Boundary element solutions of quasilinearised time-dependent infiltration
Transient quasilinearised infiltration with constant diffusivity from an axisymmetric shallow flat pond into a homogeneous semi-infinite porous medium is examined using the boundary element method. Use of the Laplace transform reduces the equation and boundary conditions to a form similar to that go...
Gespeichert in:
Veröffentlicht in: | Applied mathematical modelling 1988, Vol.12 (1), p.9-17 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 1 |
container_start_page | 9 |
container_title | Applied mathematical modelling |
container_volume | 12 |
creator | Pullan, A.J. |
description | Transient quasilinearised infiltration with constant diffusivity from an axisymmetric shallow flat pond into a homogeneous semi-infinite porous medium is examined using the boundary element method. Use of the Laplace transform reduces the equation and boundary conditions to a form similar to that governing the quasilinearised steady-state flow. Numerical results showing how the flux from the pond decays in time are presented for a range of the dimensionless pond radius
s likely to be found in many small-ring infiltrometer experiments. The time taken for the flux to reach near steady state is investigated, and the dependence of this time on
s is examined. |
doi_str_mv | 10.1016/0307-904X(88)90017-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_24787114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0307904X88900170</els_id><sourcerecordid>24787114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3560-8e63f8751b561f3575efc3d8f7ee46f7058b806250f4ae819a04c14aaf1a8b603</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhnNQcF39Bx56ENFDddLmqxdBFz8WFrwoeAvZdAKRNt1NWsF_b-suHvU0zPDMO8NDyBmFawpU3EAJMq-AvV8qdVUBUJnDAZn9jo_IcUofAMDHbkaW990QahO_MmywxdBnqWuG3nchZZ3LtoNJvvEBTfQJ66z3LeY1bjDUE-uD800fzcSfkENnmoSn-zonb48Pr4vnfPXytFzcrXJbcgG5QlE6JTldc0FdySVHZ8taOYnIhJPA1VqBKDg4ZlDRygCzlBnjqFFrAeWcXOxyN7HbDph63fpksWlMwG5IumBSSUrZvyAtpSigKEeQ7UAbu5QiOr2Jvh2daAp6kqone3qyp5XSP1L19Mj5Pt8kaxoXTbA-_e6KSnEq-Ijd7jAcpXx6jDpZj8Fi7SPaXted__vON5a_jaI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13762023</pqid></control><display><type>article</type><title>Boundary element solutions of quasilinearised time-dependent infiltration</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pullan, A.J.</creator><creatorcontrib>Pullan, A.J.</creatorcontrib><description>Transient quasilinearised infiltration with constant diffusivity from an axisymmetric shallow flat pond into a homogeneous semi-infinite porous medium is examined using the boundary element method. Use of the Laplace transform reduces the equation and boundary conditions to a form similar to that governing the quasilinearised steady-state flow. Numerical results showing how the flux from the pond decays in time are presented for a range of the dimensionless pond radius
s likely to be found in many small-ring infiltrometer experiments. The time taken for the flux to reach near steady state is investigated, and the dependence of this time on
s is examined.</description><identifier>ISSN: 0307-904X</identifier><identifier>DOI: 10.1016/0307-904X(88)90017-0</identifier><identifier>CODEN: AMMODL</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>boundary element method ; constant diffusivity ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; infiltration ; infiltrometer ; Laplace transform ; Nonhomogeneous flows ; Physics ; quasilinear ; time dependence</subject><ispartof>Applied mathematical modelling, 1988, Vol.12 (1), p.9-17</ispartof><rights>1988</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3560-8e63f8751b561f3575efc3d8f7ee46f7058b806250f4ae819a04c14aaf1a8b603</citedby><cites>FETCH-LOGICAL-c3560-8e63f8751b561f3575efc3d8f7ee46f7058b806250f4ae819a04c14aaf1a8b603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0307-904X(88)90017-0$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6985165$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pullan, A.J.</creatorcontrib><title>Boundary element solutions of quasilinearised time-dependent infiltration</title><title>Applied mathematical modelling</title><description>Transient quasilinearised infiltration with constant diffusivity from an axisymmetric shallow flat pond into a homogeneous semi-infinite porous medium is examined using the boundary element method. Use of the Laplace transform reduces the equation and boundary conditions to a form similar to that governing the quasilinearised steady-state flow. Numerical results showing how the flux from the pond decays in time are presented for a range of the dimensionless pond radius
