Multi-scale retinal vessel segmentation using encoder-decoder network with squeeze-and-excitation connection and atrous spatial pyramid pooling
The segmentation of blood vessels in retinal images is crucial to the diagnosis of many diseases. We propose a deep learning method for vessel segmentation based on an encoder-decoder network combined with squeeze-and-excitation connection and atrous spatial pyramid pooling. In our implementation, t...
Gespeichert in:
Veröffentlicht in: | Applied optics (2004) 2021-01, Vol.60 (2), p.239-249 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 249 |
---|---|
container_issue | 2 |
container_start_page | 239 |
container_title | Applied optics (2004) |
container_volume | 60 |
creator | Xie, Huiying Tang, Chen Zhang, Wei Shen, Yuxin Lei, Zhengkun |
description | The segmentation of blood vessels in retinal images is crucial to the diagnosis of many diseases. We propose a deep learning method for vessel segmentation based on an encoder-decoder network combined with squeeze-and-excitation connection and atrous spatial pyramid pooling. In our implementation, the atrous spatial pyramid pooling allows the network to capture features at multiple scales, and the high-level semantic information is combined with low-level features through the encoder-decoder architecture to generate segmentations. Meanwhile, the squeeze-and-excitation connections in the proposed network can adaptively recalibrate features according to the relationship between different channels of features. The proposed network can achieve precise segmentation of retinal vessels without hand-crafted features or specific post-processing. The performance of our model is evaluated in terms of visual effects and quantitative evaluation metrics on two publicly available datasets of retinal images, the Digital Retinal Images for Vessel Extraction and Structured Analysis of the Retina datasets, with comparison to 12 representative methods. Furthermore, the proposed network is applied to vessel segmentation on local retinal images, which demonstrates promising application prospect in medical practices. |
doi_str_mv | 10.1364/AO.409512 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2478590531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478590531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-c7abe3577cd06f8c2738c228e3778c65bdb853ebf2f854aaa9d5d78b7e93bf473</originalsourceid><addsrcrecordid>eNpdkc9u1DAQxq0K1G63PfQFkCUu7cEl8Z-1c1xVtEUq2gtIvUWOPSkuiR1sh7K8BK-M2V04cJkZaX4z32g-hC7q6rpmK_5uvbnmVSNqeoQWtBaCsHolXqFFKRtSU_V4gk5Teq4qJngjj9EJY5yrhosF-vVxHrIjyegBcITsvB7wd0gJBpzgaQSfdXbB4zk5_4TBm2AhEgu7jD3klxC_4heXv-D0bQb4CUR7S-CHcYdJE7wHsytLB-scw5xwmkq3aE3bqEdn8RTCUBTO0OteDwnOD3mJPt--_3RzTx42dx9u1g_EsJplYqTugAkpja1WvTJUshKoAialMivR2U4JBl1PeyW41rqxwkrVSWhY13PJluhyv3eKoZydcju6ZGAYtIdyXku5VKKpRFFborf_oc9hjuVPe0pRyqqmUFd7ysSQUoS-naIbddy2ddX-caldb9q9S4V9c9g4dyPYf-RfW9hvtouQZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478822309</pqid></control><display><type>article</type><title>Multi-scale retinal vessel segmentation using encoder-decoder network with squeeze-and-excitation connection and atrous spatial pyramid pooling</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Xie, Huiying ; Tang, Chen ; Zhang, Wei ; Shen, Yuxin ; Lei, Zhengkun</creator><creatorcontrib>Xie, Huiying ; Tang, Chen ; Zhang, Wei ; Shen, Yuxin ; Lei, Zhengkun</creatorcontrib><description>The segmentation of blood vessels in retinal images is crucial to the diagnosis of many diseases. We propose a deep learning method for vessel segmentation based on an encoder-decoder network combined with squeeze-and-excitation connection and atrous spatial pyramid pooling. In our implementation, the atrous spatial pyramid pooling allows the network to capture features at multiple scales, and the high-level semantic information is combined with low-level features through the encoder-decoder architecture to generate segmentations. Meanwhile, the squeeze-and-excitation connections in the proposed network can adaptively recalibrate features according to the relationship between different channels of features. The proposed network can achieve precise segmentation of retinal vessels without hand-crafted features or specific post-processing. The performance of our model is evaluated in terms of visual effects and quantitative evaluation metrics on two publicly available datasets of retinal images, the Digital Retinal Images for Vessel Extraction and Structured Analysis of the Retina datasets, with comparison to 12 representative methods. Furthermore, the proposed network is applied to vessel segmentation on local retinal images, which demonstrates promising application prospect in medical practices.