DSlHWRKluoTOeZcSMEbeUL8XYd-dr2zZnbB09DTLXqcnaW_TXTrsA-RJjPMdA4DRuMtUufpVTQpZR_1ZloSXZLz2705jFj8cR3SLAd7iBjNNGX9MznqzZDwy-E8I0_XPx83t8X9w83d5sd9Ybmq5qKumUCDjVXAoK8Zz-NWtY0UylhRS9XVAlsD2AFAj6asrKhU2wrJZdUxxc_I-Zo7xfBrwTTr0SWLw2A8hiXpUqgGRF5amdHvb9BdWKLPv8tUw4QA1uypcqVsDClF7PUU3Wjis2ag923otQ2d29D_2tB1Nn07RC_tiN2r5WX9GeArkLLktxj_v_1O7F_IBpXN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491440192</pqid></control><display><type>article</type><title>Identification of genetic variation for salt tolerance in Brassica napus using genome-wide association mapping</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wassan, Ghulam Mustafa ; Khanzada, Hira ; Zhou, Qinghong ; Mason, Annaliese S. ; Keerio, Ayaz Ali ; Khanzada, Saba ; Solangi, Abdul Malik ; Faheem, Muhammad ; Fu, Donghui ; He, Haohua</creator><creatorcontrib>Wassan, Ghulam Mustafa ; Khanzada, Hira ; Zhou, Qinghong ; Mason, Annaliese S. ; Keerio, Ayaz Ali ; Khanzada, Saba ; Solangi, Abdul Malik ; Faheem, Muhammad ; Fu, Donghui ; He, Haohua</creatorcontrib><description>Soil salinity negatively impacts rapeseed ( Brassica napus ) crop production. In particular, high soil salinity is known to hinder seedling growth and establishment. Identifying natural genetic variation for high salt tolerance in Brassica napus seedlings is an effective way to breed for improved productivity under salt stress. To identify genetic variants involved in differential response to salt stress, we evaluated a diverse association panel of 228 Brasica napus accessions for four seedling traits under salt stress to establish stress susceptibility index (SSI) and stress tolerance index (STI) values, and performed genome-wide association studies (GWAS) using 201,817 high-quality single nucleotide polymorphic (SNP) markers. Our GWAS identified 142 significant SNP markers strongly associated with salt tolerance distributed across all rapeseed chromosomes, with 78 SNPs in the C genome and 64 SNPs in the A genome, and our analyses subsequently pinpointed both favorable alleles and elite cultivars. We identified 117 possible candidate genes associated with these SNPs: 95/117 were orthologous with Arabidopsis thaliana genes encoding transcription factors, aquaporins, and binding proteins. The expression level of ten candidate genes was validated by quantitative real-time PCR (qRT-PCR), and these genes were found to be differentially expressed between salt-tolerant and salt-susceptible lines under salt stress conditions. Our results provide new genetic resources and information for improving salt tolerance in rapeseed genotypes at the seed germination and seedling stages via genomic or marker-assisted selection, and for future functional characterization of putative gene candidates.</description><identifier>ISSN: 1617-4615</identifier><identifier>EISSN: 1617-4623</identifier><identifier>DOI: 10.1007/s00438-020-01749-8</identifier><identifier>PMID: 33464396</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Abiotic stress ; Animal Genetics and Genomics ; Aquaporins ; Biochemistry ; Biomedical and Life Sciences ; Brassica napus ; Brassica napus - genetics ; Brassica napus - growth &amp; development ; Chromosome Mapping ; Chromosomes ; Crop production ; Cultivars ; Gene Expression Regulation, Plant ; Gene mapping ; Genetic diversity ; Genetic resources ; Genome-wide association studies ; Genome-Wide Association Study ; Genomes ; Genotypes ; Germination ; Human Genetics ; Life Sciences ; Marker-assisted selection ; Microbial Genetics and Genomics ; Original Article ; Phenotype ; Plant Genetics and Genomics ; Plant Proteins - genetics ; Polymorphism, Single Nucleotide ; Rape plants ; Salinity ; Salinity effects ; Salinity tolerance ; Salt Tolerance ; Seed germination ; Seedlings ; Seeds - genetics ; Seeds - growth &amp; development ; Single-nucleotide polymorphism ; Soil salinity ; Transcription factors</subject><ispartof>Molecular genetics and genomics : MGG, 2021-03, Vol.296 (2), p.391-408</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-8814eae9c7010f813c37b7b9647ac4867d84eba0ed000fea25c457bb46365d173</citedby><cites>FETCH-LOGICAL-c375t-8814eae9c7010f813c37b7b9647ac4867d84eba0ed000fea25c457bb46365d173</cites><orcidid>0000-0001-5107-4913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00438-020-01749-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00438-020-01749-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33464396$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wassan, Ghulam Mustafa</creatorcontrib><creatorcontrib>Khanzada, Hira</creatorcontrib><creatorcontrib>Zhou, Qinghong</creatorcontrib><creatorcontrib>Mason, Annaliese S.</creatorcontrib><creatorcontrib>Keerio, Ayaz Ali</creatorcontrib><creatorcontrib>Khanzada, Saba</creatorcontrib><creatorcontrib>Solangi, Abdul Malik</creatorcontrib><creatorcontrib>Faheem, Muhammad</creatorcontrib><creatorcontrib>Fu, Donghui</creatorcontrib><creatorcontrib>He, Haohua</creatorcontrib><title>Identification of genetic variation for salt tolerance in Brassica napus using genome-wide association mapping</title><title>Molecular genetics and genomics : MGG</title><addtitle>Mol Genet Genomics</addtitle><addtitle>Mol Genet Genomics</addtitle><description>Soil salinity negatively impacts rapeseed ( Brassica napus ) crop production. In particular, high soil salinity is known to hinder seedling growth and establishment. Identifying natural genetic variation for high salt tolerance in Brassica napus seedlings is an effective way to breed for improved productivity under salt stress. To identify genetic variants involved in differential response to salt stress, we evaluated a diverse association panel of 228 Brasica napus accessions for four seedling traits under salt stress to establish stress susceptibility index (SSI) and stress tolerance index (STI) values, and performed genome-wide association studies (GWAS) using 201,817 high-quality single nucleotide polymorphic (SNP) markers. Our GWAS identified 142 significant SNP markers strongly associated with salt tolerance distributed across all rapeseed chromosomes, with 78 SNPs in the C genome and 64 SNPs in the A genome, and our analyses subsequently pinpointed both favorable alleles and elite cultivars. We identified 117 possible candidate genes associated with these SNPs: 95/117 were orthologous with Arabidopsis thaliana genes encoding transcription factors, aquaporins, and binding proteins. The expression level of ten candidate genes was validated by quantitative real-time PCR (qRT-PCR), and these genes were found to be differentially expressed between salt-tolerant and salt-susceptible lines under salt stress conditions. Our results provide new genetic resources and information for improving salt tolerance in rapeseed genotypes at the seed germination and seedling stages via genomic or marker-assisted selection, and for future functional characterization of putative gene candidates.</description><subject>Abiotic stress</subject><subject>Animal Genetics and Genomics</subject><subject>Aquaporins</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Brassica napus</subject><subject>Brassica napus - genetics</subject><subject>Brassica napus - growth &amp; development</subject><subject>Chromosome Mapping</subject><subject>Chromosomes</subject><subject>Crop production</subject><subject>Cultivars</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene mapping</subject><subject>Genetic diversity</subject><subject>Genetic resources</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genotypes</subject><subject>Germination</subject><subject>Human Genetics</subject><subject>Life Sciences</subject><subject>Marker-assisted selection</subject><subject>Microbial Genetics and Genomics</subject><subject>Original Article</subject><subject>Phenotype</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Proteins - genetics</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Rape plants</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Salinity tolerance</subject><subject>Salt Tolerance</subject><subject>Seed