Chaos may enhance expressivity in cerebellar granular layer

Recent evidence suggests that Golgi cells in the cerebellar granular layer are densely connected to each other with massive gap junctions. Here, we propose that the massive gap junctions between the Golgi cells contribute to the representational complexity of the granular layer of the cerebellum by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2021-04, Vol.136, p.72-86
Hauptverfasser: Tokuda, Keita, Fujiwara, Naoya, Sudo, Akihito, Katori, Yuichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86
container_issue
container_start_page 72
container_title Neural networks
container_volume 136
creator Tokuda, Keita
Fujiwara, Naoya
Sudo, Akihito
Katori, Yuichi
description Recent evidence suggests that Golgi cells in the cerebellar granular layer are densely connected to each other with massive gap junctions. Here, we propose that the massive gap junctions between the Golgi cells contribute to the representational complexity of the granular layer of the cerebellum by inducing chaotic dynamics. We construct a model of cerebellar granular layer with diffusion coupling through gap junctions between the Golgi cells, and evaluate the representational capability of the network with the reservoir computing framework. First, we show that the chaotic dynamics induced by diffusion coupling results in complex output patterns containing a wide range of frequency components. Second, the long non-recursive time series of the reservoir represents the passage of time from an external input. These properties of the reservoir enable mapping different spatial inputs into different temporal patterns.
doi_str_mv 10.1016/j.neunet.2020.12.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2478597185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608020304457</els_id><sourcerecordid>2478597185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-6bfe4654f95c02d2a716c240584ee27fab07b55b15b84a609e7481cc509dd7083</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMo7rr6DUR69NJ1kiZNiiDI4j9Y8KLnkKZTN8tuuyatuN_elK4ePb1heDNv5kfIJYU5BZrfrOcN9g12cwYsttg8yhGZUiWLlEnFjskUVJGlOSiYkLMQ1gCQK56dkkmWcQG54FNyu1iZNiRbs0-wWZnGYoLfO48huC_X7RPXJBY9lrjZGJ98eNP0Q7Exe_Tn5KQ2m4AXB52R98eHt8Vzunx9elncL1MrqOrSvKyRx7C6EBZYxYykuWUchOKITNamBFkKUVJRKm5yKFByRa0VUFSVBJXNyPW4d-fbzx5Dp7cu2OGiBts-aMalEoWkSkQrH63WtyF4rPXOu63xe01BD9j0Wo_Y9IBNU6ajxLGrQ0JfbrH6G_rlFA13owHjn18OvQ7WYaRVOY-201Xr_k_4AdWRf3Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478597185</pqid></control><display><type>article</type><title>Chaos may enhance expressivity in cerebellar granular layer</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Tokuda, Keita ; Fujiwara, Naoya ; Sudo, Akihito ; Katori, Yuichi</creator><creatorcontrib>Tokuda, Keita ; Fujiwara, Naoya ; Sudo, Akihito ; Katori, Yuichi</creatorcontrib><description>Recent evidence suggests that Golgi cells in the cerebellar granular layer are densely connected to each other with massive gap junctions. Here, we propose that the massive gap junctions between the Golgi cells contribute to the representational complexity of the granular layer of the cerebellum by inducing chaotic dynamics. We construct a model of cerebellar granular layer with diffusion coupling through gap junctions between the Golgi cells, and evaluate the representational capability of the network with the reservoir computing framework. First, we show that the chaotic dynamics induced by diffusion coupling results in complex output patterns containing a wide range of frequency components. Second, the long non-recursive time series of the reservoir represents the passage of time from an external input. These properties of the reservoir enable mapping different spatial inputs into different temporal patterns.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2020.12.020</identifier><identifier>PMID: 33450654</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Animals ; Cerebellar Cortex - cytology ; Cerebellar Cortex - physiology ; Cerebellar Golgi Cells - physiology ; Cerebellar granular layer ; Cerebellum - cytology ; Cerebellum - physiology ; Chaotic dynamics ; Gap junction ; Gap Junctions - physiology ; Humans ; Nerve Net - cytology ; Nerve Net - physiology ; Nonlinear Dynamics ; Reaction–diffusion system ; Reservoir computing ; Sierpinski gasket</subject><ispartof>Neural networks, 2021-04, Vol.136, p.72-86</ispartof><rights>2020 The Author(s)</rights><rights>Copyright © 2020 The Author(s). Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-6bfe4654f95c02d2a716c240584ee27fab07b55b15b84a609e7481cc509dd7083</citedby><cites>FETCH-LOGICAL-c518t-6bfe4654f95c02d2a716c240584ee27fab07b55b15b84a609e7481cc509dd7083</cites><orcidid>0000-0002-0275-5541 ; 0000-0003-2773-0786</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2020.12.020$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33450654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tokuda, Keita</creatorcontrib><creatorcontrib>Fujiwara, Naoya</creatorcontrib><creatorcontrib>Sudo, Akihito</creatorcontrib><creatorcontrib>Katori, Yuichi</creatorcontrib><title>Chaos may enhance expressivity in cerebellar granular layer</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Recent evidence suggests that Golgi cells in the cerebellar granular layer are densely connected to each other with massive gap junctions. Here, we propose that the massive gap junctions between the Golgi cells contribute to the representational complexity of the granular layer of the cerebellum by inducing chaotic dynamics. We construct a model of cerebellar granular layer with diffusion coupling through gap junctions between the Golgi cells, and evaluate the representational capability of the network with the reservoir computing framework. First, we show that the chaotic dynamics induced by diffusion coupling results in complex output patterns containing a wide range of frequency components. Second, the long non-recursive time series of the reservoir represents the passage of time from an external input. These properties of the reservoir enable mapping different spatial inputs into different temporal patterns.