Chaos may enhance expressivity in cerebellar granular layer
Recent evidence suggests that Golgi cells in the cerebellar granular layer are densely connected to each other with massive gap junctions. Here, we propose that the massive gap junctions between the Golgi cells contribute to the representational complexity of the granular layer of the cerebellum by...
Gespeichert in:
Veröffentlicht in: | Neural networks 2021-04, Vol.136, p.72-86 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 86 |
---|---|
container_issue | |
container_start_page | 72 |
container_title | Neural networks |
container_volume | 136 |
creator | Tokuda, Keita Fujiwara, Naoya Sudo, Akihito Katori, Yuichi |
description | Recent evidence suggests that Golgi cells in the cerebellar granular layer are densely connected to each other with massive gap junctions. Here, we propose that the massive gap junctions between the Golgi cells contribute to the representational complexity of the granular layer of the cerebellum by inducing chaotic dynamics. We construct a model of cerebellar granular layer with diffusion coupling through gap junctions between the Golgi cells, and evaluate the representational capability of the network with the reservoir computing framework. First, we show that the chaotic dynamics induced by diffusion coupling results in complex output patterns containing a wide range of frequency components. Second, the long non-recursive time series of the reservoir represents the passage of time from an external input. These properties of the reservoir enable mapping different spatial inputs into different temporal patterns. |
doi_str_mv | 10.1016/j.neunet.2020.12.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2478597185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608020304457</els_id><sourcerecordid>2478597185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-6bfe4654f95c02d2a716c240584ee27fab07b55b15b84a609e7481cc509dd7083</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMo7rr6DUR69NJ1kiZNiiDI4j9Y8KLnkKZTN8tuuyatuN_elK4ePb1heDNv5kfIJYU5BZrfrOcN9g12cwYsttg8yhGZUiWLlEnFjskUVJGlOSiYkLMQ1gCQK56dkkmWcQG54FNyu1iZNiRbs0-wWZnGYoLfO48huC_X7RPXJBY9lrjZGJ98eNP0Q7Exe_Tn5KQ2m4AXB52R98eHt8Vzunx9elncL1MrqOrSvKyRx7C6EBZYxYykuWUchOKITNamBFkKUVJRKm5yKFByRa0VUFSVBJXNyPW4d-fbzx5Dp7cu2OGiBts-aMalEoWkSkQrH63WtyF4rPXOu63xe01BD9j0Wo_Y9IBNU6ajxLGrQ0JfbrH6G_rlFA13owHjn18OvQ7WYaRVOY-201Xr_k_4AdWRf3Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478597185</pqid></control><display><type>article</type><title>Chaos may enhance expressivity in cerebellar granular layer</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Tokuda, Keita ; Fujiwara, Naoya ; Sudo, Akihito ; Katori, Yuichi</creator><creatorcontrib>Tokuda, Keita ; Fujiwara, Naoya ; Sudo, Akihito ; Katori, Yuichi</creatorcontrib><description>Recent evidence suggests that Golgi cells in the cerebellar granular layer are densely connected to each other with massive gap junctions. Here, we propose that the massive gap junctions between the Golgi cells contribute to the representational complexity of the granular layer of the cerebellum by inducing chaotic dynamics. We construct a model of cerebellar granular layer with diffusion coupling through gap junctions between the Golgi cells, and evaluate the representational capability of the network with the reservoir computing framework. First, we show that the chaotic dynamics induced by diffusion coupling results in complex output patterns containing a wide range of frequency components. Second, the long non-recursive time series of the reservoir represents the passage of time from an external input. These properties of the reservoir enable mapping different spatial inputs into different temporal patterns.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2020.12.020</identifier><identifier>PMID: 33450654</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Animals ; Cerebellar Cortex - cytology ; Cerebellar Cortex - physiology ; Cerebellar Golgi Cells - physiology ; Cerebellar granular layer ; Cerebellum - cytology ; Cerebellum - physiology ; Chaotic dynamics ; Gap junction ; Gap Junctions - physiology ; Humans ; Nerve Net - cytology ; Nerve Net - physiology ; Nonlinear Dynamics ; Reaction–diffusion system ; Reservoir computing ; Sierpinski gasket</subject><ispartof>Neural networks, 2021-04, Vol.136, p.72-86</ispartof><rights>2020 The Author(s)</rights><rights>Copyright © 2020 The Author(s). Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-6bfe4654f95c02d2a716c240584ee27fab07b55b15b84a609e7481cc509dd7083</citedby><cites>FETCH-LOGICAL-c518t-6bfe4654f95c02d2a716c240584ee27fab07b55b15b84a609e7481cc509dd7083</cites><orcidid>0000-0002-0275-5541 ; 0000-0003-2773-0786</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2020.12.020$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33450654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tokuda, Keita</creatorcontrib><creatorcontrib>Fujiwara, Naoya</creatorcontrib><creatorcontrib>Sudo, Akihito</creatorcontrib><creatorcontrib>Katori, Yuichi</creatorcontrib><title>Chaos may enhance expressivity in cerebellar granular layer</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Recent evidence suggests that Golgi cells in the cerebellar granular layer are densely connected to each other with massive gap junctions. Here, we propose that the massive gap junctions between the Golgi cells contribute to the representational complexity of the granular layer of the cerebellum by inducing chaotic dynamics. We construct a model of cerebellar granular layer with diffusion coupling through gap junctions between the Golgi cells, and evaluate the representational capability of the network with the reservoir computing framework. First, we show that the chaotic dynamics induced by diffusion coupling results in complex output patterns containing a wide range of frequency components. Second, the long non-recursive time series of the reservoir represents the passage of time from an external input. These properties of the reservoir enable mapping different spatial inputs into different temporal patterns.