Identification of genetic variation for salt tolerance in Brassica napus using genome-wide association mapping
Soil salinity negatively impacts rapeseed ( Brassica napus ) crop production. In particular, high soil salinity is known to hinder seedling growth and establishment. Identifying natural genetic variation for high salt tolerance in Brassica napus seedlings is an effective way to breed for improved pr...
Gespeichert in:
Veröffentlicht in: | Molecular genetics and genomics : MGG 2021-03, Vol.296 (2), p.391-408 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 408 |
---|---|
container_issue | 2 |
container_start_page | 391 |
container_title | Molecular genetics and genomics : MGG |
container_volume | 296 |
creator | Wassan, Ghulam Mustafa Khanzada, Hira Zhou, Qinghong Mason, Annaliese S. Keerio, Ayaz Ali Khanzada, Saba Solangi, Abdul Malik Faheem, Muhammad Fu, Donghui He, Haohua |
description | Soil salinity negatively impacts rapeseed (
Brassica napus
) crop production. In particular, high soil salinity is known to hinder seedling growth and establishment. Identifying natural genetic variation for high salt tolerance in
Brassica napus
seedlings is an effective way to breed for improved productivity under salt stress. To identify genetic variants involved in differential response to salt stress, we evaluated a diverse association panel of 228
Brasica napus
accessions for four seedling traits under salt stress to establish stress susceptibility index (SSI) and stress tolerance index (STI) values, and performed genome-wide association studies (GWAS) using 201,817 high-quality single nucleotide polymorphic (SNP) markers. Our GWAS identified 142 significant SNP markers strongly associated with salt tolerance distributed across all rapeseed chromosomes, with 78 SNPs in the C genome and 64 SNPs in the A genome, and our analyses subsequently pinpointed both favorable alleles and elite cultivars. We identified 117 possible candidate genes associated with these SNPs: 95/117 were orthologous with
Arabidopsis thaliana
genes encoding transcription factors, aquaporins, and binding proteins. The expression level of ten candidate genes was validated by quantitative real-time PCR (qRT-PCR), and these genes were found to be differentially expressed between salt-tolerant and salt-susceptible lines under salt stress conditions. Our results provide new genetic resources and information for improving salt tolerance in rapeseed genotypes at the seed germination and seedling stages via genomic or marker-assisted selection, and for future functional characterization of putative gene candidates. |
doi_str_mv | 10.1007/s00438-020-01749-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2479041742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2491440192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-8814eae9c7010f813c37b7b9647ac4867d84eba0ed000fea25c457bb46365d173</originalsourceid><addsrcrecordid>eNp9kUtv3CAUhVHVqHm0f6CLCqmbbJxcDAZ72YyahxQpm2SNML4eMbLBBbtV_n2ZepJKWWQFuuc7B3QPIV8ZXDAAdZkABK8LKKEApkRT1B_ICZNMFUKW_OPrnVXH5DSlHWRKluoTOeZcSMEbeUL8XYd-dr2zZnbB09DTLXqcnaW_TXTrsA-RJjPMdA4DRuMtUufpVTQpZR_1ZloSXZLz2705jFj8cR3SLAd7iBjNNGX9MznqzZDwy-E8I0_XPx83t8X9w83d5sd9Ybmq5qKumUCDjVXAoK8Zz-NWtY0UylhRS9XVAlsD2AFAj6asrKhU2wrJZdUxxc_I-Zo7xfBrwTTr0SWLw2A8hiXpUqgGRF5amdHvb9BdWKLPv8tUw4QA1uypcqVsDClF7PUU3Wjis2ag923otQ2d29D_2tB1Nn07RC_tiN2r5WX9GeArkLLktxj_v_1O7F_IBpXN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491440192</pqid></control><display><type>article</type><title>Identification of genetic variation for salt tolerance in Brassica napus using genome-wide association mapping</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wassan, Ghulam Mustafa ; Khanzada, Hira ; Zhou, Qinghong ; Mason, Annaliese S. ; Keerio, Ayaz Ali ; Khanzada, Saba ; Solangi, Abdul Malik ; Faheem, Muhammad ; Fu, Donghui ; He, Haohua</creator><creatorcontrib>Wassan, Ghulam Mustafa ; Khanzada, Hira ; Zhou, Qinghong ; Mason, Annaliese S. ; Keerio, Ayaz Ali ; Khanzada, Saba ; Solangi, Abdul Malik ; Faheem, Muhammad ; Fu, Donghui ; He, Haohua</creatorcontrib><description>Soil salinity negatively impacts rapeseed (
Brassica napus
) crop production. In particular, high soil salinity is known to hinder seedling growth and establishment. Identifying natural genetic variation for high salt tolerance in
Brassica napus
seedlings is an effective way to breed for improved productivity under salt stress. To identify genetic variants involved in differential response to salt stress, we evaluated a diverse association panel of 228
Brasica napus