</description><subject>Animals</subject><subject>Cerebellar Cortex - cytology</subject><subject>Cerebellar Cortex - physiology</subject><subject>Cerebellar Golgi Cells - physiology</subject><subject>Cerebellar granular layer</subject><subject>Cerebellum - cytology</subject><subject>Cerebellum - physiology</subject><subject>Chaotic dynamics</subject><subject>Gap junction</subject><subject>Gap Junctions - physiology</subject><subject>Humans</subject><subject>Nerve Net - cytology</subject><subject>Nerve Net - physiology</subject><subject>Nonlinear Dynamics</subject><subject>Reaction–diffusion system</subject><subject>Reservoir computing</subject><subject>Sierpinski gasket</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9LxDAQxYMo7rr6DUR69NJ1kiZNiiDI4j9Y8KLnkKZTN8tuuyatuN_elK4ePb1heDNv5kfIJYU5BZrfrOcN9g12cwYsttg8yhGZUiWLlEnFjskUVJGlOSiYkLMQ1gCQK56dkkmWcQG54FNyu1iZNiRbs0-wWZnGYoLfO48huC_X7RPXJBY9lrjZGJ98eNP0Q7Exe_Tn5KQ2m4AXB52R98eHt8Vzunx9elncL1MrqOrSvKyRx7C6EBZYxYykuWUchOKITNamBFkKUVJRKm5yKFByRa0VUFSVBJXNyPW4d-fbzx5Dp7cu2OGiBts-aMalEoWkSkQrH63WtyF4rPXOu63xe01BD9j0Wo_Y9IBNU6ajxLGrQ0JfbrH6G_rlFA13owHjn18OvQ7WYaRVOY-201Xr_k_4AdWRf3Y</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Tokuda, Keita</creator><creator>Fujiwara, Naoya</creator><creator>Sudo, Akihito</creator><creator>Katori, Yuichi</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0275-5541</orcidid><orcidid>https://orcid.org/0000-0003-2773-0786</orcidid></search><sort><creationdate>202104</creationdate><title>Chaos may enhance expressivity in cerebellar granular layer</title><author>Tokuda, Keita ; Fujiwara, Naoya ; Sudo, Akihito ; Katori, Yuichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-6bfe4654f95c02d2a716c240584ee27fab07b55b15b84a609e7481cc509dd7083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Cerebellar Cortex - cytology</topic><topic>Cerebellar Cortex - physiology</topic><topic>Cerebellar Golgi Cells - physiology</topic><topic>Cerebellar granular layer</topic><topic>Cerebellum - cytology</topic><topic>Cerebellum - physiology</topic><topic>Chaotic dynamics</topic><topic>Gap junction</topic><topic>Gap Junctions - physiology</topic><topic>Humans</topic><topic>Nerve Net - cytology</topic><topic>Nerve Net - physiology</topic><topic>Nonlinear Dynamics</topic><topic>Reaction–diffusion system</topic><topic>Reservoir computing</topic><topic>Sierpinski gasket</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tokuda, Keita</creatorcontrib><creatorcontrib>Fujiwara, Naoya</creatorcontrib><creatorcontrib>Sudo, Akihito</creatorcontrib><creatorcontrib>Katori, Yuichi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tokuda, Keita</au><au>Fujiwara, Naoya</au><au>Sudo, Akihito</au><au>Katori, Yuichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chaos may enhance expressivity in cerebellar granular layer</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2021-04</date><risdate>2021</risdate><volume>136</volume><spage>72</spage><epage>86</epage><pages>72-86</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Recent evidence suggests that Golgi cells in the cerebellar granular layer are densely connected to each other with massive gap junctions. Here, we propose that the massive gap junctions between the Golgi cells contribute to the representational complexity of the granular layer of the cerebellum by inducing chaotic dynamics. We construct a model of cerebellar granular layer with diffusion coupling through gap junctions between the Golgi cells, and evaluate the representational capability of the network with the reservoir computing framework. First, we show that the chaotic dynamics induced by diffusion coupling results in complex output patterns containing a wide range of frequency components. Second, the long non-recursive time series of the reservoir represents the passage of time from an external input. These properties of the reservoir enable mapping different spatial inputs into different temporal patterns.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>33450654</pmid><doi>10.1016/j.neunet.2020.12.020</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0275-5541</orcidid><orcidid>https://orcid.org/0000-0003-2773-0786</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2021-04, Vol.136, p.72-86
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_2478597185
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Cerebellar Cortex - cytology
Cerebellar Cortex - physiology
Cerebellar Golgi Cells - physiology
Cerebellar granular layer
Cerebellum - cytology
Cerebellum - physiology
Chaotic dynamics
Gap junction
Gap Junctions - physiology
Humans
Nerve Net - cytology
Nerve Net - physiology
Nonlinear Dynamics
Reaction–diffusion system
Reservoir computing
Sierpinski gasket
title Chaos may enhance expressivity in cerebellar granular layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A11%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chaos%20may%20enhance%20expressivity%20in%20cerebellar%20granular%20layer&rft.jtitle=Neural%20networks&rft.au=Tokuda,%20Keita&rft.date=2021-04&rft.volume=136&rft.spage=72&rft.epage=86&rft.pages=72-86&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2020.12.020&rft_dat=%3Cproquest_cross%3E2478597185%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478597185&rft_id=info:pmid/33450654&rft_els_id=S0893608020304457&rfr_iscdi=true