Physiological and Molecular Alterations of Phycobionts of Genus Trebouxia and Coccomyxa Exposed to Cadmium
Several studies on aeroterrestrial microalgae are unravelling their resistance mechanisms to different abiotic stressors, including hazardous metals, pointing to their future role as bioremediation microorganisms. In the present study, physiological and molecular alterations of four phycobionts of g...
Gespeichert in:
Veröffentlicht in: | Microbial ecology 2021-08, Vol.82 (2), p.334-343 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 343 |
---|---|
container_issue | 2 |
container_start_page | 334 |
container_title | Microbial ecology |
container_volume | 82 |
creator | Vingiani, Giorgio Maria Gasulla, Francisco Barón-Sola, Ángel Sobrino-Plata, Juan Henández, Luis E. Casano, Leonardo M. |
description | Several studies on aeroterrestrial microalgae are unravelling their resistance mechanisms to different abiotic stressors, including hazardous metals, pointing to their future role as bioremediation microorganisms. In the present study, physiological and molecular alterations of four phycobionts of genus
Trebouxia (T.
TR1 and
T. TR9)
and
Coccomyxa
(
C. subellipsoidea
and
C. simplex
) exposed to Cd were studied. Cd accumulation and subcellular distribution, cell wall structure, production of biothiols (GSH and phytochelatins), reactive oxygen species (ROS) formation, expression of key antioxidant genes and ROS-related enzymes were evaluated to determine the physiological differences among the four microalgae, with the aim to identify the most suitable microorganism for further biotechnological applications. After 7 days of Cd exposure,
Coccomyxa
algae showed higher capacity of Cd intake than
Trebouxia
species, with
C. subellipsoidea
being the highest Cd accumulator at both intracellular and, especially, cell wall level. Cd induced ROS formation in the four microalgae, but to a greater extent in both
Coccomyxa
algae.
Trebouxia
TR9 showed the lowest Cd-dependent oxidative stress probably due to glutathione reductase induction. All microalgae synthetized phytochelatins in response to Cd but in a species-specific and a dose-dependent manner. Results from this study agree with the notion that each microalga has evolved a distinct strategy to detoxify hazardous metals like Cd and to cope with oxidative stress associated with them.
Coccomyxa subellipsoidea
and
Trebouxia
TR9 appear as the most interesting candidates for further applications. |
doi_str_mv | 10.1007/s00248-021-01685-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2478595466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478595466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-b7a9895a264bf76b3dfdd2e33f36203058f6926919aa76730da22c7db01a26b53</originalsourceid><addsrcrecordid>eNp9kc1LwzAYxoMobk7_AQ8S8OKlmu-2xzHmFBQ9TPAW0iTVjraZSQubf71x9QM8eAov-T3P-_EAcIrRJUYovQoIEZYliOAEYZHx5H0PjDGjJMEZe94HY4RynlBBshE4CmGFEE4FoYdgRCnjRGA6BqvH122oXO1eKq1qqFoD711tdV8rD6d1Z73qKtcG6EoYUe2KWHW7cmHbPsClt4XrN5XaaWdOa9dsNwrON2sXrIGdgzNlmqpvjsFBqepgT77eCXi6ni9nN8ndw-J2Nr1LNGO4S4pU5VnOFRGsKFNRUFMaQyylZdwEUcSzUuRE5DhXKhUpRUYRolNTIBw1BacTcDH4rr17623oZFMFbetatdb1QRKWZjznTIiInv9BV673bZxOEi5oTunnlSaADJT2LgRvS7n2VaP8VmIkP5OQQxIyJiF3Scj3KDr7su6LxpofyffpI0AHIMSv9sX6397_2H4A1KKUYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563933261</pqid></control><display><type>article</type><title>Physiological and Molecular Alterations of Phycobionts of Genus Trebouxia and Coccomyxa Exposed to Cadmium</title><source>SpringerLink Journals - AutoHoldings</source><creator>Vingiani, Giorgio Maria ; Gasulla, Francisco ; Barón-Sola, Ángel ; Sobrino-Plata, Juan ; Henández, Luis E. ; Casano, Leonardo M.</creator><creatorcontrib>Vingiani, Giorgio Maria ; Gasulla, Francisco ; Barón-Sola, Ángel ; Sobrino-Plata, Juan ; Henández, Luis E. ; Casano, Leonardo M.</creatorcontrib><description>Several studies on aeroterrestrial microalgae are unravelling their resistance mechanisms to different abiotic stressors, including hazardous metals, pointing to their future role as bioremediation microorganisms. In the present study, physiological and molecular alterations of four phycobionts of genus
Trebouxia (T.
