Multi-scale retinal vessel segmentation using encoder-decoder network with squeeze-and-excitation connection and atrous spatial pyramid pooling

The segmentation of blood vessels in retinal images is crucial to the diagnosis of many diseases. We propose a deep learning method for vessel segmentation based on an encoder-decoder network combined with squeeze-and-excitation connection and atrous spatial pyramid pooling. In our implementation, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2021-01, Vol.60 (2), p.239-249
Hauptverfasser: Xie, Huiying, Tang, Chen, Zhang, Wei, Shen, Yuxin, Lei, Zhengkun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 249
container_issue 2
container_start_page 239
container_title Applied optics (2004)
container_volume 60
creator Xie, Huiying
Tang, Chen
Zhang, Wei
Shen, Yuxin
Lei, Zhengkun
description The segmentation of blood vessels in retinal images is crucial to the diagnosis of many diseases. We propose a deep learning method for vessel segmentation based on an encoder-decoder network combined with squeeze-and-excitation connection and atrous spatial pyramid pooling. In our implementation, the atrous spatial pyramid pooling allows the network to capture features at multiple scales, and the high-level semantic information is combined with low-level features through the encoder-decoder architecture to generate segmentations. Meanwhile, the squeeze-and-excitation connections in the proposed network can adaptively recalibrate features according to the relationship between different channels of features. The proposed network can achieve precise segmentation of retinal vessels without hand-crafted features or specific post-processing. The performance of our model is evaluated in terms of visual effects and quantitative evaluation metrics on two publicly available datasets of retinal images, the Digital Retinal Images for Vessel Extraction and Structured Analysis of the Retina datasets, with comparison to 12 representative methods. Furthermore, the proposed network is applied to vessel segmentation on local retinal images, which demonstrates promising application prospect in medical practices.
doi_str_mv 10.1364/AO.409512
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2478590531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478590531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-c7abe3577cd06f8c2738c228e3778c65bdb853ebf2f854aaa9d5d78b7e93bf473</originalsourceid><addsrcrecordid>eNpdkc9u1DAQxq0K1G63PfQFkCUu7cEl8Z-1c1xVtEUq2gtIvUWOPSkuiR1sh7K8BK-M2V04cJkZaX4z32g-hC7q6rpmK_5uvbnmVSNqeoQWtBaCsHolXqFFKRtSU_V4gk5Teq4qJngjj9EJY5yrhosF-vVxHrIjyegBcITsvB7wd0gJBpzgaQSfdXbB4zk5_4TBm2AhEgu7jD3klxC_4heXv-D0bQb4CUR7S-CHcYdJE7wHsytLB-scw5xwmkq3aE3bqEdn8RTCUBTO0OteDwnOD3mJPt--_3RzTx42dx9u1g_EsJplYqTugAkpja1WvTJUshKoAialMivR2U4JBl1PeyW41rqxwkrVSWhY13PJluhyv3eKoZydcju6ZGAYtIdyXku5VKKpRFFborf_oc9hjuVPe0pRyqqmUFd7ysSQUoS-naIbddy2ddX-caldb9q9S4V9c9g4dyPYf-RfW9hvtouQZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478822309</pqid></control><display><type>article</type><title>Multi-scale retinal vessel segmentation using encoder-decoder network with squeeze-and-excitation connection and atrous spatial pyramid pooling</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Xie, Huiying ; Tang, Chen ; Zhang, Wei ; Shen, Yuxin ; Lei, Zhengkun</creator><creatorcontrib>Xie, Huiying ; Tang, Chen ; Zhang, Wei ; Shen, Yuxin ; Lei, Zhengkun</creatorcontrib><description>The segmentation of blood vessels in retinal images is crucial to the diagnosis of many diseases. We propose a deep learning method for vessel segmentation based on an encoder-decoder network combined with squeeze-and-excitation connection and atrous spatial pyramid pooling. In our implementation, the atrous spatial pyramid pooling allows the network to capture features at multiple scales, and the high-level semantic information is combined with low-level features through the encoder-decoder architecture to generate segmentations. Meanwhile, the squeeze-and-excitation connections in the proposed network can adaptively recalibrate features according to the relationship between different channels of features. The proposed network can achieve precise segmentation of retinal vessels without hand-crafted features or specific post-processing. The performance of our model is evaluated in terms of visual effects and quantitative evaluation metrics on two publicly available datasets of retinal images, the Digital Retinal Images for Vessel Extraction and Structured Analysis of the Retina datasets, with comparison to 12 representative methods. Furthermore, the proposed network is applied to vessel segmentation on local retinal images, which demonstrates promising application prospect in medical practices.