Physiological and Molecular Alterations of Phycobionts of Genus Trebouxia and Coccomyxa Exposed to Cadmium

Several studies on aeroterrestrial microalgae are unravelling their resistance mechanisms to different abiotic stressors, including hazardous metals, pointing to their future role as bioremediation microorganisms. In the present study, physiological and molecular alterations of four phycobionts of g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbial ecology 2021-08, Vol.82 (2), p.334-343
Hauptverfasser: Vingiani, Giorgio Maria, Gasulla, Francisco, Barón-Sola, Ángel, Sobrino-Plata, Juan, Henández, Luis E., Casano, Leonardo M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 343
container_issue 2
container_start_page 334
container_title Microbial ecology
container_volume 82
creator Vingiani, Giorgio Maria
Gasulla, Francisco
Barón-Sola, Ángel
Sobrino-Plata, Juan
Henández, Luis E.
Casano, Leonardo M.
description Several studies on aeroterrestrial microalgae are unravelling their resistance mechanisms to different abiotic stressors, including hazardous metals, pointing to their future role as bioremediation microorganisms. In the present study, physiological and molecular alterations of four phycobionts of genus Trebouxia (T. TR1 and T. TR9) and Coccomyxa ( C. subellipsoidea and C. simplex ) exposed to Cd were studied. Cd accumulation and subcellular distribution, cell wall structure, production of biothiols (GSH and phytochelatins), reactive oxygen species (ROS) formation, expression of key antioxidant genes and ROS-related enzymes were evaluated to determine the physiological differences among the four microalgae, with the aim to identify the most suitable microorganism for further biotechnological applications. After 7 days of Cd exposure, Coccomyxa algae showed higher capacity of Cd intake than Trebouxia species, with C. subellipsoidea being the highest Cd accumulator at both intracellular and, especially, cell wall level. Cd induced ROS formation in the four microalgae, but to a greater extent in both Coccomyxa algae. Trebouxia TR9 showed the lowest Cd-dependent oxidative stress probably due to glutathione reductase induction. All microalgae synthetized phytochelatins in response to Cd but in a species-specific and a dose-dependent manner. Results from this study agree with the notion that each microalga has evolved a distinct strategy to detoxify hazardous metals like Cd and to cope with oxidative stress associated with them. Coccomyxa subellipsoidea and Trebouxia TR9 appear as the most interesting candidates for further applications.
doi_str_mv 10.1007/s00248-021-01685-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2478595466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478595466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-b7a9895a264bf76b3dfdd2e33f36203058f6926919aa76730da22c7db01a26b53</originalsourceid><addsrcrecordid>eNp9kc1LwzAYxoMobk7_AQ8S8OKlmu-2xzHmFBQ9TPAW0iTVjraZSQubf71x9QM8eAov-T3P-_EAcIrRJUYovQoIEZYliOAEYZHx5H0PjDGjJMEZe94HY4RynlBBshE4CmGFEE4FoYdgRCnjRGA6BqvH122oXO1eKq1qqFoD711tdV8rD6d1Z73qKtcG6EoYUe2KWHW7cmHbPsClt4XrN5XaaWdOa9dsNwrON2sXrIGdgzNlmqpvjsFBqepgT77eCXi6ni9nN8ndw-J2Nr1LNGO4S4pU5VnOFRGsKFNRUFMaQyylZdwEUcSzUuRE5DhXKhUpRUYRolNTIBw1BacTcDH4rr17623oZFMFbetatdb1QRKWZjznTIiInv9BV673bZxOEi5oTunnlSaADJT2LgRvS7n2VaP8VmIkP5OQQxIyJiF3Scj3KDr7su6LxpofyffpI0AHIMSv9sX6397_2H4A1KKUYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563933261</pqid></control><display><type>article</type><title>Physiological and Molecular Alterations of Phycobionts of Genus Trebouxia and Coccomyxa Exposed to Cadmium</title><source>SpringerLink Journals - AutoHoldings</source><creator>Vingiani, Giorgio Maria ; Gasulla, Francisco ; Barón-Sola, Ángel ; Sobrino-Plata, Juan ; Henández, Luis E. ; Casano, Leonardo M.</creator><creatorcontrib>Vingiani, Giorgio Maria ; Gasulla, Francisco ; Barón-Sola, Ángel ; Sobrino-Plata, Juan ; Henández, Luis E. ; Casano, Leonardo M.