accessions for four seedling traits under salt stress to establish stress susceptibility index (SSI) and stress tolerance index (STI) values, and performed genome-wide association studies (GWAS) using 201,817 high-quality single nucleotide polymorphic (SNP) markers. Our GWAS identified 142 significant SNP markers strongly associated with salt tolerance distributed across all rapeseed chromosomes, with 78 SNPs in the C genome and 64 SNPs in the A genome, and our analyses subsequently pinpointed both favorable alleles and elite cultivars. We identified 117 possible candidate genes associated with these SNPs: 95/117 were orthologous with
Arabidopsis thaliana
genes encoding transcription factors, aquaporins, and binding proteins. The expression level of ten candidate genes was validated by quantitative real-time PCR (qRT-PCR), and these genes were found to be differentially expressed between salt-tolerant and salt-susceptible lines under salt stress conditions. Our results provide new genetic resources and information for improving salt tolerance in rapeseed genotypes at the seed germination and seedling stages via genomic or marker-assisted selection, and for future functional characterization of putative gene candidates.</description><identifier>ISSN: 1617-4615</identifier><identifier>EISSN: 1617-4623</identifier><identifier>DOI: 10.1007/s00438-020-01749-8</identifier><identifier>PMID: 33464396</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Abiotic stress ; Animal Genetics and Genomics ; Aquaporins ; Biochemistry ; Biomedical and Life Sciences ; Brassica napus ; Brassica napus - genetics ; Brassica napus - growth & development ; Chromosome Mapping ; Chromosomes ; Crop production ; Cultivars ; Gene Expression Regulation, Plant ; Gene mapping ; Genetic diversity ; Genetic resources ; Genome-wide association studies ; Genome-Wide Association Study ; Genomes ; Genotypes ; Germination ; Human Genetics ; Life Sciences ; Marker-assisted selection ; Microbial Genetics and Genomics ; Original Article ; Phenotype ; Plant Genetics and Genomics ; Plant Proteins - genetics ; Polymorphism, Single Nucleotide ; Rape plants ; Salinity ; Salinity effects ; Salinity tolerance ; Salt Tolerance ; Seed germination ; Seedlings ; Seeds - genetics ; Seeds - growth & development ; Single-nucleotide polymorphism ; Soil salinity ; Transcription factors</subject><ispartof>Molecular genetics and genomics : MGG, 2021-03, Vol.296 (2), p.391-408</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-8814eae9c7010f813c37b7b9647ac4867d84eba0ed000fea25c457bb46365d173</citedby><cites>FETCH-LOGICAL-c375t-8814eae9c7010f813c37b7b9647ac4867d84eba0ed000fea25c457bb46365d173</cites><orcidid>0000-0001-5107-4913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00438-020-01749-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00438-020-01749-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33464396$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wassan, Ghulam Mustafa</creatorcontrib><creatorcontrib>Khanzada, Hira</creatorcontrib><creatorcontrib>Zhou, Qinghong</creatorcontrib><creatorcontrib>Mason, Annaliese S.</creatorcontrib><creatorcontrib>Keerio, Ayaz Ali</creatorcontrib><creatorcontrib>Khanzada, Saba</creatorcontrib><creatorcontrib>Solangi, Abdul Malik</creatorcontrib><creatorcontrib>Faheem, Muhammad</creatorcontrib><creatorcontrib>Fu, Donghui</creatorcontrib><creatorcontrib>He, Haohua</creatorcontrib><title>Identification of genetic variation for salt tolerance in Brassica napus using genome-wide association mapping</title><title>Molecular genetics and genomics : MGG</title><addtitle>Mol Genet Genomics</addtitle><addtitle>Mol Genet Genomics</addtitle><description>Soil salinity negatively impacts rapeseed (
Brassica napus
) crop production. In particular, high soil salinity is known to hinder seedling growth and establishment. Identifying natural genetic variation for high salt tolerance in
Brassica napus
seedlings is an effective way to breed for improved productivity under salt stress. To identify genetic variants involved in differential response to salt stress, we evaluated a diverse association panel of 228
Brasica napus
accessions for four seedling traits under salt stress to establish stress susceptibility index (SSI) and stress tolerance index (STI) values, and performed genome-wide association studies (GWAS) using 201,817 high-quality single nucleotide polymorphic (SNP) markers. Our GWAS identified 142 significant SNP markers strongly associated with salt tolerance distributed across all rapeseed chromosomes, with 78 SNPs in the C genome and 64 SNPs in the A genome, and our analyses subsequently pinpointed both favorable alleles and elite cultivars. We identified 117 possible candidate genes associated with these SNPs: 95/117 were orthologous with
Arabidopsis thaliana