s likely to be found in many small-ring infiltrometer experiments. The time taken for the flux to reach near steady state is investigated, and the dependence of this time on
s is examined.</description><subject>boundary element method</subject><subject>constant diffusivity</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>infiltration</subject><subject>infiltrometer</subject><subject>Laplace transform</subject><subject>Nonhomogeneous flows</subject><subject>Physics</subject><subject>quasilinear</subject><subject>time dependence</subject><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhnNQcF39Bx56ENFDddLmqxdBFz8WFrwoeAvZdAKRNt1NWsF_b-suHvU0zPDMO8NDyBmFawpU3EAJMq-AvV8qdVUBUJnDAZn9jo_IcUofAMDHbkaW990QahO_MmywxdBnqWuG3nchZZ3LtoNJvvEBTfQJ66z3LeY1bjDUE-uD800fzcSfkENnmoSn-zonb48Pr4vnfPXytFzcrXJbcgG5QlE6JTldc0FdySVHZ8taOYnIhJPA1VqBKDg4ZlDRygCzlBnjqFFrAeWcXOxyN7HbDph63fpksWlMwG5IumBSSUrZvyAtpSigKEeQ7UAbu5QiOr2Jvh2daAp6kqone3qyp5XSP1L19Mj5Pt8kaxoXTbA-_e6KSnEq-Ijd7jAcpXx6jDpZj8Fi7SPaXted__vON5a_jaI</recordid><startdate>1988</startdate><enddate>1988</enddate><creator>Pullan, A.J.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1988</creationdate><title>Boundary element solutions of quasilinearised time-dependent infiltration</title><author>Pullan, A.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3560-8e63f8751b561f3575efc3d8f7ee46f7058b806250f4ae819a04c14aaf1a8b603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>boundary element method</topic><topic>constant diffusivity</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>infiltration</topic><topic>infiltrometer</topic><topic>Laplace transform</topic><topic>Nonhomogeneous flows</topic><topic>Physics</topic><topic>quasilinear</topic><topic>time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pullan, A.J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pullan, A.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary element solutions of quasilinearised time-dependent infiltration</atitle><jtitle>Applied mathematical modelling</jtitle><date>1988</date><risdate>1988</risdate><volume>12</volume><issue>1</issue><spage>9</spage><epage>17</epage><pages>9-17</pages><issn>0307-904X</issn><coden>AMMODL</coden><abstract>Transient quasilinearised infiltration with constant diffusivity from an axisymmetric shallow flat pond into a homogeneous semi-infinite porous medium is examined using the boundary element method. Use of the Laplace transform reduces the equation and boundary conditions to a form similar to that governing the quasilinearised steady-state flow. Numerical results showing how the flux from the pond decays in time are presented for a range of the dimensionless pond radius
s likely to be found in many small-ring infiltrometer experiments. The time taken for the flux to reach near steady state is investigated, and the dependence of this time on
s is examined.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/0307-904X(88)90017-0</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0307-904X |
ispartof | Applied mathematical modelling, 1988, Vol.12 (1), p.9-17 |
issn | 0307-904X |
language | eng |
recordid | cdi_proquest_miscellaneous_24787114 |
source | ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals |
subjects | boundary element method constant diffusivity Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) infiltration infiltrometer Laplace transform Nonhomogeneous flows Physics quasilinear time dependence |
title | Boundary element solutions of quasilinearised time-dependent infiltration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A47%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20element%20solutions%20of%20quasilinearised%20time-dependent%20infiltration&rft.jtitle=Applied%20mathematical%20modelling&rft.au=Pullan,%20A.J.&rft.date=1988&rft.volume=12&rft.issue=1&rft.spage=9&rft.epage=17&rft.pages=9-17&rft.issn=0307-904X&rft.coden=AMMODL&rft_id=info:doi/10.1016/0307-904X(88)90017-0&rft_dat=%3Cproquest_cross%3E24787114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=13762023&rft_id=info:pmid/&rft_els_id=0307904X88900170&rfr_iscdi=true |