Boundary element solutions of quasilinearised time-dependent infiltration

Transient quasilinearised infiltration with constant diffusivity from an axisymmetric shallow flat pond into a homogeneous semi-infinite porous medium is examined using the boundary element method. Use of the Laplace transform reduces the equation and boundary conditions to a form similar to that go...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling 1988, Vol.12 (1), p.9-17
1. Verfasser: Pullan, A.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 1
container_start_page 9
container_title Applied mathematical modelling
container_volume 12
creator Pullan, A.J.
description Transient quasilinearised infiltration with constant diffusivity from an axisymmetric shallow flat pond into a homogeneous semi-infinite porous medium is examined using the boundary element method. Use of the Laplace transform reduces the equation and boundary conditions to a form similar to that governing the quasilinearised steady-state flow. Numerical results showing how the flux from the pond decays in time are presented for a range of the dimensionless pond radius s likely to be found in many small-ring infiltrometer experiments. The time taken for the flux to reach near steady state is investigated, and the dependence of this time on s is examined.
doi_str_mv 10.1016/0307-904X(88)90017-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_24787114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0307904X88900170</els_id><sourcerecordid>24787114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3560-8e63f8751b561f3575efc3d8f7ee46f7058b806250f4ae819a04c14aaf1a8b603</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhnNQcF39Bx56ENFDddLmqxdBFz8WFrwoeAvZdAKRNt1NWsF_b-suHvU0zPDMO8NDyBmFawpU3EAJMq-AvV8qdVUBUJnDAZn9jo_IcUofAMDHbkaW990QahO_MmywxdBnqWuG3nchZZ3LtoNJvvEBTfQJ66z3LeY1bjDUE-uD800fzcSfkENnmoSn-zonb48Pr4vnfPXytFzcrXJbcgG5QlE6JTldc0FdySVHZ8taOYnIhJPA1VqBKDg4ZlDRygCzlBnjqFFrAeWcXOxyN7HbDph63fpksWlMwG5IumBSSUrZvyAtpSigKEeQ7UAbu5QiOr2Jvh2daAp6kqone3qyp5XSP1L19Mj5Pt8kaxoXTbA-_e6KSnEq-Ijd7jAcpXx6jDpZj8Fi7SPaXted__vON5a_jaI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13762023</pqid></control><display><type>article</type><title>Boundary element solutions of quasilinearised time-dependent infiltration</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pullan, A.J.</creator><creatorcontrib>Pullan, A.J.</creatorcontrib><description>Transient quasilinearised infiltration with constant diffusivity from an axisymmetric shallow flat pond into a homogeneous semi-infinite porous medium is examined using the boundary element method. Use of the Laplace transform reduces the equation and boundary conditions to a form similar to that governing the quasilinearised steady-state flow. Numerical results showing how the flux from the pond decays in time are presented for a range of the dimensionless pond radius s likely to be found in many small-ring infiltrometer experiments. The time taken for the flux to reach near steady state is investigated, and the dependence of this time on s is examined.</description><identifier>ISSN: 0307-904X</identifier><identifier>DOI: 10.1016/0307-904X(88)90017-0</identifier><identifier>CODEN: AMMODL</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>boundary element method ; constant diffusivity ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; infiltration ; infiltrometer ; Laplace transform ; Nonhomogeneous flows ; Physics ; quasilinear ; time dependence</subject><ispartof>Applied mathematical modelling, 1988, Vol.12 (1), p.9-17</ispartof><rights>1988</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3560-8e63f8751b561f3575efc3d8f7ee46f7058b806250f4ae819a04c14aaf1a8b603</citedby><cites>FETCH-LOGICAL-c3560-8e63f8751b561f3575efc3d8f7ee46f7058b806250f4ae819a04c14aaf1a8b603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0307-904X(88)90017-0$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6985165$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pullan, A.J.