</creatorcontrib><description>Several studies on aeroterrestrial microalgae are unravelling their resistance mechanisms to different abiotic stressors, including hazardous metals, pointing to their future role as bioremediation microorganisms. In the present study, physiological and molecular alterations of four phycobionts of genus Trebouxia (T. TR1 and T. TR9) and Coccomyxa ( C. subellipsoidea and C. simplex ) exposed to Cd were studied. Cd accumulation and subcellular distribution, cell wall structure, production of biothiols (GSH and phytochelatins), reactive oxygen species (ROS) formation, expression of key antioxidant genes and ROS-related enzymes were evaluated to determine the physiological differences among the four microalgae, with the aim to identify the most suitable microorganism for further biotechnological applications. After 7 days of Cd exposure, Coccomyxa algae showed higher capacity of Cd intake than Trebouxia species, with C. subellipsoidea being the highest Cd accumulator at both intracellular and, especially, cell wall level. Cd induced ROS formation in the four microalgae, but to a greater extent in both Coccomyxa algae. Trebouxia TR9 showed the lowest Cd-dependent oxidative stress probably due to glutathione reductase induction. All microalgae synthetized phytochelatins in response to Cd but in a species-specific and a dose-dependent manner. Results from this study agree with the notion that each microalga has evolved a distinct strategy to detoxify hazardous metals like Cd and to cope with oxidative stress associated with them. Coccomyxa subellipsoidea and Trebouxia TR9 appear as the most interesting candidates for further applications.</description><identifier>ISSN: 0095-3628</identifier><identifier>EISSN: 1432-184X</identifier><identifier>DOI: 10.1007/s00248-021-01685-z</identifier><identifier>PMID: 33452613</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algae ; Antioxidants ; Aquatic microorganisms ; Biomedical and Life Sciences ; Bioremediation ; Biotechnology ; Cadmium ; Cell walls ; Coccomyxa ; Ecology ; Environmental Microbiology ; Exposure ; Gene expression ; Geoecology/Natural Processes ; Glutathione ; Glutathione reductase ; Heavy metals ; Life Sciences ; Metals ; Microalgae ; Microbial Ecology ; Microbiology ; Microorganisms ; Nature Conservation ; Oxidative stress ; Phycobionts ; Physiology ; Phytochelatins ; Phytoplankton ; Reactive oxygen species ; Reductases ; Resistance mechanisms ; Trebouxia ; Water Quality/Water Pollution</subject><ispartof>Microbial ecology, 2021-08, Vol.82 (2), p.334-343</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-b7a9895a264bf76b3dfdd2e33f36203058f6926919aa76730da22c7db01a26b53</citedby><cites>FETCH-LOGICAL-c441t-b7a9895a264bf76b3dfdd2e33f36203058f6926919aa76730da22c7db01a26b53</cites><orcidid>0000-0002-2304-7317</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00248-021-01685-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00248-021-01685-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33452613$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vingiani, Giorgio Maria</creatorcontrib><creatorcontrib>Gasulla, Francisco</creatorcontrib><creatorcontrib>Barón-Sola, Ángel</creatorcontrib><creatorcontrib>Sobrino-Plata, Juan</creatorcontrib><creatorcontrib>Henández, Luis E.</creatorcontrib><creatorcontrib>Casano, Leonardo M.</creatorcontrib><title>Physiological and Molecular Alterations of Phycobionts of Genus Trebouxia and Coccomyxa Exposed to Cadmium</title><title>Microbial ecology</title><addtitle>Microb Ecol</addtitle><addtitle>Microb Ecol</addtitle><description>Several studies on aeroterrestrial microalgae are unravelling their resistance mechanisms to different abiotic stressors, including hazardous metals, pointing to their future role as bioremediation microorganisms. In the present study, physiological and molecular alterations of four phycobionts of genus Trebouxia (T. TR1 and T. TR9) and Coccomyxa ( C. subellipsoidea and C. simplex ) exposed to Cd were studied. Cd accumulation and subcellular distribution, cell wall structure, production of biothiols (GSH and phytochelatins), reactive oxygen species (ROS) formation, expression of key antioxidant genes and ROS-related enzymes were evaluated to determine the physiological differences among the four microalgae, with the aim to identify the most suitable microorganism for further biotechnological applications. After 7 days of Cd exposure, Coccomyxa algae showed higher capacity of Cd intake than Trebouxia species, with