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.409512</identifier><identifier>PMID: 33448945</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Blood vessels ; Coders ; Datasets ; Digital imaging ; Encoders-Decoders ; Excitation ; Image segmentation ; Medical imaging ; Post-production processing ; Retinal images ; Visual effects</subject><ispartof>Applied optics (2004), 2021-01, Vol.60 (2), p.239-249</ispartof><rights>Copyright Optical Society of America Jan 10, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-c7abe3577cd06f8c2738c228e3778c65bdb853ebf2f854aaa9d5d78b7e93bf473</citedby><cites>FETCH-LOGICAL-c313t-c7abe3577cd06f8c2738c228e3778c65bdb853ebf2f854aaa9d5d78b7e93bf473</cites><orcidid>0000-0003-2061-4184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3245,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33448945$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Huiying</creatorcontrib><creatorcontrib>Tang, Chen</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Shen, Yuxin</creatorcontrib><creatorcontrib>Lei, Zhengkun</creatorcontrib><title>Multi-scale retinal vessel segmentation using encoder-decoder network with squeeze-and-excitation connection and atrous spatial pyramid pooling</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>The segmentation of blood vessels in retinal images is crucial to the diagnosis of many diseases. We propose a deep learning method for vessel segmentation based on an encoder-decoder network combined with squeeze-and-excitation connection and atrous spatial pyramid pooling. In our implementation, the atrous spatial pyramid pooling allows the network to capture features at multiple scales, and the high-level semantic information is combined with low-level features through the encoder-decoder architecture to generate segmentations. Meanwhile, the squeeze-and-excitation connections in the proposed network can adaptively recalibrate features according to the relationship between different channels of features. The proposed network can achieve precise segmentation of retinal vessels without hand-crafted features or specific post-processing. The performance of our model is evaluated in terms of visual effects and quantitative evaluation metrics on two publicly available datasets of retinal images, the Digital Retinal Images for Vessel Extraction and Structured Analysis of the Retina datasets, with comparison to 12 representative methods. Furthermore, the proposed network is applied to vessel segmentation on local retinal images, which demonstrates promising application prospect in medical practices.</description><subject>Blood vessels</subject><subject>Coders</subject><subject>Datasets</subject><subject>Digital imaging</subject><subject>Encoders-Decoders</subject><subject>Excitation</subject><subject>Image segmentation</subject><subject>Medical imaging</subject><subject>Post-production processing</subject><subject>Retinal images</subject><subject>Visual effects</subject><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkc9u1DAQxq0K1G63PfQFkCUu7cEl8Z-1c1xVtEUq2gtIvUWOPSkuiR1sh7K8BK-M2V04cJkZaX4z32g-hC7q6rpmK_5uvbnmVSNqeoQWtBaCsHolXqFFKRtSU_V4gk5Teq4qJngjj9EJY5yrhosF-vVxHrIjyegBcITsvB7wd0gJBpzgaQSfdXbB4zk5_4TBm2AhEgu7jD3klxC_4heXv-D0bQb4CUR7S-CHcYdJE7wHsytLB-scw5xwmkq3aE3bqEdn8RTCUBTO0OteDwnOD3mJPt--_3RzTx42dx9u1g_EsJplYqTugAkpja1WvTJUshKoAialMivR2U4JBl1PeyW41rqxwkrVSWhY13PJluhyv3eKoZydcju6ZGAYtIdyXku5VKKpRFFborf_oc9hjuVPe0pRyqqmUFd7ysSQUoS-naIbddy2ddX-caldb9q9S4V9c9g4dyPYf-RfW9hvtouQZw</recordid><startdate>20210110</startdate><enddate>20210110</enddate><creator>Xie, Huiying</creator><creator>Tang, Chen</creator><creator>Zhang, Wei</creator><creator>Shen, Yuxin</creator><creator>Lei, Zhengkun</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2061-4184</orcidid></search><sort><creationdate>20210110</creationdate><title>Multi-scale