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.409512</identifier><identifier>PMID: 33448945</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Blood vessels ; Coders ; Datasets ; Digital imaging ; Encoders-Decoders ; Excitation ; Image segmentation ; Medical imaging ; Post-production processing ; Retinal images ; Visual effects</subject><ispartof>Applied optics (2004), 2021-01, Vol.60 (2), p.239-249</ispartof><rights>Copyright Optical Society of America Jan 10, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-c7abe3577cd06f8c2738c228e3778c65bdb853ebf2f854aaa9d5d78b7e93bf473</citedby><cites>FETCH-LOGICAL-c313t-c7abe3577cd06f8c2738c228e3778c65bdb853ebf2f854aaa9d5d78b7e93bf473</cites><orcidid>0000-0003-2061-4184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3245,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33448945$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Huiying</creatorcontrib><creatorcontrib>Tang, Chen</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Shen, Yuxin</creatorcontrib><creatorcontrib>Lei, Zhengkun</creatorcontrib><title>Multi-scale retinal vessel segmentation using encoder-decoder network with squeeze-and-excitation connection and atrous spatial pyramid pooling</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>The segmentation of blood vessels in retinal images is crucial to the diagnosis of many diseases. We propose a deep learning method for vessel segmentation based on an encoder-decoder network combined with squeeze-and-excitation connection and atrous spatial pyramid pooling. In our implementation, the atrous spatial pyramid pooling allows the network to capture features at multiple scales, and the high-level semantic information is combined with low-level features through the encoder-decoder architecture to generate segmentations. Meanwhile, the squeeze-and-excitation connections in the proposed network can adaptively recalibrate features according to the relationship between different channels of features. The proposed network can achieve precise segmentation of retinal vessels without hand-crafted features or specific post-processing. The performance of our model is evaluated in terms of visual effects and quantitative evaluation metrics on two publicly available datasets of retinal images, the Digital Retinal Images for Vessel Extraction and Structured Analysis of the Retina datasets, with comparison to 12 representative methods. Furthermore, the proposed network is applied to vessel segmentation on local retinal images, which demonstrates promising application prospect in medical practices.</description><subject>Blood vessels</subject><subject>Coders</subject><subject>Datasets</subject><subject>Digital imaging</subject><subject>Encoders-Decoders</subject><subject>Excitation</subject><subject>Image segmentation</subject><subject>Medical imaging</subject><subject>Post-production processing</subject><subject>Retinal images</subject><subject>Visual effects</subject><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkc9u1DAQxq0K1G63PfQFkCUu7cEl8Z-1c1xVtEUq2gtIvUWOPSkuiR1sh7K8BK-M2V04cJkZaX4z32g-hC7q6rpmK_5uvbnmVSNqeoQWtBaCsHolXqFFKRtSU_V4gk5Teq4qJngjj9EJY5yrhosF-vVxHrIjyegBcITsvB7wd0gJBpzgaQSfdXbB4zk5_4TBm2AhEgu7jD3klxC_4heXv-D0bQb4CUR7S-CHcYdJE7wHsytLB-scw5xwmkq3aE3bqEdn8RTCUBTO0OteDwnOD3mJPt--_3RzTx42dx9u1g_EsJplYqTugAkpja1WvTJUshKoAialMivR2U4JBl1PeyW41rqxwkrVSWhY13PJluhyv3eKoZydcju6ZGAYtIdyXku5VKKpRFFborf_oc9hjuVPe0pRyqqmUFd7ysSQUoS-naIbddy2ddX-caldb9q9S4V9c9g4dyPYf-RfW9hvtouQZw</recordid><startdate>20210110</startdate><enddate>20210110</enddate><creator>Xie, Huiying</creator><creator>Tang, Chen</creator><creator>Zhang, Wei</creator><creator>Shen, Yuxin</creator><creator>Lei, Zhengkun</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2061-4184</orcidid></search><sort><creationdate>20210110</creationdate><title>Multi-scale