genes encoding transcription factors, aquaporins, and binding proteins. The expression level of ten candidate genes was validated by quantitative real-time PCR (qRT-PCR), and these genes were found to be differentially expressed between salt-tolerant and salt-susceptible lines under salt stress conditions. Our results provide new genetic resources and information for improving salt tolerance in rapeseed genotypes at the seed germination and seedling stages via genomic or marker-assisted selection, and for future functional characterization of putative gene candidates.</description><subject>Abiotic stress</subject><subject>Animal Genetics and Genomics</subject><subject>Aquaporins</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Brassica napus</subject><subject>Brassica napus - genetics</subject><subject>Brassica napus - growth & development</subject><subject>Chromosome Mapping</subject><subject>Chromosomes</subject><subject>Crop production</subject><subject>Cultivars</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene mapping</subject><subject>Genetic diversity</subject><subject>Genetic resources</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genotypes</subject><subject>Germination</subject><subject>Human Genetics</subject><subject>Life Sciences</subject><subject>Marker-assisted selection</subject><subject>Microbial Genetics and Genomics</subject><subject>Original Article</subject><subject>Phenotype</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Proteins - genetics</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Rape plants</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Salinity tolerance</subject><subject>Salt Tolerance</subject><subject>Seed germination</subject><subject>Seedlings</subject><subject>Seeds - genetics</subject><subject>Seeds - growth & development</subject><subject>Single-nucleotide polymorphism</subject><subject>Soil salinity</subject><subject>Transcription factors</subject><issn>1617-4615</issn><issn>1617-4623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUtv3CAUhVHVqHm0f6CLCqmbbJxcDAZ72YyahxQpm2SNML4eMbLBBbtV_n2ZepJKWWQFuuc7B3QPIV8ZXDAAdZkABK8LKKEApkRT1B_ICZNMFUKW_OPrnVXH5DSlHWRKluoTOeZcSMEbeUL8XYd-dr2zZnbB09DTLXqcnaW_TXTrsA-RJjPMdA4DRuMtUufpVTQpZR_1ZloSXZLz2705jFj8cR3SLAd7iBjNNGX9MznqzZDwy-E8I0_XPx83t8X9w83d5sd9Ybmq5qKumUCDjVXAoK8Zz-NWtY0UylhRS9XVAlsD2AFAj6asrKhU2wrJZdUxxc_I-Zo7xfBrwTTr0SWLw2A8hiXpUqgGRF5amdHvb9BdWKLPv8tUw4QA1uypcqVsDClF7PUU3Wjis2ag923otQ2d29D_2tB1Nn07RC_tiN2r5WX9GeArkLLktxj_v_1O7F_IBpXN</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Wassan, Ghulam Mustafa</creator><creator>Khanzada, Hira</creator><creator>Zhou, Qinghong</creator><creator>Mason, Annaliese S.</creator><creator>Keerio, Ayaz Ali</creator><creator>Khanzada, Saba</creator><creator>Solangi, Abdul Malik</creator><creator>Faheem, Muhammad</creator><creator>Fu, Donghui</creator><creator>He, Haohua</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5107-4913</orcidid></search><sort><creationdate>20210301</creationdate><title>Identification of genetic variation for salt tolerance in Brassica napus using genome-wide association mapping</title><author>Wassan, Ghulam Mustafa ; Khanzada, Hira ; Zhou, Qinghong ; Mason, Annaliese S. ; Keerio, Ayaz Ali ; Khanzada, Saba ; Solangi, Abdul Malik ; Faheem, Muhammad ; Fu, Donghui ; He, Haohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-8814eae9c7010f813c37b7b9647ac4867d84eba0ed000fea25c457bb46365d173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abiotic stress</topic><topic>Animal Genetics and Genomics</topic><topic>Aquaporins</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Brassica napus</topic><topic>Brassica napus - genetics</topic><topic>Brassica napus - growth & development</topic><topic>Chromosome Mapping</topic><topic>Chromosomes</topic><topic>Crop production</topic><topic>Cultivars</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene mapping</topic><topic>Genetic diversity</topic><topic>Genetic resources</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genotypes</topic><topic>Germination</topic><topic>Human Genetics</topic><topic>Life Sciences</topic><topic>Marker-assisted selection</topic><topic>Microbial Genetics and Genomics</topic><topic>Original Article</topic><topic>Phenotype</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Proteins - genetics</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Rape plants</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Salinity tolerance</topic><topic>Salt Tolerance</topic><topic>Seed germination</topic><topic>Seedlings</topic><topic>Seeds - genetics</topic><topic>Seeds - growth & development</topic><topic>Single-nucleotide polymorphism</topic><topic>Soil salinity</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wassan, Ghulam Mustafa</creatorcontrib><creatorcontrib>Khanzada, Hira</creatorcontrib><creatorcontrib>Zhou, Qinghong</creatorcontrib><creatorcontrib>Mason, Annaliese S.