C. subellipsoidea being the highest Cd accumulator at both intracellular and, especially, cell wall level. Cd induced ROS formation in the four microalgae, but to a greater extent in both Coccomyxa algae. Trebouxia TR9 showed the lowest Cd-dependent oxidative stress probably due to glutathione reductase induction. All microalgae synthetized phytochelatins in response to Cd but in a species-specific and a dose-dependent manner. Results from this study agree with the notion that each microalga has evolved a distinct strategy to detoxify hazardous metals like Cd and to cope with oxidative stress associated with them. Coccomyxa subellipsoidea and Trebouxia TR9 appear as the most interesting candidates for further applications.</description><subject>Algae</subject><subject>Antioxidants</subject><subject>Aquatic microorganisms</subject><subject>Biomedical and Life Sciences</subject><subject>Bioremediation</subject><subject>Biotechnology</subject><subject>Cadmium</subject><subject>Cell walls</subject><subject>Coccomyxa</subject><subject>Ecology</subject><subject>Environmental Microbiology</subject><subject>Exposure</subject><subject>Gene expression</subject><subject>Geoecology/Natural Processes</subject><subject>Glutathione</subject><subject>Glutathione reductase</subject><subject>Heavy metals</subject><subject>Life Sciences</subject><subject>Metals</subject><subject>Microalgae</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Nature Conservation</subject><subject>Oxidative stress</subject><subject>Phycobionts</subject><subject>Physiology</subject><subject>Phytochelatins</subject><subject>Phytoplankton</subject><subject>Reactive oxygen species</subject><subject>Reductases</subject><subject>Resistance mechanisms</subject><subject>Trebouxia</subject><subject>Water Quality/Water Pollution</subject><issn>0095-3628</issn><issn>1432-184X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1LwzAYxoMobk7_AQ8S8OKlmu-2xzHmFBQ9TPAW0iTVjraZSQubf71x9QM8eAov-T3P-_EAcIrRJUYovQoIEZYliOAEYZHx5H0PjDGjJMEZe94HY4RynlBBshE4CmGFEE4FoYdgRCnjRGA6BqvH122oXO1eKq1qqFoD711tdV8rD6d1Z73qKtcG6EoYUe2KWHW7cmHbPsClt4XrN5XaaWdOa9dsNwrON2sXrIGdgzNlmqpvjsFBqepgT77eCXi6ni9nN8ndw-J2Nr1LNGO4S4pU5VnOFRGsKFNRUFMaQyylZdwEUcSzUuRE5DhXKhUpRUYRolNTIBw1BacTcDH4rr17623oZFMFbetatdb1QRKWZjznTIiInv9BV673bZxOEi5oTunnlSaADJT2LgRvS7n2VaP8VmIkP5OQQxIyJiF3Scj3KDr7su6LxpofyffpI0AHIMSv9sX6397_2H4A1KKUYg</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Vingiani, Giorgio Maria</creator><creator>Gasulla, Francisco</creator><creator>Barón-Sola, Ángel</creator><creator>Sobrino-Plata, Juan</creator><creator>Henández, Luis E.</creator><creator>Casano, Leonardo M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2304-7317</orcidid></search><sort><creationdate>20210801</creationdate><title>Physiological and Molecular Alterations of Phycobionts of Genus Trebouxia and Coccomyxa Exposed to Cadmium</title><author>Vingiani, Giorgio Maria ; Gasulla, Francisco ; Barón-Sola, Ángel ; Sobrino-Plata, Juan ; Henández, Luis E. ; Casano, Leonardo M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-b7a9895a264bf76b3dfdd2e33f36203058f6926919aa76730da22c7db01a26b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algae</topic><topic>Antioxidants</topic><topic>Aquatic microorganisms</topic><topic>Biomedical and Life Sciences</topic><topic>Bioremediation</topic><topic>Biotechnology</topic><topic>Cadmium</topic><topic>Cell walls</topic><topic>Coccomyxa</topic><topic>Ecology</topic><topic>Environmental Microbiology</topic><topic>Exposure</topic><topic>Gene expression</topic><topic>Geoecology/Natural Processes</topic><topic>Glutathione</topic><topic>Glutathione reductase</topic><topic>Heavy metals</topic><topic>Life Sciences</topic><topic>Metals</topic><topic>Microalgae</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Nature Conservation</topic><topic>Oxidative stress</topic><topic>Phycobionts</topic><topic>Physiology</topic><topic>Phytochelatins</topic><topic>Phytoplankton</topic><topic>Reactive oxygen species</topic><topic>Reductases</topic><topic>Resistance mechanisms</topic><topic>Trebouxia</topic><topic>Water Quality/Water Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vingiani, Giorgio Maria</creatorcontrib><creatorcontrib>Gasulla, Francisco</creatorcontrib><creatorcontrib>Barón-Sola, Ángel</creatorcontrib><creatorcontrib>Sobrino-Plata, Juan</creatorcontrib><creatorcontrib>Henández, Luis E.