germination</subject><subject>Seedlings</subject><subject>Seeds - genetics</subject><subject>Seeds - growth &amp; development</subject><subject>Single-nucleotide polymorphism</subject><subject>Soil salinity</subject><subject>Transcription factors</subject><issn>1617-4615</issn><issn>1617-4623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUtv3CAUhVHVqHm0f6CLCqmbbJxcDAZ72YyahxQpm2SNML4eMbLBBbtV_n2ZepJKWWQFuuc7B3QPIV8ZXDAAdZkABK8LKKEApkRT1B_ICZNMFUKW_OPrnVXH5DSlHWRKluoTOeZcSMEbeUL8XYd-dr2zZnbB09DTLXqcnaW_TXTrsA-RJjPMdA4DRuMtUufpVTQpZR_1ZloSXZLz2705jFj8cR3SLAd7iBjNNGX9MznqzZDwy-E8I0_XPx83t8X9w83d5sd9Ybmq5qKumUCDjVXAoK8Zz-NWtY0UylhRS9XVAlsD2AFAj6asrKhU2wrJZdUxxc_I-Zo7xfBrwTTr0SWLw2A8hiXpUqgGRF5amdHvb9BdWKLPv8tUw4QA1uypcqVsDClF7PUU3Wjis2ag923otQ2d29D_2tB1Nn07RC_tiN2r5WX9GeArkLLktxj_v_1O7F_IBpXN</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Wassan, Ghulam Mustafa</creator><creator>Khanzada, Hira</creator><creator>Zhou, Qinghong</creator><creator>Mason, Annaliese S.</creator><creator>Keerio, Ayaz Ali</creator><creator>Khanzada, Saba</creator><creator>Solangi, Abdul Malik</creator><creator>Faheem, Muhammad</creator><creator>Fu, Donghui</creator><creator>He, Haohua</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5107-4913</orcidid></search><sort><creationdate>20210301</creationdate><title>Identification of genetic variation for salt tolerance in Brassica napus using genome-wide association mapping</title><author>Wassan, Ghulam Mustafa ; Khanzada, Hira ; Zhou, Qinghong ; Mason, Annaliese S. ; Keerio, Ayaz Ali ; Khanzada, Saba ; Solangi, Abdul Malik ; Faheem, Muhammad ; Fu, Donghui ; He, Haohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-8814eae9c7010f813c37b7b9647ac4867d84eba0ed000fea25c457bb46365d173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abiotic stress</topic><topic>Animal Genetics and Genomics</topic><topic>Aquaporins</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Brassica napus</topic><topic>Brassica napus - genetics</topic><topic>Brassica napus - growth &amp; development</topic><topic>Chromosome Mapping</topic><topic>Chromosomes</topic><topic>Crop production</topic><topic>Cultivars</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene mapping</topic><topic>Genetic diversity</topic><topic>Genetic resources</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genotypes</topic><topic>Germination</topic><topic>Human Genetics</topic><topic>Life Sciences</topic><topic>Marker-assisted selection</topic><topic>Microbial Genetics and Genomics</topic><topic>Original Article</topic><topic>Phenotype</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Proteins - genetics</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Rape plants</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Salinity tolerance</topic><topic>Salt Tolerance</topic><topic>Seed germination</topic><topic>Seedlings</topic><topic>Seeds - genetics</topic><topic>Seeds - growth &amp; development</topic><topic>Single-nucleotide polymorphism</topic><topic>Soil salinity</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wassan, Ghulam Mustafa</creatorcontrib><creatorcontrib>Khanzada, Hira</creatorcontrib><creatorcontrib>Zhou, Qinghong</creatorcontrib><creatorcontrib>Mason, Annaliese S.</creatorcontrib><creatorcontrib>Keerio, Ayaz Ali</creatorcontrib><creatorcontrib>Khanzada, Saba</creatorcontrib><creatorcontrib>Solangi, Abdul Malik</creatorcontrib><creatorcontrib>Faheem, Muhammad</creatorcontrib><creatorcontrib>Fu, Donghui</creatorcontrib><creatorcontrib>He, Haohua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular genetics and genomics : MGG</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wassan, Ghulam Mustafa</au><au>Khanzada, Hira</au><au>Zhou, Qinghong</au><au>Mason, Annaliese S.