</creatorcontrib><creatorcontrib>Keerio, Ayaz Ali</creatorcontrib><creatorcontrib>Khanzada, Saba</creatorcontrib><creatorcontrib>Solangi, Abdul Malik</creatorcontrib><creatorcontrib>Faheem, Muhammad</creatorcontrib><creatorcontrib>Fu, Donghui</creatorcontrib><creatorcontrib>He, Haohua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular genetics and genomics : MGG</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wassan, Ghulam Mustafa</au><au>Khanzada, Hira</au><au>Zhou, Qinghong</au><au>Mason, Annaliese S.</au><au>Keerio, Ayaz Ali</au><au>Khanzada, Saba</au><au>Solangi, Abdul Malik</au><au>Faheem, Muhammad</au><au>Fu, Donghui</au><au>He, Haohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of genetic variation for salt tolerance in Brassica napus using genome-wide association mapping</atitle><jtitle>Molecular genetics and genomics : MGG</jtitle><stitle>Mol Genet Genomics</stitle><addtitle>Mol Genet Genomics</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>296</volume><issue>2</issue><spage>391</spage><epage>408</epage><pages>391-408</pages><issn>1617-4615</issn><eissn>1617-4623</eissn><abstract>Soil salinity negatively impacts rapeseed (
Brassica napus
) crop production. In particular, high soil salinity is known to hinder seedling growth and establishment. Identifying natural genetic variation for high salt tolerance in
Brassica napus
seedlings is an effective way to breed for improved productivity under salt stress. To identify genetic variants involved in differential response to salt stress, we evaluated a diverse association panel of 228
Brasica napus
accessions for four seedling traits under salt stress to establish stress susceptibility index (SSI) and stress tolerance index (STI) values, and performed genome-wide association studies (GWAS) using 201,817 high-quality single nucleotide polymorphic (SNP) markers. Our GWAS identified 142 significant SNP markers strongly associated with salt tolerance distributed across all rapeseed chromosomes, with 78 SNPs in the C genome and 64 SNPs in the A genome, and our analyses subsequently pinpointed both favorable alleles and elite cultivars. We identified 117 possible candidate genes associated with these SNPs: 95/117 were orthologous with
Arabidopsis thaliana
genes encoding transcription factors, aquaporins, and binding proteins. The expression level of ten candidate genes was validated by quantitative real-time PCR (qRT-PCR), and these genes were found to be differentially expressed between salt-tolerant and salt-susceptible lines under salt stress conditions. Our results provide new genetic resources and information for improving salt tolerance in rapeseed genotypes at the seed germination and seedling stages via genomic or marker-assisted selection, and for future functional characterization of putative gene candidates.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33464396</pmid><doi>10.1007/s00438-020-01749-8</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5107-4913</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1617-4615 |
ispartof | Molecular genetics and genomics : MGG, 2021-03, Vol.296 (2), p.391-408 |
issn | 1617-4615 1617-4623 |
language | eng |
recordid | cdi_proquest_miscellaneous_2479041742 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Abiotic stress Animal Genetics and Genomics Aquaporins Biochemistry Biomedical and Life Sciences Brassica napus Brassica napus - genetics Brassica napus - growth & development Chromosome Mapping Chromosomes Crop production Cultivars Gene Expression Regulation, Plant Gene mapping Genetic diversity Genetic resources Genome-wide association studies Genome-Wide Association Study Genomes Genotypes Germination Human Genetics Life Sciences Marker-assisted selection Microbial Genetics and Genomics Original Article Phenotype Plant Genetics and Genomics Plant Proteins - genetics Polymorphism, Single Nucleotide Rape plants Salinity Salinity effects Salinity tolerance Salt Tolerance Seed germination Seedlings Seeds - genetics Seeds - growth & development Single-nucleotide polymorphism Soil salinity Transcription factors |
title | Identification of genetic variation for salt tolerance in Brassica napus using genome-wide association mapping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A06%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20genetic%20variation%20for%20salt%20tolerance%20in%20Brassica%20napus%20using%20genome-wide%20association%20mapping&rft.jtitle=Molecular%20genetics%20and%20genomics%20:%20MGG&rft.au=Wassan,%20Ghulam%20Mustafa&rft.date=2021-03-01&rft.volume=296&rft.issue=2&rft.spage=391&rft.epage=408&rft.pages=391-408&rft.issn=1617-4615&rft.eissn=1617-4623&rft_id=info:doi/10.1007/s00438-020-01749-8&rft_dat=%3Cproquest_cross%3E2491440192%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491440192&rft_id=info:pmid/33464396&rfr_iscdi=true |