TR1 and
T. TR9)
and
Coccomyxa
(
C. subellipsoidea
and
C. simplex
) exposed to Cd were studied. Cd accumulation and subcellular distribution, cell wall structure, production of biothiols (GSH and phytochelatins), reactive oxygen species (ROS) formation, expression of key antioxidant genes and ROS-related enzymes were evaluated to determine the physiological differences among the four microalgae, with the aim to identify the most suitable microorganism for further biotechnological applications. After 7 days of Cd exposure,
Coccomyxa
algae showed higher capacity of Cd intake than
Trebouxia
species, with
C. subellipsoidea
being the highest Cd accumulator at both intracellular and, especially, cell wall level. Cd induced ROS formation in the four microalgae, but to a greater extent in both
Coccomyxa
algae.
Trebouxia
TR9 showed the lowest Cd-dependent oxidative stress probably due to glutathione reductase induction. All microalgae synthetized phytochelatins in response to Cd but in a species-specific and a dose-dependent manner. Results from this study agree with the notion that each microalga has evolved a distinct strategy to detoxify hazardous metals like Cd and to cope with oxidative stress associated with them.
Coccomyxa subellipsoidea
and
Trebouxia
TR9 appear as the most interesting candidates for further applications.</description><identifier>ISSN: 0095-3628</identifier><identifier>EISSN: 1432-184X</identifier><identifier>DOI: 10.1007/s00248-021-01685-z</identifier><identifier>PMID: 33452613</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algae ; Antioxidants ; Aquatic microorganisms ; Biomedical and Life Sciences ; Bioremediation ; Biotechnology ; Cadmium ; Cell walls ; Coccomyxa ; Ecology ; Environmental Microbiology ; Exposure ; Gene expression ; Geoecology/Natural Processes ; Glutathione ; Glutathione reductase ; Heavy metals ; Life Sciences ; Metals ; Microalgae ; Microbial Ecology ; Microbiology ; Microorganisms ; Nature Conservation ; Oxidative stress ; Phycobionts ; Physiology ; Phytochelatins ; Phytoplankton ; Reactive oxygen species ; Reductases ; Resistance mechanisms ; Trebouxia ; Water Quality/Water Pollution</subject><ispartof>Microbial ecology, 2021-08, Vol.82 (2), p.334-343</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-b7a9895a264bf76b3dfdd2e33f36203058f6926919aa76730da22c7db01a26b53</citedby><cites>FETCH-LOGICAL-c441t-b7a9895a264bf76b3dfdd2e33f36203058f6926919aa76730da22c7db01a26b53</cites><orcidid>0000-0002-2304-7317</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00248-021-01685-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00248-021-01685-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33452613$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vingiani, Giorgio Maria</creatorcontrib><creatorcontrib>Gasulla, Francisco</creatorcontrib><creatorcontrib>Barón-Sola, Ángel</creatorcontrib><creatorcontrib>Sobrino-Plata, Juan</creatorcontrib><creatorcontrib>Henández, Luis E.</creatorcontrib><creatorcontrib>Casano, Leonardo M.</creatorcontrib><title>Physiological and Molecular Alterations of Phycobionts of Genus Trebouxia and Coccomyxa Exposed to Cadmium</title><title>Microbial ecology</title><addtitle>Microb Ecol</addtitle><addtitle>Microb Ecol</addtitle><description>Several studies on aeroterrestrial microalgae are unravelling their resistance mechanisms to different abiotic stressors, including hazardous metals, pointing to their future role as bioremediation microorganisms. In the present study, physiological and molecular alterations of four phycobionts of genus
Trebouxia (T.
TR1 and
T. TR9)
and
Coccomyxa
(
C. subellipsoidea
and
C. simplex
) exposed to Cd were studied. Cd accumulation and subcellular distribution, cell wall structure, production of biothiols (GSH and phytochelatins), reactive oxygen species (ROS) formation, expression of key antioxidant genes and ROS-related enzymes were evaluated to determine the physiological differences among the four microalgae, with the aim to identify the most suitable microorganism for further biotechnological applications. After 7 days of Cd exposure,
Coccomyxa
algae showed higher capacity of Cd intake than
Trebouxia
species, with
C. subellipsoidea
being the highest Cd accumulator at both intracellular and, especially, cell wall level. Cd induced ROS formation in the four microalgae, but to a greater extent in both
Coccomyxa
algae.