</au><au>Keerio, Ayaz Ali</au><au>Khanzada, Saba</au><au>Solangi, Abdul Malik</au><au>Faheem, Muhammad</au><au>Fu, Donghui</au><au>He, Haohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of genetic variation for salt tolerance in Brassica napus using genome-wide association mapping</atitle><jtitle>Molecular genetics and genomics : MGG</jtitle><stitle>Mol Genet Genomics</stitle><addtitle>Mol Genet Genomics</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>296</volume><issue>2</issue><spage>391</spage><epage>408</epage><pages>391-408</pages><issn>1617-4615</issn><eissn>1617-4623</eissn><abstract>Soil salinity negatively impacts rapeseed ( Brassica napus ) crop production. In particular, high soil salinity is known to hinder seedling growth and establishment. Identifying natural genetic variation for high salt tolerance in Brassica napus seedlings is an effective way to breed for improved productivity under salt stress. To identify genetic variants involved in differential response to salt stress, we evaluated a diverse association panel of 228 Brasica napus accessions for four seedling traits under salt stress to establish stress susceptibility index (SSI) and stress tolerance index (STI) values, and performed genome-wide association studies (GWAS) using 201,817 high-quality single nucleotide polymorphic (SNP) markers. Our GWAS identified 142 significant SNP markers strongly associated with salt tolerance distributed across all rapeseed chromosomes, with 78 SNPs in the C genome and 64 SNPs in the A genome, and our analyses subsequently pinpointed both favorable alleles and elite cultivars. We identified 117 possible candidate genes associated with these SNPs: 95/117 were orthologous with Arabidopsis thaliana genes encoding transcription factors, aquaporins, and binding proteins. The expression level of ten candidate genes was validated by quantitative real-time PCR (qRT-PCR), and these genes were found to be differentially expressed between salt-tolerant and salt-susceptible lines under salt stress conditions. Our results provide new genetic resources and information for improving salt tolerance in rapeseed genotypes at the seed germination and seedling stages via genomic or marker-assisted selection, and for future functional characterization of putative gene candidates.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33464396</pmid><doi>10.1007/s00438-020-01749-8</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5107-4913</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1617-4615
ispartof Molecular genetics and genomics : MGG, 2021-03, Vol.296 (2), p.391-408
issn 1617-4615
1617-4623
language eng
recordid cdi_proquest_miscellaneous_2479041742
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Abiotic stress
Animal Genetics and Genomics
Aquaporins
Biochemistry
Biomedical and Life Sciences
Brassica napus
Brassica napus - genetics
Brassica napus - growth & development
Chromosome Mapping
Chromosomes
Crop production
Cultivars
Gene Expression Regulation, Plant
Gene mapping
Genetic diversity
Genetic resources
Genome-wide association studies
Genome-Wide Association Study
Genomes
Genotypes
Germination
Human Genetics
Life Sciences
Marker-assisted selection
Microbial Genetics and Genomics
Original Article
Phenotype
Plant Genetics and Genomics
Plant Proteins - genetics
Polymorphism, Single Nucleotide
Rape plants
Salinity
Salinity effects
Salinity tolerance
Salt Tolerance
Seed germination
Seedlings
Seeds - genetics
Seeds - growth & development
Single-nucleotide polymorphism
Soil salinity
Transcription factors
title Identification of genetic variation for salt tolerance in Brassica napus using genome-wide association mapping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A06%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20genetic%20variation%20for%20salt%20tolerance%20in%20Brassica%20napus%20using%20genome-wide%20association%20mapping&rft.jtitle=Molecular%20genetics%20and%20genomics%20:%20MGG&rft.au=Wassan,%20Ghulam%20Mustafa&rft.date=2021-03-01&rft.volume=296&rft.issue=2&rft.spage=391&rft.epage=408&rft.pages=391-408&rft.issn=1617-4615&rft.eissn=1617-4623&rft_id=info:doi/10.1007/s00438-020-01749-8&rft_dat=%3Cproquest_cross%3E2491440192%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491440192&rft_id=info:pmid/33464396&rfr_iscdi=true