retinal vessel segmentation using encoder-decoder network with squeeze-and-excitation connection and atrous spatial pyramid pooling</title><author>Xie, Huiying ; Tang, Chen ; Zhang, Wei ; Shen, Yuxin ; Lei, Zhengkun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-c7abe3577cd06f8c2738c228e3778c65bdb853ebf2f854aaa9d5d78b7e93bf473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Blood vessels</topic><topic>Coders</topic><topic>Datasets</topic><topic>Digital imaging</topic><topic>Encoders-Decoders</topic><topic>Excitation</topic><topic>Image segmentation</topic><topic>Medical imaging</topic><topic>Post-production processing</topic><topic>Retinal images</topic><topic>Visual effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Huiying</creatorcontrib><creatorcontrib>Tang, Chen</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Shen, Yuxin</creatorcontrib><creatorcontrib>Lei, Zhengkun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Huiying</au><au>Tang, Chen</au><au>Zhang, Wei</au><au>Shen, Yuxin</au><au>Lei, Zhengkun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-scale retinal vessel segmentation using encoder-decoder network with squeeze-and-excitation connection and atrous spatial pyramid pooling</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2021-01-10</date><risdate>2021</risdate><volume>60</volume><issue>2</issue><spage>239</spage><epage>249</epage><pages>239-249</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>The segmentation of blood vessels in retinal images is crucial to the diagnosis of many diseases. We propose a deep learning method for vessel segmentation based on an encoder-decoder network combined with squeeze-and-excitation connection and atrous spatial pyramid pooling. In our implementation, the atrous spatial pyramid pooling allows the network to capture features at multiple scales, and the high-level semantic information is combined with low-level features through the encoder-decoder architecture to generate segmentations. Meanwhile, the squeeze-and-excitation connections in the proposed network can adaptively recalibrate features according to the relationship between different channels of features. The proposed network can achieve precise segmentation of retinal vessels without hand-crafted features or specific post-processing. The performance of our model is evaluated in terms of visual effects and quantitative evaluation metrics on two publicly available datasets of retinal images, the Digital Retinal Images for Vessel Extraction and Structured Analysis of the Retina datasets, with comparison to 12 representative methods. Furthermore, the proposed network is applied to vessel segmentation on local retinal images, which demonstrates promising application prospect in medical practices.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>33448945</pmid><doi>10.1364/AO.409512</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2061-4184</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2021-01, Vol.60 (2), p.239-249
issn 1559-128X
2155-3165
1539-4522
language eng
recordid cdi_proquest_miscellaneous_2478590531
source Alma/SFX Local Collection; Optica Publishing Group Journals
subjects Blood vessels
Coders
Datasets
Digital imaging
Encoders-Decoders
Excitation
Image segmentation
Medical imaging
Post-production processing
Retinal images
Visual effects
title Multi-scale retinal vessel segmentation using encoder-decoder network with squeeze-and-excitation connection and atrous spatial pyramid pooling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-scale%20retinal%20vessel%20segmentation%20using%20encoder-decoder%20network%20with%20squeeze-and-excitation%20connection%20and%20atrous%20spatial%20pyramid%20pooling&rft.jtitle=Applied%20optics%20(2004)&rft.au=Xie,%20Huiying&rft.date=2021-01-10&rft.volume=60&rft.issue=2&rft.spage=239&rft.epage=249&rft.pages=239-249&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.409512&rft_dat=%3Cproquest_cross%3E2478590531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478822309&rft_id=info:pmid/33448945&rfr_iscdi=true