Trebouxia
TR9 showed the lowest Cd-dependent oxidative stress probably due to glutathione reductase induction. All microalgae synthetized phytochelatins in response to Cd but in a species-specific and a dose-dependent manner. Results from this study agree with the notion that each microalga has evolved a distinct strategy to detoxify hazardous metals like Cd and to cope with oxidative stress associated with them.
Coccomyxa subellipsoidea
and
Trebouxia
TR9 appear as the most interesting candidates for further applications.</description><subject>Algae</subject><subject>Antioxidants</subject><subject>Aquatic microorganisms</subject><subject>Biomedical and Life Sciences</subject><subject>Bioremediation</subject><subject>Biotechnology</subject><subject>Cadmium</subject><subject>Cell walls</subject><subject>Coccomyxa</subject><subject>Ecology</subject><subject>Environmental Microbiology</subject><subject>Exposure</subject><subject>Gene expression</subject><subject>Geoecology/Natural Processes</subject><subject>Glutathione</subject><subject>Glutathione reductase</subject><subject>Heavy metals</subject><subject>Life Sciences</subject><subject>Metals</subject><subject>Microalgae</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Nature Conservation</subject><subject>Oxidative stress</subject><subject>Phycobionts</subject><subject>Physiology</subject><subject>Phytochelatins</subject><subject>Phytoplankton</subject><subject>Reactive oxygen species</subject><subject>Reductases</subject><subject>Resistance mechanisms</subject><subject>Trebouxia</subject><subject>Water Quality/Water Pollution</subject><issn>0095-3628</issn><issn>1432-184X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1LwzAYxoMobk7_AQ8S8OKlmu-2xzHmFBQ9TPAW0iTVjraZSQubf71x9QM8eAov-T3P-_EAcIrRJUYovQoIEZYliOAEYZHx5H0PjDGjJMEZe94HY4RynlBBshE4CmGFEE4FoYdgRCnjRGA6BqvH122oXO1eKq1qqFoD711tdV8rD6d1Z73qKtcG6EoYUe2KWHW7cmHbPsClt4XrN5XaaWdOa9dsNwrON2sXrIGdgzNlmqpvjsFBqepgT77eCXi6ni9nN8ndw-J2Nr1LNGO4S4pU5VnOFRGsKFNRUFMaQyylZdwEUcSzUuRE5DhXKhUpRUYRolNTIBw1BacTcDH4rr17623oZFMFbetatdb1QRKWZjznTIiInv9BV673bZxOEi5oTunnlSaADJT2LgRvS7n2VaP8VmIkP5OQQxIyJiF3Scj3KDr7su6LxpofyffpI0AHIMSv9sX6397_2H4A1KKUYg</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Vingiani, Giorgio Maria</creator><creator>Gasulla, Francisco</creator><creator>Barón-Sola, Ángel</creator><creator>Sobrino-Plata, Juan</creator><creator>Henández, Luis E.</creator><creator>Casano, Leonardo M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2304-7317</orcidid></search><sort><creationdate>20210801</creationdate><title>Physiological and Molecular Alterations of Phycobionts of Genus Trebouxia and Coccomyxa Exposed to Cadmium</title><author>Vingiani, Giorgio Maria ; Gasulla, Francisco ; Barón-Sola, Ángel ; Sobrino-Plata, Juan ; Henández, Luis E. ; Casano, Leonardo M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-b7a9895a264bf76b3dfdd2e33f36203058f6926919aa76730da22c7db01a26b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algae</topic><topic>Antioxidants</topic><topic>Aquatic microorganisms</topic><topic>Biomedical and Life Sciences</topic><topic>Bioremediation</topic><topic>Biotechnology</topic><topic>Cadmium</topic><topic>Cell walls</topic><topic>Coccomyxa</topic><topic>Ecology</topic><topic>Environmental Microbiology</topic><topic>Exposure</topic><topic>Gene expression</topic><topic>Geoecology/Natural Processes</topic><topic>Glutathione</topic><topic>Glutathione reductase</topic><topic>Heavy metals</topic><topic>Life Sciences</topic><topic>Metals</topic><topic>Microalgae</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Nature Conservation</topic><topic>Oxidative stress</topic><topic>Phycobionts</topic><topic>Physiology</topic><topic>Phytochelatins</topic><topic>Phytoplankton</topic><topic>Reactive oxygen species</topic><topic>Reductases</topic><topic>Resistance mechanisms</topic><topic>Trebouxia</topic><topic>Water Quality/Water Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vingiani, Giorgio Maria</creatorcontrib><creatorcontrib>Gasulla, Francisco</creatorcontrib><creatorcontrib>Barón-Sola, Ángel</creatorcontrib><creatorcontrib>Sobrino-Plata, Juan</creatorcontrib><creatorcontrib>Henández, Luis E.