retinal vessel segmentation using encoder-decoder network with squeeze-and-excitation connection and atrous spatial pyramid pooling</title><author>Xie, Huiying ; Tang, Chen ; Zhang, Wei ; Shen, Yuxin ; Lei, Zhengkun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-c7abe3577cd06f8c2738c228e3778c65bdb853ebf2f854aaa9d5d78b7e93bf473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Blood vessels</topic><topic>Coders</topic><topic>Datasets</topic><topic>Digital imaging</topic><topic>Encoders-Decoders</topic><topic>Excitation</topic><topic>Image segmentation</topic><topic>Medical imaging</topic><topic>Post-production processing</topic><topic>Retinal images</topic><topic>Visual effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Huiying</creatorcontrib><creatorcontrib>Tang, Chen</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Shen, Yuxin</creatorcontrib><creatorcontrib>Lei, Zhengkun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Huiying</au><au>Tang, Chen</au><au>Zhang, Wei</au><au>Shen, Yuxin</au><au>Lei, Zhengkun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-scale retinal vessel segmentation using encoder-decoder network with squeeze-and-excitation connection and atrous spatial pyramid pooling</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2021-01-10</date><risdate>2021</risdate><volume>60</volume><issue>2</issue><spage>239</spage><epage>249</epage><pages>239-249</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>The segmentation of blood vessels in retinal images is crucial to the diagnosis of many diseases. We propose a deep learning method for vessel segmentation based on an encoder-decoder network combined with squeeze-and-excitation connection and atrous spatial pyramid pooling. In our implementation, the atrous spatial pyramid pooling allows the network to capture features at multiple scales, and the high-level semantic information is combined with low-level features through the encoder-decoder architecture to generate segmentations. Meanwhile, the squeeze-and-excitation connections in the proposed network can adaptively recalibrate features according to the relationship between different channels of features. The proposed network can achieve precise segmentation of retinal vessels without hand-crafted features or specific post-processing. The performance of our model is evaluated in terms of visual effects and quantitative evaluation metrics on two publicly available datasets of retinal images, the Digital Retinal Images for Vessel Extraction and Structured Analysis of the Retina datasets, with comparison to 12 representative methods. Furthermore, the proposed network is applied to vessel segmentation on local retinal images, which demonstrates promising application prospect in medical practices.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>33448945</pmid><doi>10.1364/AO.409512</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2061-4184</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-128X |
ispartof | Applied optics (2004), 2021-01, Vol.60 (2), p.239-249 |
issn | 1559-128X 2155-3165 1539-4522 |
language | eng |
recordid | cdi_proquest_miscellaneous_2478590531 |
source | Alma/SFX Local Collection; Optica Publishing Group Journals |
subjects | Blood vessels Coders Datasets Digital imaging Encoders-Decoders Excitation Image segmentation Medical imaging Post-production processing Retinal images Visual effects |
title | Multi-scale retinal vessel segmentation using encoder-decoder network with squeeze-and-excitation connection and atrous spatial pyramid pooling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-scale%20retinal%20vessel%20segmentation%20using%20encoder-decoder%20network%20with%20squeeze-and-excitation%20connection%20and%20atrous%20spatial%20pyramid%20pooling&rft.jtitle=Applied%20optics%20(2004)&rft.au=Xie,%20Huiying&rft.date=2021-01-10&rft.volume=60&rft.issue=2&rft.spage=239&rft.epage=249&rft.pages=239-249&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.409512&rft_dat=%3Cproquest_cross%3E2478590531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478822309&rft_id=info:pmid/33448945&rfr_iscdi=true |