</creatorcontrib><creatorcontrib>Casano, Leonardo M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Microbial ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vingiani, Giorgio Maria</au><au>Gasulla, Francisco</au><au>Barón-Sola, Ángel</au><au>Sobrino-Plata, Juan</au><au>Henández, Luis E.</au><au>Casano, Leonardo M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physiological and Molecular Alterations of Phycobionts of Genus Trebouxia and Coccomyxa Exposed to Cadmium</atitle><jtitle>Microbial ecology</jtitle><stitle>Microb Ecol</stitle><addtitle>Microb Ecol</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>82</volume><issue>2</issue><spage>334</spage><epage>343</epage><pages>334-343</pages><issn>0095-3628</issn><eissn>1432-184X</eissn><abstract>Several studies on aeroterrestrial microalgae are unravelling their resistance mechanisms to different abiotic stressors, including hazardous metals, pointing to their future role as bioremediation microorganisms. In the present study, physiological and molecular alterations of four phycobionts of genus Trebouxia (T. TR1 and T. TR9) and Coccomyxa ( C. subellipsoidea and C. simplex ) exposed to Cd were studied. Cd accumulation and subcellular distribution, cell wall structure, production of biothiols (GSH and phytochelatins), reactive oxygen species (ROS) formation, expression of key antioxidant genes and ROS-related enzymes were evaluated to determine the physiological differences among the four microalgae, with the aim to identify the most suitable microorganism for further biotechnological applications. After 7 days of Cd exposure, Coccomyxa algae showed higher capacity of Cd intake than Trebouxia species, with C. subellipsoidea being the highest Cd accumulator at both intracellular and, especially, cell wall level. Cd induced ROS formation in the four microalgae, but to a greater extent in both Coccomyxa algae. Trebouxia TR9 showed the lowest Cd-dependent oxidative stress probably due to glutathione reductase induction. All microalgae synthetized phytochelatins in response to Cd but in a species-specific and a dose-dependent manner. Results from this study agree with the notion that each microalga has evolved a distinct strategy to detoxify hazardous metals like Cd and to cope with oxidative stress associated with them. Coccomyxa subellipsoidea and Trebouxia TR9 appear as the most interesting candidates for further applications.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33452613</pmid><doi>10.1007/s00248-021-01685-z</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2304-7317</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0095-3628
ispartof Microbial ecology, 2021-08, Vol.82 (2), p.334-343
issn 0095-3628
1432-184X
language eng
recordid cdi_proquest_miscellaneous_2478595466
source SpringerLink Journals - AutoHoldings
subjects Algae
Antioxidants
Aquatic microorganisms
Biomedical and Life Sciences
Bioremediation
Biotechnology
Cadmium
Cell walls
Coccomyxa
Ecology
Environmental Microbiology
Exposure
Gene expression
Geoecology/Natural Processes
Glutathione
Glutathione reductase
Heavy metals
Life Sciences
Metals
Microalgae
Microbial Ecology
Microbiology
Microorganisms
Nature Conservation
Oxidative stress
Phycobionts
Physiology
Phytochelatins
Phytoplankton
Reactive oxygen species
Reductases
Resistance mechanisms
Trebouxia
Water Quality/Water Pollution
title Physiological and Molecular Alterations of Phycobionts of Genus Trebouxia and Coccomyxa Exposed to Cadmium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T07%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physiological%20and%20Molecular%20Alterations%20of%20Phycobionts%20of%20Genus%20Trebouxia%20and%20Coccomyxa%20Exposed%20to%20Cadmium&rft.jtitle=Microbial%20ecology&rft.au=Vingiani,%20Giorgio%20Maria&rft.date=2021-08-01&rft.volume=82&rft.issue=2&rft.spage=334&rft.epage=343&rft.pages=334-343&rft.issn=0095-3628&rft.eissn=1432-184X&rft_id=info:doi/10.1007/s00248-021-01685-z&rft_dat=%3Cproquest_cross%3E2478595466%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563933261&rft_id=info:pmid/33452613&rfr_iscdi=true