</creatorcontrib><title>Boundary element solutions of quasilinearised time-dependent infiltration</title><title>Applied mathematical modelling</title><description>Transient quasilinearised infiltration with constant diffusivity from an axisymmetric shallow flat pond into a homogeneous semi-infinite porous medium is examined using the boundary element method. Use of the Laplace transform reduces the equation and boundary conditions to a form similar to that governing the quasilinearised steady-state flow. Numerical results showing how the flux from the pond decays in time are presented for a range of the dimensionless pond radius s likely to be found in many small-ring infiltrometer experiments. The time taken for the flux to reach near steady state is investigated, and the dependence of this time on s is examined.</description><subject>boundary element method</subject><subject>constant diffusivity</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>infiltration</subject><subject>infiltrometer</subject><subject>Laplace transform</subject><subject>Nonhomogeneous flows</subject><subject>Physics</subject><subject>quasilinear</subject><subject>time dependence</subject><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhnNQcF39Bx56ENFDddLmqxdBFz8WFrwoeAvZdAKRNt1NWsF_b-suHvU0zPDMO8NDyBmFawpU3EAJMq-AvV8qdVUBUJnDAZn9jo_IcUofAMDHbkaW990QahO_MmywxdBnqWuG3nchZZ3LtoNJvvEBTfQJ66z3LeY1bjDUE-uD800fzcSfkENnmoSn-zonb48Pr4vnfPXytFzcrXJbcgG5QlE6JTldc0FdySVHZ8taOYnIhJPA1VqBKDg4ZlDRygCzlBnjqFFrAeWcXOxyN7HbDph63fpksWlMwG5IumBSSUrZvyAtpSigKEeQ7UAbu5QiOr2Jvh2daAp6kqone3qyp5XSP1L19Mj5Pt8kaxoXTbA-_e6KSnEq-Ijd7jAcpXx6jDpZj8Fi7SPaXted__vON5a_jaI</recordid><startdate>1988</startdate><enddate>1988</enddate><creator>Pullan, A.J.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1988</creationdate><title>Boundary element solutions of quasilinearised time-dependent infiltration</title><author>Pullan, A.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3560-8e63f8751b561f3575efc3d8f7ee46f7058b806250f4ae819a04c14aaf1a8b603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>boundary element method</topic><topic>constant diffusivity</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>infiltration</topic><topic>infiltrometer</topic><topic>Laplace transform</topic><topic>Nonhomogeneous flows</topic><topic>Physics</topic><topic>quasilinear</topic><topic>time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pullan, A.J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pullan, A.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary element solutions of quasilinearised time-dependent infiltration</atitle><jtitle>Applied mathematical modelling</jtitle><date>1988</date><risdate>1988</risdate><volume>12</volume><issue>1</issue><spage>9</spage><epage>17</epage><pages>9-17</pages><issn>0307-904X</issn><coden>AMMODL</coden><abstract>Transient quasilinearised infiltration with constant diffusivity from an axisymmetric shallow flat pond into a homogeneous semi-infinite porous medium is examined using the boundary element method. Use of the Laplace transform reduces the equation and boundary conditions to a form similar to that governing the quasilinearised steady-state flow. Numerical results showing how the flux from the pond decays in time are presented for a range of the dimensionless pond radius s likely to be found in many small-ring infiltrometer experiments. The time taken for the flux to reach near steady state is investigated, and the dependence of this time on s is examined.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/0307-904X(88)90017-0</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied mathematical modelling, 1988, Vol.12 (1), p.9-17
issn 0307-904X
language eng
recordid cdi_proquest_miscellaneous_24787114
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects boundary element method
constant diffusivity
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
infiltration
infiltrometer
Laplace transform
Nonhomogeneous flows
Physics
quasilinear
time dependence
title Boundary element solutions of quasilinearised time-dependent infiltration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A47%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20element%20solutions%20of%20quasilinearised%20time-dependent%20infiltration&rft.jtitle=Applied%20mathematical%20modelling&rft.au=Pullan,%20A.J.&rft.date=1988&rft.volume=12&rft.issue=1&rft.spage=9&rft.epage=17&rft.pages=9-17&rft.issn=0307-904X&rft.coden=AMMODL&rft_id=info:doi/10.1016/0307-904X(88)90017-0&rft_dat=%3Cproquest_cross%3E24787114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=13762023&rft_id=info:pmid/&rft_els_id=0307904X88900170&rfr_iscdi=true