</description><subject>Animals</subject><subject>Cerebellar Cortex - cytology</subject><subject>Cerebellar Cortex - physiology</subject><subject>Cerebellar Golgi Cells - physiology</subject><subject>Cerebellar granular layer</subject><subject>Cerebellum - cytology</subject><subject>Cerebellum - physiology</subject><subject>Chaotic dynamics</subject><subject>Gap junction</subject><subject>Gap Junctions - physiology</subject><subject>Humans</subject><subject>Nerve Net - cytology</subject><subject>Nerve Net - physiology</subject><subject>Nonlinear Dynamics</subject><subject>Reaction–diffusion system</subject><subject>Reservoir computing</subject><subject>Sierpinski gasket</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9LxDAQxYMo7rr6DUR69NJ1kiZNiiDI4j9Y8KLnkKZTN8tuuyatuN_elK4ePb1heDNv5kfIJYU5BZrfrOcN9g12cwYsttg8yhGZUiWLlEnFjskUVJGlOSiYkLMQ1gCQK56dkkmWcQG54FNyu1iZNiRbs0-wWZnGYoLfO48huC_X7RPXJBY9lrjZGJ98eNP0Q7Exe_Tn5KQ2m4AXB52R98eHt8Vzunx9elncL1MrqOrSvKyRx7C6EBZYxYykuWUchOKITNamBFkKUVJRKm5yKFByRa0VUFSVBJXNyPW4d-fbzx5Dp7cu2OGiBts-aMalEoWkSkQrH63WtyF4rPXOu63xe01BD9j0Wo_Y9IBNU6ajxLGrQ0JfbrH6G_rlFA13owHjn18OvQ7WYaRVOY-201Xr_k_4AdWRf3Y</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Tokuda, Keita</creator><creator>Fujiwara, Naoya</creator><creator>Sudo, Akihito</creator><creator>Katori, Yuichi</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0275-5541</orcidid><orcidid>https://orcid.org/0000-0003-2773-0786</orcidid></search><sort><creationdate>202104</creationdate><title>Chaos may enhance expressivity in cerebellar granular layer</title><author>Tokuda, Keita ; Fujiwara, Naoya ; Sudo, Akihito ; Katori, Yuichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-6bfe4654f95c02d2a716c240584ee27fab07b55b15b84a609e7481cc509dd7083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Cerebellar Cortex - cytology</topic><topic>Cerebellar Cortex - physiology</topic><topic>Cerebellar Golgi Cells - physiology</topic><topic>Cerebellar granular layer</topic><topic>Cerebellum - cytology</topic><topic>Cerebellum - physiology</topic><topic>Chaotic dynamics</topic><topic>Gap junction</topic><topic>Gap Junctions - physiology</topic><topic>Humans</topic><topic>Nerve Net - cytology</topic><topic>Nerve Net - physiology</topic><topic>Nonlinear Dynamics</topic><topic>Reaction–diffusion system</topic><topic>Reservoir computing</topic><topic>Sierpinski gasket</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tokuda, Keita</creatorcontrib><creatorcontrib>Fujiwara, Naoya</creatorcontrib><creatorcontrib>Sudo, Akihito</creatorcontrib><creatorcontrib>Katori, Yuichi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tokuda, Keita</au><au>Fujiwara, Naoya</au><au>Sudo, Akihito</au><au>Katori, Yuichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chaos may enhance expressivity in cerebellar granular layer</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2021-04</date><risdate>2021</risdate><volume>136</volume><spage>72</spage><epage>86</epage><pages>72-86</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Recent evidence suggests that Golgi cells in the cerebellar granular layer are densely connected to each other with massive gap junctions. Here, we propose that the massive gap junctions between the Golgi cells contribute to the representational complexity of the granular layer of the cerebellum by inducing chaotic dynamics. We construct a model of cerebellar granular layer with diffusion coupling through gap junctions between the Golgi cells, and evaluate the representational capability of the network with the reservoir computing framework. First, we show that the chaotic dynamics induced by diffusion coupling results in complex output patterns containing a wide range of frequency components. Second, the long non-recursive time series of the reservoir represents the passage of time from an external input. These properties of the reservoir enable mapping different spatial inputs into different temporal patterns.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>33450654</pmid><doi>10.1016/j.neunet.2020.12.020</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0275-5541</orcidid><orcidid>https://orcid.org/0000-0003-2773-0786</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2021-04, Vol.136, p.72-86 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_2478597185 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Cerebellar Cortex - cytology Cerebellar Cortex - physiology Cerebellar Golgi Cells - physiology Cerebellar granular layer Cerebellum - cytology Cerebellum - physiology Chaotic dynamics Gap junction Gap Junctions - physiology Humans Nerve Net - cytology Nerve Net - physiology Nonlinear Dynamics Reaction–diffusion system Reservoir computing Sierpinski gasket |
title | Chaos may enhance expressivity in cerebellar granular layer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A11%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chaos%20may%20enhance%20expressivity%20in%20cerebellar%20granular%20layer&rft.jtitle=Neural%20networks&rft.au=Tokuda,%20Keita&rft.date=2021-04&rft.volume=136&rft.spage=72&rft.epage=86&rft.pages=72-86&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2020.12.020&rft_dat=%3Cproquest_cross%3E2478597185%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478597185&rft_id=info:pmid/33450654&rft_els_id=S0893608020304457&rfr_iscdi=true |