</creatorcontrib><creatorcontrib>Casano, Leonardo M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Microbial ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vingiani, Giorgio Maria</au><au>Gasulla, Francisco</au><au>Barón-Sola, Ángel</au><au>Sobrino-Plata, Juan</au><au>Henández, Luis E.</au><au>Casano, Leonardo M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physiological and Molecular Alterations of Phycobionts of Genus Trebouxia and Coccomyxa Exposed to Cadmium</atitle><jtitle>Microbial ecology</jtitle><stitle>Microb Ecol</stitle><addtitle>Microb Ecol</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>82</volume><issue>2</issue><spage>334</spage><epage>343</epage><pages>334-343</pages><issn>0095-3628</issn><eissn>1432-184X</eissn><abstract>Several studies on aeroterrestrial microalgae are unravelling their resistance mechanisms to different abiotic stressors, including hazardous metals, pointing to their future role as bioremediation microorganisms. In the present study, physiological and molecular alterations of four phycobionts of genus
Trebouxia (T.
TR1 and
T. TR9)
and
Coccomyxa
(
C. subellipsoidea
and
C. simplex
) exposed to Cd were studied. Cd accumulation and subcellular distribution, cell wall structure, production of biothiols (GSH and phytochelatins), reactive oxygen species (ROS) formation, expression of key antioxidant genes and ROS-related enzymes were evaluated to determine the physiological differences among the four microalgae, with the aim to identify the most suitable microorganism for further biotechnological applications. After 7 days of Cd exposure,
Coccomyxa
algae showed higher capacity of Cd intake than
Trebouxia
species, with
C. subellipsoidea
being the highest Cd accumulator at both intracellular and, especially, cell wall level. Cd induced ROS formation in the four microalgae, but to a greater extent in both
Coccomyxa
algae.
Trebouxia
TR9 showed the lowest Cd-dependent oxidative stress probably due to glutathione reductase induction. All microalgae synthetized phytochelatins in response to Cd but in a species-specific and a dose-dependent manner. Results from this study agree with the notion that each microalga has evolved a distinct strategy to detoxify hazardous metals like Cd and to cope with oxidative stress associated with them.
Coccomyxa subellipsoidea
and
Trebouxia
TR9 appear as the most interesting candidates for further applications.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33452613</pmid><doi>10.1007/s00248-021-01685-z</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2304-7317</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0095-3628 |
ispartof | Microbial ecology, 2021-08, Vol.82 (2), p.334-343 |
issn | 0095-3628 1432-184X |
language | eng |
recordid | cdi_proquest_miscellaneous_2478595466 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algae Antioxidants Aquatic microorganisms Biomedical and Life Sciences Bioremediation Biotechnology Cadmium Cell walls Coccomyxa Ecology Environmental Microbiology Exposure Gene expression Geoecology/Natural Processes Glutathione Glutathione reductase Heavy metals Life Sciences Metals Microalgae Microbial Ecology Microbiology Microorganisms Nature Conservation Oxidative stress Phycobionts Physiology Phytochelatins Phytoplankton Reactive oxygen species Reductases Resistance mechanisms Trebouxia Water Quality/Water Pollution |
title | Physiological and Molecular Alterations of Phycobionts of Genus Trebouxia and Coccomyxa Exposed to Cadmium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T07%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physiological%20and%20Molecular%20Alterations%20of%20Phycobionts%20of%20Genus%20Trebouxia%20and%20Coccomyxa%20Exposed%20to%20Cadmium&rft.jtitle=Microbial%20ecology&rft.au=Vingiani,%20Giorgio%20Maria&rft.date=2021-08-01&rft.volume=82&rft.issue=2&rft.spage=334&rft.epage=343&rft.pages=334-343&rft.issn=0095-3628&rft.eissn=1432-184X&rft_id=info:doi/10.1007/s00248-021-01685-z&rft_dat=%3Cproquest_cross%3E2478595466%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563933261&rft_id=info:pmid/33452613&rfr_iscdi=true |